
High Confidence TinyOS

John Regehr Phil Levis

An appropriate starting point
We believe that TinyOS and the nesC programming language have several properties that make
them an ideal starting point for new directions in high confidence cyber-physical systems research.
First, nesC has first-class language support for a clean component model. The current version of
TinyOS, 2.0.1, is aggressively componentized, building upon five years of design experience with
TinyOS 1.0 and 1.1. Unlike traditional systems software, TinyOS is built from large numbers of
small components whose individual verification and validation (V&V) is tractable. For example,
the core platform-independent system components have an average of 17 statements per component
(the largest has 105). Second, TinyOS is small enough (total of around 28 KLOC) that we are
not limited to totally automated formal methods. Also, as an alternative to unsound methods
and heroic analyses (the current state of the art for analyzing larger systems such as Linux) we
can co-design the language, the OS, and their V&V methods in parallel. For example, in recent
work we found that an apparently minor design decision in a core interface—a return value by
pointer parameter—introduced a significant roadblock in program analysis. The simple solution,
which will be part of TinyOS 2.1, is to change the interface slightly in order to make the OS more
checkable. Third, nesC strongly promotes static resource allocation, greatly simplifying V&V by
avoiding the need to reason about, for example, worst-case heap behavior. Similarly, nesC’s static
program composition eliminates almost all of the run-time linking code that hinders static analysis
of languages such as C++. Finally, nesC is a C dialect and can exploit the full power of C for
low-level and performance-sensitive codes.

First steps towards high confidence
Our work to date has enabled analysis and transformation of TinyOS applications to ensure type
safety, freedom from stack overflow, freedom from data races (our checker improves upon nesC’s
race checker by following pointers), freedom from interrupt overload, and absence of some kinds
of interface usage errors. Through our participation in the TinyOS Alliance, we are currently work-
ing to incorporate these checks into the standard TinyOS distribution. Additionally, the challenges
of developing reliable sensor network software have led us to explore ways to create more repre-
sentative simulation environments in which to validate network protocols. Using approaches we
have developed, network deployers can survey an environment, measure its wireless characteristics
using low-cost sensor nodes and then recreate a representative environment in simulation.1

1Citations omitted due to space constraints. Papers are available at http://www.cs.utah.edu/∼regehr
and http://csl.stanford.edu/∼pal.



Fully verified system 
components

Model-checked 
hardware interaction 
components

Experimental application 
components

Full dynamic checking

Optimized dynamic checking

No checks needed

Figure 1: Verification and validation strategies can be mixed, as shown in this example, as long as
component data integrity has been (otherwise) assured. Boxes represent components and rectan-
gles are interfaces.

Moving forward: Mixed verification methods
We propose multipurpose contracts: specifications of the correct behavior of nesC interfaces (there
are currently 60 “public” interfaces) designed to support diverse V&V methods:

• Automated unit testing using contracts as environment generators. In this scenario, a call
into the component under test assumes the call’s preconditions and asserts its postcondi-
tions, whereas a call out of the component asserts the call’s preconditions and assumes its
postconditions.

• Automated execution-driven testing of device drivers using symbolic methods to discover
values for hardware registers—including interrupt masks—that result in good test coverage,
in order to search for executions that violate contracts.

• Heavyweight verification of components and subsystems. Verification cannot be automated
but it can be facilitated using advanced tools and by using assume-guarantee reasoning,
exploiting TinyOS 2.0’s heavy use of a relatively small number of simple, narrow interfaces.
We have proven TinyOS’s queue ADT correct in terms of an algebraic queue specification,
and we are making progress towards verification of other core data structures. Although we
certainly do not expect all of TinyOS to be verifiable, we do expect to be able to verify some
of its important subsystems.

Importantly, V&V strategies can be mixed within individual applications. Figure 1 illustrates
an experimental application that contains new—and almost certainly buggy—code. This applica-
tion can and should reuse middleware that has been fully verified. Values flowing from new to
verified code require full dynamic checking, whereas interfaces between verified components re-
quire no checking: they cannot go wrong. When components that have been heavily checked but
not actually verified are reused, runtime checking can be optimized by omitting checks that corre-
spond to behaviors that have been statically ruled out. As components are validated and verified,
the boundaries between these different regions will shift. An incremental approach is important
because it supports rapid and exploratory initial development, followed by successive application
of increasingly heavyweight V&V techniques as software moves towards deployment.



In order to safely mix lightweight and heavyweight V&V techniques, the integrity of each
component’s data must be assured—even when some parts of the system are wholly untrusted.
We believe that taken together, type safety, stack safety, and concurrency safety are sufficient to
guarantee component integrity. Right now, we can check all of these properties for unmodified
nesC code.

What’s new?
Many tools and techniques exist for V&V of embedded programs written in C. Relative to this
existing work we expect to make contributions in the following areas.

Contract language innovations: We plan to develop a contract language based on first or-
der logic that contains a well-defined subset that can be translated into efficient executable checks.
Specific novel features of our contract language will support: (1) formalization and checking of
pointer protocols that are particular to sensor network software, such as TinyOS’s buffer-swap
idiom; (2) specification of properties of collections of device registers such as those used to ac-
cess hardware timers, interrupt controllers, and packet-based radio interfaces; (3) specification of
semantically connected interfaces that require checks that are stronger than those that apply to in-
dividual interfaces. For example, in TinyOS 2.0 it is common for access to a resource such as a
sensor to be mediated by an arbiter component. The arbitration interface and the resource’s inter-
face are semantically connected in the sense that it is illegal for a client of the resource to use it
without first being granted access by the arbiter.

Tool integration innovations: To make effective use of existing V&V tools for C code, we
will need to faithfully translate nesC language features such as components, generic types, network
types, parameterized interfaces, interrupt handlers, fan-in and fan-out, tasks, and atomic blocks.
To compile programs that use mixed verification techniques, new algorithms will be needed, for
example to insert the minimum number of dynamic checks needed to ensure data integrity for all
components.

System design innovations: We will feed back lessons learned into the design of future iter-
ations of TinyOS. For example, we expect that our work on checking pointer protocols will lead to
revision of poorly-structured pointer idioms that cannot be easily formalized. Similarly, it is not, at
present, completely clear what kinds of reentrant function calls a correct TinyOS component must
be prepared to handle. Our goal is to develop an appropriate collection of rules about reentrancy
and enforce them in future versions of the system.

John Regehr
50 S. Central Campus Dr., Room 3190
Salt Lake City, UT 84112-9205
+1 801 581 4280

Dr. Regehr is an assistant professor in the
School of Computing at the University of Utah.

Phil Levis
358 Gates Hall
Stanford University
Stanford, CA 94305-9030
+1 650 725 9046

Dr. Levis is an assistant professor in the
Department of Computer Science at Stanford
University.


