# Assignment A5: Geometry 

## CS 4640

Fall 2021

## Assigned: 19 October 2021

Due: 28 October 2021

1. Investigate shape boundary segmentation by developing an algorithm to find the cap boundary on the middle bottle and measure its goodness of fit to a cap template using the Procrustes method. This consists of the following steps:

- Create a cap boundary template.
- Find cap-red pixels (produce a binary image with red areas).
- Found boundary (use Matlab boundary function);
- cap template is $n x 2$ boundary pixels.
- For every test image:
- Find red-cap pixels
- If enough pixels in middle bottle cap area, find boundary.
- Compute [D,Z,T] using Matlab Procrustes function.
- Implement CS4640_cap_shape function described by the given header.
- Report development process, issues faced, and remaining problems. Provide results on images with middle red cap (by visual inspection). Show results on some examples.

```
function cap = CS4640_cap_shape(im,model)
% CS4640_cap_shape - find cap boundary of middle bottle
% On input:
% im (MxNx3 array): RGB image
```

```
% model (nx2 array): cap boundary template points
On output:
% cap (MxN array): binary cap boundary image
% Call:
cap = CS4640_cap_shape(bot1,cap_model);
Author:
    <Your name>
    UU
    Fall 2021
```

2. Investigate shape registration by developing an algorithm, and the corresponding function CS4640_register, to detect the middle bottle based on a small set of interest points:
3. Determine a set of reference points which can be found consistently in correct images. Describe your points and why you picked them. What is the minimum number of points required? Why? What's a good number of points to use? Why?
4. Given a test image, make sure it will have the interest points, find them, and then solve for the coefficients of the transform. Assume the following general form:

$$
\begin{aligned}
& x^{\prime}=a x+b y+c \\
& y^{\prime}=d x+e y+f
\end{aligned}
$$

where $(x, y)$ the interest point location in the model, and $\left(x^{\prime}, y^{\prime}\right)$ is the interest point location in the test image, and $a, b, c, s, d, e, f$ are the coefficients. Create the helper function CS4640_create_linear_system to produce the linear system from the reference and transformed points.
3. Create an image which has a gray level version of the test image as the base image, with overlayed red marker for the transformed model point locations (i.e., $\left\{\left(x^{\prime}, y^{\prime}\right)\right\}$ transformed points).
4. Discuss the development process for this, the issues encountered, and any remaining problems. Report results on all dataset images that satisfy the interest point criteria.

```
function [imo,C] = CS4640_register(im,ref)
% CS4640_resgister - use reference points to register model to image
% On input:
```

```
% im (MxNx3 array): RGB image
% ref (nx2 array): reference point locations
% On output:
% imo (MxN array): gray level version of im overlayed with model
% points
% C (6xl vector): coefficients of transform (a,b,c,d,e,f)
% }\mp@subsup{x}{}{\prime}=ax+by+
% y' = dx + ey + f
% Call:
% [imo,C] = Cs4640_register(bot1,ref);
% Author:
% <Your name>
% UU
% Fall 2021
%
```

```
function [A,b] = CS4640_create_linear_system(pts,ptsp)
```

function [A,b] = CS4640_create_linear_system(pts,ptsp)
% CS4640_create_linear_system - use pts and transformed pts to get
% CS4640_create_linear_system - use pts and transformed pts to get
% system
% system
% On input:
% On input:
% pts (Nx2 array): reference points
% pts (Nx2 array): reference points
% ptsp (Nx2 array): transformed points
% ptsp (Nx2 array): transformed points
% On output:
% On output:
% A (2Nx6 array): linear matrix
% A (2Nx6 array): linear matrix
% b (2Nx1 vector): constant vector
% b (2Nx1 vector): constant vector
% Call:
% Call:
% [A,b] = Cs4640_create_linear_array(pts,ptsp);
% [A,b] = Cs4640_create_linear_array(pts,ptsp);
% Author:
% Author:
% T. Henderson
% T. Henderson
% UU
% UU
% Fall 2021

```
% Fall 2021
```

\%

