
Predictable Scheduling for Digital Audio

Michael B. Jones and John Regehr

December 2000

Technical Report
MSR-TR-2000-87

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

Predictable Scheduling for Digital Audio

Michael B. Jones
Microsoft Research, Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

USA

mbj@microsoft.com
http://research.microsoft.com/~mbj/

John Regehr
Department of Computer Science, Thornton Hall

University of Virginia
Charlottesville, VA 22903-2242

USA

john@regehr.org
http://www.cs.virginia.edu/~jdr8d/

Abstract
This paper presents results from applying the Ri-

alto/NT scheduler to some real Windows 2000 application
scenarios. We report on two aspects of this work. First, we
studied the reliability of an audio player application and
the middleware and kernel components running beneath it
in order to assess its reliability under various concurrent
application loads. Then we added CPU Reservations to
portions of the workload in order to determine if doing so
would increase playback reliability under workloads in
which problems were previously seen. We report on the
benefits and problems observed when using reservations
in these real-world scenarios. We also describe the meth-
odologies we used to analyze the real-time behavior of the
operating system and applications, including the use of
instrumented kernels to produce execution traces. Finally,
we describe several improvements in the Rialto/NT im-
plementation that have been made since the system was
originally described.

1. Introduction
Novel implementations of two real-time scheduling

abstractions were developed within the Rialto real-time
operating system [Jones et al. 97, Jones et al. 96]: CPU
Reservations and Time Constraints. These abstractions
allow activities to obtain minimum guaranteed execution
rates with application-specified reservation granularities
via CPU Reservations, and to schedule tasks by deadlines
via Time Constraints, with on-time completion guaranteed
for tasks with accepted constraints.

We implemented these abstractions within a research
version of Windows 2000 called Rialto/NT [Jones & Re-
gehr 99b]. This paper assumes that the reader is already
familiar with the results and techniques presented in
[Jones et al. 97] and [Jones & Regehr 99b] and builds di-
rectly upon them.

While implementing the Rialto scheduling abstrac-
tions in Rialto/NT involved solving several interesting
engineering and research problems, this work just pro-
vides a means to larger ends. The main goal of Rialto/NT
has always been to bring the benefits of predictable real-
time scheduling to Windows 2000 applications. This paper
presents results obtained when applying Rialto/NT's CPU
Reservations to a commercial audio player application.

After presenting the application results we describe
the methodologies we used to evaluate application and

component reliability and to diagnose causes for prob-
lems, including the use of instrumented kernels to produce
execution traces. Finally, we describe several improve-
ments in the Rialto/NT implementation that have been
made since the system was originally described.

2. Rialto/NT Overview
This section presents a brief overview of Rialto/NT's

programming model and abstractions. For more details on
Rialto/NT itself see [Jones & Regehr 99b].

2.1 Adaptive Real-Time Applications
The Rialto scheduling abstractions were designed to

allow multiple independently authored applications to be
concurrently executed on the same machine, providing
predictable scheduling behavior for applications with real-
time requirements. They were designed to enable applica-
tions to perform predictably in dynamic, open systems,
where such factors as the speeds of the processor, mem-
ory, caches, busses, and I/O channels are not known in
advance, and the application mix and available resources
may change during execution.

Applications with real-time requirements in such a
dynamic environment cannot rely on off-line schedulabil-
ity analysis, unlike those for single-purpose systems with
fixed hardware configurations and application loads. Con-
sequently, real-time applications must monitor their own
performance and resource usage, modifying their behavior
and resource requests until their performance and predict-
ability are satisfactory. The system plays two roles in this
model. It provides facilities both for applications to
monitor their own resource usage and for applications to
reserve the resources that they need for predictable per-
formance.

2.2 Terminology and Abstractions
Two additional abstractions are provided in Rialto/NT

beyond those provided in the normal Windows 2000 sys-
tem: CPU Reservations and Time Constraints. This sec-
tion is intended to provide a brief introduction to them and
their usage for those unfamiliar with them.

2.2.1 CPU Reservations
Threads make CPU Reservations to ensure a mini-

mum guaranteed execution rate and granularity. CPU Res-
ervation requests are of the form reserve X units of time
out of every Y units for thread A. This requests that for
every time interval of size Y, thread A be scheduled for at

2

least X time units, provided it is runnable. For example, a
thread might request at least 800µs every 5ms, 7.5ms
every 33.3ms, or one second every minute.

CPU Reservations are continuously guaranteed. If A
has a reservation for X time units out of every Y, then for
every time T, A will be run for at least X time units in the
interval [T, T+Y], provided it is runnable. Execution time
intervals granted to a thread for its reservation are not
guaranteed to be contiguous.

Blocked threads do not accumulate credits for time
reserved but not used; unused time is given to other
threads that are ready to run.

In Rialto, CPU Reservations applied to Activities,
which were sets of threads, rather than just individual
threads. This is one significant difference between the
Rialto and Rialto/NT CPU Reservation implementations.

2.2.2 Time Constraints
A Time Constraint is a dynamic request issued by a

thread to the scheduler that the code associated with the
constraint be run to completion between the associated
start time and deadline. The request also contains an upper
bound on the execution time of the code.

Feasibility analysis is done for all time constraints
when submitted, including those with a start time in the
future. The requesting thread is either guaranteed that suf-
ficient time has been assigned to perform the specified
amount of work when requested or it is immediately told
via a return code that this was not possible, allowing the
thread to take alternate action for the unsatisfiable con-
straint. For instance, a thread might skip part of a compu-
tation, temporarily shedding load in response to a failed
constraint request. Providing time constraints that can be
guaranteed in advance, even when the CPU resource res-
ervation is insufficient or non-existent, is one feature that
sets Rialto and Rialto/NT apart from other constraint- and
reservation-based schedulers.

When a thread makes a call indicating that it has
completed a time constraint, the scheduler returns the ac-
tual amount of execution time the code took to run as a
return value from the call. This provides a basis for com-
puting accurate run-time estimates for subsequent execu-
tions.

An application can request that a piece of code be
executed by a particular deadline as follows:

Calculate constraint parameters
schedulable = BeginConstraint(

start_time, estimate, deadline);
if (schedulable) {

Do normal work under constraint
} else {

Transient overload — shed load if possible
}
time_taken = EndConstraint();

The start_time and deadline parameters are straight-
forward to calculate since they directly follow from what
the code does and how it is implemented. The estimate
parameter requires more care, since predicting the run

time of a piece of code is a hard problem (particularly in
light of variations in processor & memory speeds, cache &
memory sizes, I/O bus bandwidths, etc., between ma-
chines) and overestimating it increases the risk of the con-
straint being denied.

Rather than trying to calculate the estimate in some
manner from first principles (as is done for some hard
real-time embedded systems), one can base the estimate
on feedback from previous executions of the same code.
In particular, the time_taken result from EndConstraint()
provides the basis for this feedback.

The schedulable result informs the calling code
whether a requested constraint can be guaranteed, ena-
bling it to react appropriately when it cannot. This might
be caused by transient overload conditions or an applica-
tion optimistically trying to schedule more work than its
CPU Reservation can guarantee.

A composite EndConstraint/BeginConstraint call that
atomically ends the previous constraint and begins a new
one is also provided.

Finally, note that constraint deadlines may be small
relative to their thread’s reservation period. For instance, it
is both legal and meaningful for a thread to request 5ms of
work in the next 10ms when its reservation only guaran-
tees 8ms every 24ms. The extra time is guaranteed, when
possible, using free time in the schedule. The request may
or may not succeed, but if it succeeds sufficient time will
have been reserved for the constraint.

2.3 Rialto/NT Implementation Choices
This section presents some of the implementation

choices made within Rialto/NT.
• Use Existing Scheduler — We implemented the Ri-

alto/NT scheduler by taking advantage of, rather than
circumventing, the existing Windows 2000 priority-
based scheduler. Rialto/NT schedules a thread by
raising the thread’s effective priority as seen by the
Windows 2000 scheduler to 30 (the second highest
priority in the system). This implementation choice
greatly simplified coding portions of the scheduler by
allowing them to run in a less restrictive environment
(one in which they could allocate memory, for in-
stance). Unlike in the earlier Vassal [Candea & Jones
98] scheduling work, it allowed us to not modify any
of the highly tuned low-level kernel scheduling code,
such as the thread dispatcher.

• Coexist with Existing Scheduler — A Rialto/NT
goal is to coexist with the existing Windows 2000
scheduler, allowing non-real-time applications to ob-
tain approximately the same behaviors as they did be-
fore our changes.

• Periodic Clock — Time is kept on Windows 2000
using periodic interrupts that advance the system’s re-
cord of the current time. The interrupt frequency can
be set to values supported by the Hardware Abstrac-
tion Layer (HAL) being used; however, these values
are restricted to integer multiples of milliseconds.

3

(For more on HALs and timing see [Jones & Regehr
99a].) To limit the scope of our kernel changes we
chose to use the system's existing clock implementa-
tion at a 1ms frequency to drive scheduling decisions,
rather than implementing more precise timing serv-
ices, as was done in Rialto and has been done for
other legacy systems [Srinivasan et al. 98]. (On the
hardware we used, requesting a 1ms frequency results
in an actual interrupt period of 976µs.)

• Power-of-Two Periods — the actual period of a res-
ervation is a power-of-two multiple of a clock inter-
rupt period. The actual period is never longer than the
re-quested period and the actual fraction of the CPU
reserved is always at least as large as the fraction re-
quested.

• Multiprocessor — Rialto/NT can schedule tasks on
symmetric multiprocessors. The original Rialto
scheduler was designed only for uniprocessors.

• Per-Thread Reservations — Rialto/NT’s CPU Res-
ervations apply to a specific thread, rather than to a
set of threads belonging to an activity (as was the case
in Rialto).

3. Application Results
3.1 Experimental Setup

All performance results reported were measured on a
Gateway E-5000 dual-processor 333 MHz Pentium II PC
with 128MB of memory. Although the machine normally
uses both processors, it is also possible to tell Windows
2000 to use only one processor by using the /numproc=1
switch in c:\boot.ini. Uniprocessor measurements were
collected in this way—all Windows Media Player experi-
ments were run in uniprocessor mode.

The machine uses an Intel EtherExpress Pro/100B
PCI Ethernet adapter, an Adaptec AHA-3940U/UW dual
SCSI controller, and a Seagate ST10101W SCSI disk.

We took measurements using a “perf kernel”—an in-
strumented version of Windows 2000 that was developed
by the Windows NT Performance group at Microsoft in
order to understand and tune the OS. The perf kernel is
capable of logging a wide variety of events to a physical
memory buffer and then dumping them to disk for post-
processing. During our experiments, we used predefined
perf kernel functionality to log all deferred procedure calls
(DPCs), thread context switches, thread and process crea-
tions and deletions, and synchronization events. We also
logged application-specific data such as audio starvation
events; we discuss this in more detail in Section 3.3.1.
Logging typically produced around 10MB of data per mi-
nute. After dumping the binary event logs to disk and con-
verting them into a text format, we post-processed the
output with Perl scripts that filtered out uninteresting data,
converted the remainder into a more readable format, and
graphed thread activity during the logged period.

3.2 Windows 2000 Scheduling Structure
Windows 2000 scheduling is described in detail in

[Solomon & Russinovich 00]; here we provide a brief
overview.

Windows 2000 has 31 priority levels. Priorities 1-15
are variable levels; thread priorities in this range are ad-
justed by the system to increase responsiveness. For ex-
ample, quantum size is increased for threads in the fore-
ground process, thread priority may be boosted upon
completing a wait, and priority is boosted for threads that
have been ready to run, but not scheduled, for several sec-
onds. The latter heuristic is designed to break priority in-
versions by giving starved threads a chance to release
shared resources they may be holding. This heuristic is
effective, although we will see in Section 3.4.2 that inver-
sions are not broken quickly enough to be useful for mul-
timedia applications.

Priorities 16-31 are real-time priorities. Quanta and
priorities of threads in this range are not adjusted—the
scheduler simply runs the threads at the highest priority in
a round-robin manner.

Deferred procedure calls are kernel routines not tied
to any particular process context that run at higher priority
than any thread. (DPCs are analogous to bottom-half han-
dlers in Unix-like operating systems.) DPCs give device
drivers access to high-priority CPU time outside of inter-
rupt context and without the overhead of dispatching a
thread.

3.3 Windows Media Player
Windows Media Player is the default Windows appli-

cation for playing a variety of streaming audio and video
file formats such as MP3, WAV, AVI, and MPEG-2. All
experiments reported in this section were performed while
playing an MPEG-2 layer 3 (MP3) audio file under Media
Player version 6.4. We chose an audio application because
the human ear is very sensitive to anomalies in audio
playback; in this domain we expect essentially flawless
real-time performance.

The Windows Media Player is structured as a group
of cooperating threads that performs tasks such as reading
encoded data from disk, decoding the data and sending it
to a sound driver, and updating the graphical front-end.

3.3.1 Windows Audio Architecture
Windows 98, Windows ME, and Windows 2000

contain an audio architecture based on the Windows
Driver Model [Microsoft 99] that performs mixing func-
tions in software, so that a potentially unlimited number of
software sound sources can be converted into a single
stream for delivery to sound hardware. The kernel audio
mixer has tight end-to-end latency requirements since ap-
plications may generate sounds in response to user actions.
If the delay between action and sound is longer than a few
tens of milliseconds, they are not perceived as being si-
multaneous. We can derive most real-time requirements
for sounds from this delay and from the amount of buff-
ering present on sound hardware.

4

The kernel mixer uses three or four 10ms buffers.
Consequently, if the kernel mixer thread (which should
run every 10ms at priority 24) is not scheduled for about
30ms, audible sound glitches will follow. We added code
to the kernel mixer causing it to emit a “kernel mixer star-
vation event” to the perf kernel log when it ran out of data;
these appear in some of our execution traces (Figures 3-2,
3-4, and 3-5). This was useful because the kernel mixer is
the most latency sensitive part of the Media Player, and
sound glitches were virtually guaranteed to happen when
it starved. However, while kernel mixer starvation was a
sufficient condition for glitches, it was not necessary.

3.3.2 Media Player Thread Structure

Period (ms) Priority Name
10 24 Kernel Mixer
45 8 User Interface
100 15 Multimedia Timer
100 9 MP3 Decoder
500 8 Unknown
2000 8 Disk Reader

Table 3-1: Media Player thread structure

Media Player creates five threads while playing an
MP3. Four of these threads and a kernel mixer thread will
concern us for the next few sections.

Kernel mixer thread: The kernel mixer thread runs
every 10ms at priority 24. It is latency-sensitive, and will
cause sound glitches if starved for more than 25-30ms.

User interface thread: A priority 8 Media Player
thread runs every 45ms in order to control and update the
Media Player’s user interface. It is always awakened by a
priority 19 CSRSS thread. (CSRSS is a system server that,
among other jobs, performs console I/O.) When this
thread is starved, Media Player only updates its GUI every
three seconds or so, when the Windows 2000 starvation
avoidance logic boosts its priority.

Timer thread: A multimedia timer thread runs every
100ms at priority 15. It awakens the MP3 decoder thread.

MP3 Decoder thread: A priority 9 Media Player
thread runs every 100ms. Most of the Media Player’s CPU
time is spent in this thread decoding MP3 data. It is not
very latency-sensitive—after being starved briefly, it runs
for long enough to catch up when next scheduled.

Unknown thread: A priority 8 thread wakes up every
500ms. As far as we can tell, it doesn’t interact with any
of the other Media Player threads.

Disk I/O thread: A priority 8 thread wakes up every
2000ms in order to read MP3 data from disk.

3.3.3 Experiments Run
Our testing strategy was to listen to an MP3 audio

stream using the Windows Media Player under various
conditions. For purposes of this experiment, we consider
the Media Player to be working if there were no audible
glitches or detected kernel mixer buffer starvations during
a 1-minute period. Although we report only on a single

trial of each experiment, we repeated them enough times
to verify that the results reported are typical.

We chose to use audible glitches as our principal ap-
plication quality metric because some Media Player tasks
have enough internal buffering that there is not always a
strong correspondence between missed task deadlines and
degradation in audio quality. Therefore, number of missed
deadlines, average task lateness, and other traditional met-
rics would not accurately measure what we are actually
interested in: the relationship between scheduling predict-
ability and perceived application quality.

We modeled contention with CPU intensive applica-
tions by writing a simple program that spins at a given
priority while the Media Player is running. Table 3-2 lists,
for each experiment, the conditions under which Media
Player was run, and the resulting behavior.

Ex-
peri
ment
#

Com-
petitor
Thread
Priority

Decoder
Thread
Reser-
vation

Kernel
Mixer
Thread
Reser-
vation

Audible
Glitches

Kernel
Mixer
Starva-
tions
Detected

1 - - - 0 0
2 8 - - 0 0
3 10 - - many many
4 9 - - 4 many
5 10 40/1024 - 4 many
6 10 40/1024 1/16 0 0
7 10 20/512 - 0 0
8 10 1/16 - 0 0
9 9 1/16 - 1 0

Table 3-2: Experiments run

Experiment 1: No competitor—Media Player run-
ning by itself. With no contention everything worked fine.

Experiment 2: Priority 8 competitor. Result: It works
fine. Explanation: The priority 8 Media Player threads do
not need much CPU time, so sharing the processor with a
competitor at the same priority presents no problem.

Experiment 3: Priority 10 competitor. Result: The
Media Player doesn’t work at all. Only short bursts of
music are heard every 5 seconds or so. Explanation: Sev-
eral important Media Player threads run at priorities less
than 10; these are almost completely starved by the prior-
ity 10 competitor and only get to run every 5 seconds or so
when the Windows 2000 starvation avoidance logic boosts
them to a high priority for a few quanta.

Experiment 4: Priority 9 competitor. Result: There
were three ~0.5s dropouts and one 4-second dropout. 373
kernel mixer starvations were logged. Explanation: bugs
in Media Player, which we discuss in Section 3.4.2,
caused the dropouts.

Experiment 5: Priority 10 competitor. Media Player
decoder thread has a reservation of 40ms/1024ms. Result:
There were 3 barely audible glitches and one obvious one.
Explanation: The kernel mixer starves several times be-

5

cause, during its reserved time, the decoder thread runs for
long enough to make the kernel mixer thread miss its
deadlines. This is discussed in Section 3.4.2.

Experiment 6: Priority 10 competitor. Media Player
decoding thread has a reservation of 40ms/1024ms; ker-
nel mixer thread has a reservation of 1ms/16ms. Result: It
works fine. Explanation: There are two effects here. One
is that because of the reservation, the kernel mixer cannot
be starved by a boosted Rialto/NT thread. The other is that
the kernel mixer reservation causes the reservation for the
decoder thread to be fragmented—this means that it re-
ceives CPU time more evenly than when it is the only
reservation in the system.

Experiment 7: Priority 10 competitor. Media Player
decoding thread has a reservation of 20ms/512ms. Result:
It works fine. Explanation: The decoder thread runs often
enough that it doesn’t have to run very long at priority 30,
and therefore doesn’t interfere with the priority 24 kernel

mixer thread.
Experiment 8: Priority 10 competitor. Media Player

decoding thread has reservation of 1ms/16ms. Result: It
works fine. Explanation: Same as previous experiment.

Experiment 9: Priority 9 competitor. Media Player
decoding thread has a reservation of 1ms/16ms. Result: 1
audible glitch. Explanation: The Media Player decoder
thread fails to decode enough data because of a bug in the
Media Player; we discuss this in Section 3.4.2.

3.4 Analysis of Results
In general, the results of our experiments were as ex-

pected: in the presence of contention the priority-based
scheduler did not give enough CPU time to the Windows
Media Player, but when application threads were given
appropriate reservations they were able to meet their
deadlines. However, we also encountered some interesting
and unexpected situations.

25000 25500 26000 26500 27000
Time (ms)

11: Explorer thread 736
8: System thread 824
8: System thread 48

12: System thread 40
13: System thread 28
16: System thread 60
23: System thread 64

15: CSRSS thread 728
19: CSRSS thread 180

0: Idle Thread
8: Media Player Disk Reader

8: Media Player Unknown
9: Media Player mp3 Decoder

15: Media Player Multimedia Timer
8: Media Player User Interface

24: Kernel Mixer

Event Logged or
Thread Priority and Name

Figure 3-1: Execution trace gathered during experiment 1: Media Player with no contention

25000 26000 27000 28000
Time (ms)

12: System thread 32
13: System thread 24
15: System thread 48

15: System thread 808
16: System thread 60
23: System thread 64

15: Services thread 300
14: CSRSS thread 732
19: CSRSS thread 180
10: Competitor Thread

8: Media Player Unknown
9: Media Player mp3 Decoder

15: Media Player Multimedia Timer
8: Media Player User Interface

24: Kernel Mixer
Kernel Mixer Starvation

Event Logged or
Thread Priority and Name

Figure 3-2: Execution trace gathered during experiment 3: Media Player being starved by a priority 10 competitor

6

3.4.1 Results We Expected
Although experiment 1 generated no surprises, we in-

clude its execution trace as a baseline in Figure 3-1. Note
that the CPU spends most of its time running the idle
thread, the kernel mixer thread runs every 10ms, and the
Media Player threads have a regular timing structure.

Experiment 3 also offered few surprises. In competi-
tion with a priority 10 thread, the Media Player threads
were not able to run most of the time. Figure 3-2 shows a
long stream of starvation messages that are interrupted just
after 26 seconds into the run when the starvation avoid-
ance logic boosts the priority of the starved Media Player
threads—they run briefly and then resume starving. The
sound that this experiment produced was a long sequence
of clicks and pops with brief bursts of music when the
application was able to run.

It is interesting to compare the pattern of thread exe-
cutions in Figure 3-3 (experiment 8) with the ones in Fig-
ure 3-1 (experiment 1). The orderly time-slices are gone,
replaced with an interference pattern between the 100ms
“natural” period of the MP3 decoder thread and the
1ms/16ms reservation that we gave it. The multimedia
timer expirations are still orderly. This is because Win-
dows multimedia timers run at priority 15 (or 31, for mul-

timedia timers in the real-time scheduling class) and there-
fore always immediately preempt the competitor thread.
The timer thread runs only long enough to awaken the
decoder thread, which runs in several subsequent time-
slices since the 1ms slots are not individually long enough
for it to complete its work.

3.4.2 Results We Did Not Expect
By giving the Media Player decoding thread a reser-

vation, we were able to ensure that it was allocated suffi-
cient processing time. In experiment 5, we gave it a reser-
vation of 40ms/1024ms—this is much longer than its
normal period, but short enough that it was able to keep its
buffer of decoded data from becoming empty. However,
each time it ran, it ran for so long (while boosted to prior-
ity 30 by Rialto/NT) that it starved the kernel mixer
thread! This shows that giving reservations to some real-
time threads and not others is potentially dangerous: it is
possible to make the situation worse instead of better.

In experiments 4 and 9, buffer under-runs or audio
glitches were detected even when we would have expected
Media Player to work. These can be traced to at least two
bugs in the Media Player implementation. The more inter-
esting bug is a priority inversion: the kernel mixer thread
and the user-level decoding thread both frequently get or

20000 20200 20400 20600 20800 21000
Time (ms)

12: System thread 636

14: System thread 24

16: System thread 60

23: System thread 64

15: Services thread 444

15: LSASS thread 232

14: CSRSS thread 732

19: CSRSS thread 184

10: Competitor Thread

8: Media Player Unknown

9: Media Player mp3 Decoder

15: Media Player Multimedia Timer

8: Media Player User Interface

24: Kernel Mixer

Event Logged or
Thread Priority and Name

Figure 3-3: Execution trace from experiment 8: Media Player decoder thread has a 1ms/16ms reservation, while com-
peting with a priority 10 thread

14310 14320 14330 14340 14350 14360 14370
Time (ms)

12: System thread 32

19: CSRSS thread 180

9: Competitor Thread

9: Media Player mp3 Decoder

15: Media Player Multimedia Timer

24: Kernel Mixer

Kernel Mixer Starvation

Event Logged or
Thread Priority and Name

Figure 3-4: Execution trace from experiment 4: a priority inversion: thread 708 is blocking the higher priority thread 772
between times 14325 and 14353

7

set the current position in the audio stream; the stream
data structure is protected by a blocking mutex. If the
lower-priority decoder thread is preempted while holding
this lock, the kernel mixer thread will become stuck at the
mutex when it next tries to enter the critical section.

Figure 3-4 shows an example taken from experiment
4, in which the decoder thread (at priority 9) competes for
the CPU with a priority 9 spinning competitor thread. A
priority inversion begins around 14324 milliseconds into
the run when the competitor thread preempts the Media
Player MP3 decoder thread while it is holding the lock it
shares with the kernel mixer thread. At around 14325, the
kernel mixer thread wakes up and blocks on the mutex
almost immediately; it subsequently misses its next two
invocations—this causes a buffer under-run to occur at
time 14345 (a DPC for a sound driver emits the starvation
message—DPCs are logged, but not shown on our
graphs). Finally, around time 14353 the competitor
thread’s quantum expires and the decoder thread gets to
run. It soon releases the lock and is preempted by the ker-
nel mixer thread, which runs briefly and then sleeps again,
allowing the decoder thread to continue.

Since the decoder thread and the competitor thread
are both at priority 9, they preempt each other often, of-
fering many opportunities for the inversion to occur. In
fact, it happened three times during our 1-minute test. The
Windows NT performance group worked around this in-
version by increasing threads’ priorities when they grab
the lock that is shared with the kernel mixer thread—this
is a one-shot implementation of the priority ceiling proto-
col. We did not use this workaround during our experi-
ments because we wanted to show that CPU Reservations
permit an alternative workaround to the priority inversion:
when we give a fine-grained reservation to the decoder
thread (say 1ms/16ms, as in experiment 8), this bounds the
length of the inversion to 16ms—not long enough to be
harmful. This can be seen in Figure 3-3: the kernel mixer
thread misses an execution slot many times, but it never

misses more than one slot. This is consistent with a prior-
ity inversion that can easily exceed 10ms but will never
reach 20ms. We believe that the fine-grained CPU Reser-
vation in this experiment that rendered the inversion
harmless also triggered the inversion much more often by
increasing the number of preemptions (and hence, the
probability of a preemption while the shared mutex was
held). We do not have a good understanding as to why the
priority inversion did not cause starvations in experiment
7; perhaps the were few enough preemptions caused by a
priority 10 competitor (as opposed to priority 9) that the
inversion just didn’t manifest itself.

Another Media Player bug that we observed was a
deadlock—a circular wait among Media Player threads.
Figure 3-5 shows this occurring: around 56300-56400
milliseconds into the run the Media Player user interface,
multimedia timer, and decoder threads all block, each
waiting for one of the other threads to wake it up. About
two seconds later the kernel mixer runs out of data and
begins to continuously starve. The deadlock is broken 4 or
5 seconds later when a timed wait expires, and things re-
turn to normal for a while. We never saw this deadlock
occur on an unloaded system, but the presence of a com-
petitor thread caused the sequence of events to be
changed, exposing the bug.

These two bugs perfectly illustrate the difficulty of
writing correct programs in the presence of many cooper-
ating and synchronizing threads at different priorities.

3.4.3 Wrap-Up
Without CPU Reservations, the Windows Media

Player works reasonably reliably because decoding, its
most time-dependent task, runs at priority 9. The default
priority for Windows 2000 threads is 8; this is where they
spend most of their time, except for brief boosts to higher
priorities when unblocking. There are a number of system
threads that run at higher priority than 9, but they use little
CPU time.

56000 56500 57000 57500 58000
Time (ms)

12: System thread 32

13: System thread 28

15: System thread 48

16: System thread 60

23: System thread 64

14: CSRSS thread 732

19: CSRSS thread 180

9: Competitor Thread

8: Media Player Unknown

9: Media Player mp3 Decoder

15: Media Player Multimedia Timer

8: Media Player User Interface

24: Kernel Mixer

Kernel Mixer Starvation

Event Logged or
Thread Priority and Name

Figure 3-5: Execution trace from experiment 4 showing a deadlock

8

3.5 Tools and Investigative Methods
Rather than using the Media Player source code, we

took a reverse-engineering approach to understanding how
it works, using the perf kernel. This would have been a
bad idea if we had wanted to understand its algorithms.
However, we were interested in its dynamic timing be-
havior—something that is readily observable by watching
when threads execute, but which would have been difficult
to discern from the source code. In particular, when things
went wrong and there were priority inversions and dead-
locks, looking through the perf kernel dumps with the help
of one-shot Perl scripts lead us directly to the problems
rather than forcing us to infer what had happened from
secondary clues. The perf kernel post-processing tool
loads the kernel debugging symbols so some symbolic
information is available in the logs, but the lack of high-
level information was definitely a drawback.

In keeping with the black box (or gray box) approach,
we avoided recompiling the Media Player application.
Rather, we implemented a small program called re-
moteres that is able to begin and end CPU Reservations
for any thread in the system. Using this simple tool, we
gave reservations to various threads and watched what
happened when there was contention. As a tool for learn-
ing about Media Player’s internal structure, this technique
was only partially successful: since most of the Media
Player threads were more latency-tolerant than their peri-
ods lead us to believe, different reservations often made
no difference in observed application behavior. However,
remoteres was very useful as a tool for experimenting
with real-time performance: not only did it keep recom-
piles out of our critical path, but we could also try out dif-
ferent reservations without even restarting an application.

In combination with an accurate accounting service,
remoteres could be used as a basis for a resource manager
that dynamically adjusts threads’ reservations to more
accurately reflect their needs.

4. Rialto/NT Improvements
A number of improvements have been made to the

Rialto/NT implementation since it was originally de-
scribed in [Jones & Regehr 99b], some of which are pre-
sented here. The improvements were both performance-
related and correctness-related.

4.1 Incremental Reservations
Rialto/NT’s principal internal data structure is a

scheduling graph that allows it to support both CPU Res-
ervations and Time Constraints, and to make scheduling
decisions efficiently. We added the ability for Rialto/NT
to, under some circumstances, incrementally add a new
CPU Reservation into the scheduling graph without re-
building it from scratch. We call such a reservation an
“incremental reservation.”

Figure 4-1 graphs the times to make an intentionally
complex cumulative set of CPU Reservations. All requests
reserve 1ms but at varying periods. The sequence of peri-
ods is a pattern that begins 4s, 4s, 2s, 4s, 2s, 1s, 4s, 2s, 1s,

0.5s, etc. This sequence was chosen to build as complex
and sparse a scheduling graph as possible, allowing us to
measure what we believe to be worst-case times.

This figure demonstrates the improvement in the
times to make this set of CPU Reservations as a result of
implementing incremental reservations. The first set of
times is the uniprocessor values from Figure 4-2 of [Jones
& Regehr 99b], in which incremental reservations were
not implemented. The second set shows uniprocessor res-
ervations times for the same reservation set, but with in-
cremental reservations implemented.

For example, for reservation numbers 46 through 51
the reservation times for the incremental version are very
close to zero because the incremental reservation attempt
succeeded. For reservation numbers 43 through 45 the
times using incremental reservations closely track those of
the original non-incremental implementation, while being
marginally higher due to the cost of the failed incremental
reservation attempt.

Incremental reservations were first implemented in
the original Rialto system [Jones et al. 97]. In fact, this
complex reservation set was chosen to allow us to directly
compare Rialto/NT’s incremental reservation implemen-
tation with that of Rialto, which was demonstrated in Fig-
ure 5-1 of [Jones et al. 97].

4.2 Scalability Improvements
The first Rialto/NT implementation contained some

algorithms that were easy to implement but that resulted in
longer-than-acceptable times for some operations, such as
beginning a new CPU Reservation, when very large num-
bers of CPU Reservations or Time Constraints were pres-
ent. This is demonstrated by the first line of Figure 4-2, in
which the time to make a set of identical reservations of
1ms every second exhibits quadratic growth.

The second line shows the benefits of amortizing a
formerly quadratic sort of the reservation periods over all
the reservation requests, reducing the element insertion

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Reservation Number

T
im

e
to

M
ak

e
R

es
er

va
ti

o
n

(m
s)

Original Uniprocessor Incremental Uniprocessor

Figure 4-1: Times to make simultaneous reservations in
pathologically fragmented reservation set

9

time to exhibit only linear growth. This was far better, but
still resulted in the 968th concurrent reservation taking
12.4ms.

The third line shows the improvement from then im-
plementing incremental reservations, further reducing this
time to 155µs.

Figure 4-3 repeats the third line of 4-2 (the time to
acquire incremental reservations) but compares times on
uni- and dual-processor boots. This graph demonstrates
that while the reservation growth rate is quite small (and
likely already more than acceptable for most actual usage
patterns) it is still linear, both in the uniprocessor and
multiprocessor case. If desired, this growth rate could be
further improved upon by employing algorithms such as
splay trees that permit sub-linear list insertion times.

There were two data points that are off the scale of

Figure 4-3. One of them is the 243rd incremental uniproc-
essor reservation, which took 3.65ms (which is visible in
Figure 4-2), and the other is the 485th incremental multi-
processor reservation, which took 3.18ms. In both of these
instances, the attempt to add an incremental reservation
failed and the entire scheduling plan had to be rebuilt. This
behavior is an artifact of our implementation of incre-
mental reservations, which can fail when there is not
enough free space at a particular level of the scheduling
plan. We could have made the algorithm try harder, but
this would have conflicted with our design goals of sim-
plicity and speed in the common case.

A final scaling-related change was ensuring that all
the algorithms used required only bounded stack depth, in
order to avoid overflowing the kernel stack when there
were large numbers of reservations.

4.3 Deinitialization with Hysteresis
Finally, while Rialto/NT would automatically initial-

ize itself upon first use, it used to always remain active in
the system once invoked. One potentially undesirable side
effect of this was that the timer interrupt rate remained
elevated to 1024Hz. The implementation has since been
enhanced to reference count CPU Reservations and Time
Constraints and automatically deinitialize all of its data
structures and system side effects when no reservations or
constraints are present in the system over a specified pe-
riod of time (currently chosen to be 1 second). This period
provides hysteresis for the deinitialization decision so re-
initialization is not required should a program end the last
reservation or constraint and immediately begin another
one.

5. Related Work
The goal of this work is to investigate the feasibility

of bringing benefits of predictable Rialto-style scheduling
[Jones et al. 97] to Windows 2000 applications.

One possibility would be to use Windows 2000 as is
for time-sensitive applications. This may work acceptably
when only one application is run at once since scheduling
contention may not occur. Likewise, multiple time-
sensitive applications can coexist provided sufficient re-
sources exist to run all of them and they happen to not
interfere with one another’s execution. Unfortunately,
interference appears to be all too common, even between a
single time-sensitive application and other active tasks.
Problems similar to these are reported in [Nieh et al. 93].

VenturCom sells a real-time kernel called RTX [Car-
penter et al. 97] that replaces the HAL beneath Windows
NT, allowing applications using its new system services to
obtain predictable real-time scheduling.

In contrast, by building predictable scheduling facili-
ties into Windows 2000 itself, it is our goal to allow appli-
cations to predictably obtain guaranteed amounts of CPU
time, while still using normal Win32 APIs.

Similarly, while the Vassal system [Candea & Jones
98] allows new schedulers to be loaded into the system,
applications cannot count on any particular scheduler

0

10

20

30

40

50

60

70

0 200 400 600 800 1000
Number of ReservationsT

im
e

to
M

ak
e

R
es

er
va

ti
o

n
(m

s)

Original Uniprocessor

NonIncremental Uniprocessor

Incremental Uniprocessor

Figure 4-2: Times to make simultaneous reservations in
set of reservations with equal amounts and periods

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 200 400 600 800 1000

Number of Reservations

T
im

e
to

M
ak

e
R

es
er

va
ti

o
n

(m
s)

Incremental Uniprocessor

Incremental Multiprocessor

Figure 4-3: Times to make simultaneous reservations in set
of reservations with equal amounts and periods

10

having been loaded, and indeed, this system does not solve
the problem of allowing multiple loadable schedulers to
coexist.

Rialto/NT adds new scheduling mechanisms to the
Windows 2000 kernel, while using the kernel’s native
priority scheduler to actually dispatch threads. In contrast,
[Lin et al. 98] reports on a system that likewise uses the
Windows NT priority scheduler to dispatch soft real-time
threads but does so from user space and using different
scheduling policies than employed by Rialto/NT.

[Deng et al. 99] describes an open system architecture
utilizing a two-level CPU scheduling scheme allowing
multiple independently developed real-time applications to
be concurrently executed on an open system, and in par-
ticular, on a modified version of Windows NT. The two-
level scheme allows programs to choose from among a
variety of scheduling algorithms. Their system shares
many goals with Rialto/NT and even some implementa-
tion choices, such as the internal use of Windows NT
thread priorities in order cause threads to be dispatched
when desired.

[Stankovic & Ramamritham 91] describes the Spring
Kernel, an early operating system with reservation-based
scheduling. Like Rialto/NT, it is capable of scheduling
multiprocessors.

[Regehr et al. 00] is a detailed survey the space of
programming models for systems supporting multimedia.
It analyzes the consequences of these choices for the sys-
tem authors, for application developers, and for end-users.
[Jones et al. 97] also contains a review of the kinds of
scheduling algorithms that could be used.

Besides using Rialto/NT to improve audio playback,
the authors also investigated its effectiveness for providing
predictable scheduling for software modems [Jones &
Saroiu 00]. Software modems perform signal processing
on the main CPU rather than using dedicated DSP hard-
ware. This signal processing tends to have a latency toler-
ance in the range of 2.5-20ms [Cota-Robles & Held 99],
with the actual modem studied having computations with
periods of 2.5ms and 12.5ms [Jones & Saroiu 00]. While
some soft modems attempt to attain low response latency
by scheduling their periodic work in interrupt routines or
DPCs, both of these techniques have the drawback of
holding off thread scheduling for potentially substantial
periods of time. This work has demonstrated that signal
processing in interrupt context is not only unnecessary, but
also detrimental to the predictability of any coexisting
activity. Furthermore, it has shown that we can control the
amounts of time that the modem interferes with other time
sensitive computations by performing signal processing in
a thread with a CPU Reservation.

6. Further Research
We are interested in investigating the effectiveness of

using Rialto/NT to increase the predictability of software
DVD movie playback. Unlike audio, this application has
the property that it consumes a substantial fraction of

modern CPUs (unless there is hardware acceleration) and
so is likely to cause overload and contention situations.

Once there are real applications using Rialto/NT we
would like to run experiments with several of them exe-
cuting concurrently, as supporting multiple independently
developed real-time applications is one of the major goals
of this research.

Finally, we are also interested in investigating the ef-
fectiveness of replacing the current heuristic search algo-
rithms used by Rialto/NT for building scheduling graphs
with a graph builder utilizing rate-monotonic schedules
with bin-packing between processors, augmented with a
method for minimizing context switches.

7. Conclusions
This work has demonstrated that CPU Reservations

can substantially improve the predictability of existing
real-time applications. Furthermore, reservations can be
applied to these applications completely transparently to
them, in a manner requiring no application modifications
whatsoever.

Nonetheless, we have also had several first-hand ex-
periences of learning about the complexity of real com-
mercial applications—particularly those that attempt to
provide predictable run times on legacy systems without
any form of time-based real-time scheduling support. Ap-
plying reservations to such applications, which are likely
to be multi-threaded and utilize several layers of middle-
ware, kernel software, and drivers, is substantially harder
than applying them to micro-benchmark test applications
designed for that purpose. Yet in our experience, the com-
plexity can be untangled and real benefits gained.

Finally, our experience confirmed to us once again
the immense value of comprehensive system event trace
logs for understanding the structure, timing and interrela-
tionships of complex real-time systems. As a result of
these tools, several problems in the existing application
and middleware code base were diagnosed and fixed.

Acknowledgments
The authors would like to thank Patricia Jones and

Stefan Saroiu for their helpful comments on drafts of this
report.

References
[Candea & Jones 98] George M. Candea and Michael B.

Jones. Vassal: Loadable Scheduler Support for
Multi-Policy Scheduling. In Proceedings of the
Second USENIX Windows NT Symposium, Seat-
tle, WA, pages 157-166, August 1998.

[Carpenter et al. 97] Bill Carpenter, Mark Roman, Nick
Vasilatos, and Myron Zimmerman. The RTX
Real-Time Subsystem for Windows NT. In Pro-
ceedings of the USENIX Windows NT Workshop,
Seattle, WA, pages 33-37, August 1997.

[Cota-Robles & Held 99] Erik Cota-Robles and James P.
Held. A Comparison of Windows Driver Model
Latency Performance on Windows NT and Win-

11

dows 98. In Proceedings of the Third USENIX
Symposium on Operating Systems Design and
Implementation (OSDI ’99), New Orleans, pages
159-172, February 1999.

[Deng et al. 99] Zhong Deng, Jane W.-S. Liu, Lynn
Zhang, Seri Mouna, Alban Frei. An Open Envi-
ronment for Real-Time Applications. In Real
Time Systems Journal, vol. 16, no. 2-3, pp. 155-
185, May 1999.

[Jones et al. 96] Michael B. Jones, Joseph S. Barrera III,
Alessandro Forin, Paul J. Leach, Daniela Roşu,
Marcel-Cătălin Roşu. An Overview of the Rialto
Real-Time Architecture. In Proceedings of the
Seventh ACM SIGOPS European Workshop,
Connemara, Ireland, pages 249-256, September
1996.

[Jones et al. 97] Michael B. Jones, Daniela Roşu, Marcel-
Cătălin Roşu. CPU Reservations and Time Con-
straints: Efficient, Predictable Scheduling of In-
dependent Activities. In Proceedings of the 16th

ACM Symposium on Operating System Princi-
ples, St-Malo, France, pages 198-211, October
1997.

[Jones & Regehr 99a] Michael B. Jones and John Regehr.
The Problems You’re Having May Not Be the
Problems You Think You’re Having: Results
from a Latency Study of Windows NT. In Pro-
ceedings of the Seventh Workshop on Hot Topics
in Operating Systems (HotOS-VII), Rio Rico,
Arizona, March 1999.

[Jones & Regehr 99b] Michael B. Jones and John Regehr.
CPU Reservations and Time Constraints: Imple-
mentation Experience on Windows NT. Michael
B. Jones and John Regehr. In Proceedings of the
Third USENIX Windows NT Symposium, Seattle,
WA, pages 93-102, July 1999.

[Jones & Saroiu 00] Michael B. Jones and Stefan Saroiu.
Predictable Scheduling for a Soft Modem. Micro-
soft Research Technical Report MSR-TR-2000-
88, December 2000.

[Lin et al. 98] Chih-han Lin, Hao-hua Chu, and Klara
Nahrstedt. A Soft Real-time Scheduling Server
on the Windows NT. In Proceedings of the Sec-
ond USENIX Windows NT Symposium, Seattle,
WA, pages 149-155, August 1998.

[Microsoft 99] WDM Audio Drivers for Windows 2000.
Microsoft Corporation, 1999.
http://www.microsoft.com/hwdev/devdes/wdmau
dio.htm.

[Nieh et al. 93] Jason Nieh, James G. Hanko, J. Duane
Northcutt, and Gerald Wall. SVR4 UNIX Sched-
uler Unacceptable for Multimedia Applications.
In Proceedings of the Fourth International Work-
shop on Network and Operating System Support
for Digital Audio and Video. Lancaster, U.K.,
November 1993.

[Regehr et al. 00] John Regehr, Michael B. Jones, and
John A. Stankovic. Operating System Support for

Multimedia: The Programming Model Matters.
Microsoft Research Technical Report MSR-TR-
2000-89, September 2000.

[Solomon & Russinovich 00] David A. Solomon and
Mark Russinovich. Inside Microsoft Windows
2000, Third Edition. Microsoft Press, 2000.

[Srinivasan et al. 98] Balaji Srinivasan, Shyamalan Pather,
Robert Hill, Furquan Ansari, and Douglas Nie-
haus. A Firm Real-Time System Implementation
Using Commercial Off-The-Shelf Hardware and
Free Software. In Proceedings of the Fourth
IEEE Real-Time Technology and Applications
Symposium, Denver, CO, June 1998.

[Stankovic & Ramamritham 91] J. A. Stankovic and K.
Ramamritham. The Spring Kernel: A New Para-
digm for Real-Time Systems. In IEEE Software,
vol. 8, no. 3, pp. 62-72, May 1991.

