
Random Testing of Interrupt-Driven Software

John Regehr
School of Computing

University of Utah

regehr@cs.utah.edu

ABSTRACT
Interrupt-driven embedded software is hard to thoroughly
test since it usually contains a very large number of exe-
cutable paths. Developers can test more of these paths us-
ing random interrupt testing—firing random interrupt han-
dlers at random times. Unfortunately, näıve application of
random testing to interrupt-driven software does not work:
some randomly generated interrupt schedules violate sys-
tem semantics, causing spurious failures. The contribution
of this paper is the design, implementation, and experimen-
tal evaluation of RID, a restricted interrupt discipline that
hardens embedded software with respect to unexpected in-
terrupts, making it possible to perform random interrupt
testing and also protecting it from spurious interrupts af-
ter deployment. We evaluate RID by implementing it in
TinyOS and then using random interrupt testing to find
bugs and also to drive applications toward their worst-case
stack depths.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging—
Testing tools; C.3 [Special-purpose and application-based
systems]: Real-time and embedded systems

General Terms
Design, reliability

Keywords
Random testing, interrupt-driven software, embedded sys-
tems, sensor networks

1. INTRODUCTION
Despite advances in model checking, static analysis, and

automatic code generation, testing is still the primary way to
create reliable embedded software [3]. Random testing [11,
18] provides a way to create a large number of uncorrelated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

test cases automatically. These can be used to drive a sys-
tem into interesting states, with the goal of eliciting failure
modes that cannot be found using other testing methods or
static analysis. This paper explores the application of ran-
dom testing techniques to interrupt-driven software, where
processing is initiated when external devices signal the CPU.

Interrupts are problematic because they add fine-grained
concurrency to embedded software. The race conditions that
typically result are difficult to eliminate before a system is
shipped. Since the number of executable paths through a
system can grow exponentially with the number of interrupt
sources, interrupt-driven software is hard to reason about
and it is hard to test adequately.

Interrupts have led to well-known problems in safety-critical
embedded software. For example, a number of people re-
ceived fatal radiation overdoses in the Therac-25 incidents [16,
App. A]. One of the problematic bugs was a race condition
in which a keyboard interrupt handler participated. The
race could be triggered only by a particularly fast typist.
This is the kind of bug that we believe can be exposed using
random interrupt testing.

To randomly test an interrupt-driven system, an interrupt
schedule—a sequence of interrupts firing at specified times—
is generated. Next, the system is executed with interrupts
arriving according to the schedule, and monitored for signs
of malfunction. In this paper we explore both pure random
testing and also directed random testing where a genetic al-
gorithm is used to evolve desirable schedules using feedback
from previous tests.

This project was motivated by our previous work on ana-
lytically determining the worst-case stack depth (WCSD) [22]
of TinyOS [12] applications. We observed the stack mem-
ory usage of TinyOS applications both in simulation and on
real processors, in an attempt to narrow or eliminate the gap
between the observed lower bound and the analytic upper
bound on WCSD. We found that the applications we stud-
ied did not closely approach their worst-case stack depths
because many clearly feasible paths involving nested inter-
rupt handlers were not being executed during testing. Fur-
thermore, the obvious random testing strategy for explor-
ing these paths—firing interrupts at random times—did not
work because random interrupt schedules sometimes con-
tain aberrant interrupts. An aberrant interrupt is simply
one that fires at a time when the system cannot handle it
properly. A random interrupt schedule that contains aber-
rant interrupts can cause an embedded system to fail in
spurious ways. This undermines the main benefit of testing,
which is to find genuine software errors.

22510000 22511000 22512000 22513000

Time (cycles)

0
5

10
15
20
25

St
ac

k
us

ag
e

(b
yt

es
)

True False
ADIE bit
I bit
ADC interrupt enabled

ADC interrupt request
ADC interrupt handler

Figure 1: Visualization of about 0.5ms of the execu-
tion of the original TinyOS Oscilloscope application.
The analog to digital converter (ADC) interrupt is
enabled most of the time, including before it is re-
quested and during execution of the handler. In this
and in subsequent figures, stack memory used by the
main computation is shown in black; memory used
by interrupt handlers is shown in shades of gray.

22510000 22511000 22512000 22513000

Time (cycles)

0
5

10
15
20
25

St
ac

k
us

ag
e

(b
yt

es
)

True False
ADIE bit
I bit
ADC interrupt enabled

ADC interrupt request
ADC interrupt handler

Figure 2: Visualization of about 0.5ms of the exe-
cution of the TinyOS Oscilloscope application with
RID. The ADC interrupt is enabled only after it is
requested, and disabled before the first instruction
of the handler executes.

We developed RID, a restricted interrupt discipline for
interrupt-driven embedded systems, to solve the problem of
aberrant interrupts. RID is a modification to embedded soft-
ware that uses existing hardware-supported interrupt mask
bits to harden a system with respect to aberrant interrupts.
This is accomplished through a partially automated program
transformation typically requiring two manual changes to
the source code per interrupt vector. RID makes it possible
to test embedded software using random interrupt schedules.
It also has other benefits such as discouraging reentrant in-
terrupt handlers and preventing system failures caused by
aberrant interrupts in deployed systems. In a deployed sys-
tem aberrant interrupts can be caused by software bugs (for
example, a stray write to a register that requests an inter-
rupt) or by hardware faults (for example, static discharge,
a loose connection, or a damaged wire).

Figures 1 and 2 show the difference between a typical
embedded system and one that implements RID. The bars
at the top of each figure depict the status of the ADIE bit
(the interrupt-enable bit for the ADC, or analog to digital
converter), the I bit (the CPU’s master interrupt enable
bit), and the overall status of the ADC interrupt, which is

enabled only when the ADIE and I bits are both set. In
the original system, shown in Figure 1, the ADC interrupt
is enabled almost all of the time, including when the ADC
interrupt itself is running. In the system implementing RID,
shown in Figure 2, the ADC interrupt handler is enabled
only between the time that the interrupt is requested and
the time at which the handler begins to run. If the ADC
interrupt is signaled at a time when it is not enabled, the
interrupt is not seen by software—it remains pending until
the system is ready to handle it.

2. INTERRUPTS AND INTERRUPT-
DRIVEN SOFTWARE

Interrupt-driven software.A system is interrupt-driven
when a significant amount of its processing is initiated by
interrupts. Embedded systems based on powerful proces-
sors tend to manage interrupts inside the RTOS, insulating
application developers from the problematic aspects of in-
terrupts. On the other hand, highly resource constrained
embedded platforms such as pacemakers and sensor network
nodes have a relatively thin layer of OS code, and it is com-
mon for application code to run inside of interrupt handlers.
It is this second kind of system that we focus on: since it
is more likely to contain buggy interrupt code, it stands to
benefit most from random interrupt testing.

Handling interrupts.There is variation in the details of
how microprocessors handle interrupts. Here we describe
the behavior of Atmel AVR processors as it is typical and
these are the processors that we use to evaluate our work
in Section 5. Each interrupt has an associated pending bit
that becomes set when the interrupt’s firing condition is met.
Typically, a pending bit stays set until the handler runs or
until the bit is explicitly cleared. Each interrupt also has
an associated enable bit. The interrupt is enabled when its
enable bit and the processor’s global interrupt enable bit are
both set. All interrupts that are both pending and enabled
compete for execution; of these, the processor selects the
lowest numbered and executes it. To execute an interrupt
the processor atomically clears the global interrupt enable
bit, clears the interrupt’s pending bit, pushes the program
counter, and jumps to the first instruction of the interrupt’s
handler.

Preemption, nesting, and reentrancy.There are two main
ways in which the execution model for interrupts differs from
that of threads. First, interrupts cannot block: they run to
completion except when preempted. Second, interrupts have
an asymmetric preemption relation with the processor’s non-
interrupt context: interrupts can preempt non-interrupt ac-
tivity but the reverse is not true. Whether interrupts can
preempt each other is determined by the way that an em-
bedded system manipulates its interrupt masks. Nested in-
terrupts are those that preempt each other; they are used
to permit time-sensitive interrupts to run with low latency.
Reentrant interrupts are those that directly or indirectly pre-
empt themselves. In other words, a reentrant interrupt may
have multiple invocations on the stack at the same time.
Although they are occasionally useful, reentrant interrupts
are more often an unintended consequence of setting the pro-
cessor’s master interrupt enable bit during execution of an
interrupt handler without first clearing the interrupt’s own

adc_interrupt_handler ()
{

read_data (adc_buffer_ptr);
adc_complete = true;

}

...
adc_buffer_ptr =

xmalloc (sizeof (adc_buffer));
begin_adc_conversion();
...
if (adc_complete) {

process_data (adc_buffer_ptr);
free (adc_buffer_ptr);

}
...

Figure 3: Embedded code that is correct, but will
malfunction if an aberrant analog to digital con-
verter (ADC) interrupt arrives. adc buffer ptr is a
valid pointer only when the system is expecting an
ADC interrupt.

enable bit. Unintentionally reentrant interrupt handlers are
highly unlikely to be correct.

Requested vs. spontaneous interrupts.Interrupts can be
categorized as requested or spontaneous. Spontaneous in-
terrupts are signaled by external devices such as network
interfaces and can arrive at any time that the corresponding
device is enabled. Requested interrupts, on the other hand,
are those that arrive in response to a specific action taken by
the processor, such as setting a timer or initiating an ana-
log to digital conversion (ADC). For example, typical use of
an ADC is as follows. First, the system sets up the ADC
device using configuration registers. Subsequently, the pro-
gram requests a conversion when data is needed. Because
ADC devices are slow, an ADC completion interrupt signals
the system when the conversion has finished.

The AVR ATmega128 [2] supports 34 interrupt sources.
Of these, 18 are requested, 8 are spontaneous, and 8 have
no predefined semantics—they are external interrupt lines
that could be either spontaneous or requested, depending on
the devices they are connected to. Other microcontrollers
support a similar mix.

Aberrant interrupts.Interrupts are not allowed to arrive
at arbitrary times. For example, a requested interrupt that
arrives at a time when it has not been requested is con-
sidered aberrant. Many embedded systems are not robust
with respect to the arrival of aberrant interrupts; they may
crash if one arrives. Thus, it is undesirable for random in-
terrupt schedules to contain aberrant interrupts. Consider
the example code in Figure 3, which has the invariant that
adc buffer ptr is a valid pointer only when an ADC inter-
rupt has been requested. If an ADC interrupt arrives at a
time when the system is not expecting such an interrupt, the
fault lies with the interrupt schedule, not with the system
software. Developers would probably be irritated if random
interrupt testing reported this failure.

Spontaneous interrupts may also be aberrant, if they over-
load a system by violating the minimum interarrival time for
a given interrupt source. We have addressed the problem of

reachable using
random interrupt

schedules

elicits
bugs

reachable using
system testing causes

overload

aberrant

Figure 4: Regions in the space of interrupt schedules

preventing interrupt overload in previous work [21], and we
do not address it further here.

The space of interrupt schedules.Interrupt schedules can
be seen as occupying points in a high-dimensional space.
Figure 4 shows some regions within this space. Obviously,
the goal of random interrupt testing is to find schedules
that elicit bugs. Next, consider the area that is reachable
through system testing, where an entire embedded system
is tested in a realistic environment. A significant advantage
of random interrupt testing is that it can be used to explore
a larger part of the space of interrupt schedules than can
be explored using system testing. For example, consider
a wheeled robot that uses an optical encoder to interrupt
the CPU at a rate proportional to the angular velocity of
the robot’s drive shaft, in order to estimate ground speed.
System testing is likely to generate interrupts up to the rate
corresponding to the robot’s maximum speed. However, this
neglects many corner cases that can occur in practice: a
dirty encoder wheel, a damaged wire, a loose connection, or
a speeding robot could easily result in dense bursts of inter-
rupts that are handled incorrectly by the control software.
Random testing can help find these corner-case bugs that lie
in parts of the space of interrupt schedules not explored dur-
ing system testing. However, a basic problem with random
interrupt testing is that it is difficult to avoid generating
interrupt schedules that contain aberrant interrupts. The
next section presents a solution to this problem.

3. A RESTRICTED INTERRUPT
DISCIPLINE

In the previous section we argued that it is unacceptable
to näıvely apply random testing to interrupt-driven systems,
because many resulting failures are spurious ones caused by
aberrant interrupts. One solution would be to avoid gen-
erating random interrupt schedules that contain aberrant
interrupts. However, based on our previous experience with
interrupt-driven systems [22, 23] we believe this to be dif-
ficult. First, there is no specification of which interrupts
TinyOS applications are expecting in which states. Any
such specification would have to be mined from source code
by looking at its manipulation of interrupt control registers.
It is not clear that mining of precise specifications is even
possible because interrupt requests often depend on complex

relationships between multiple control registers. Second, the
path merging that occurs during static analysis would lead
to uncertainty about system state, forcing the analysis to
conservatively assume that a particular interrupt might not
be expected at many program points. This would preclude
interrupts from being scheduled at these program points, ef-
fectively tying the hands of the interrupt schedule generator.

We believe that a simpler and superior solution is to harden
embedded software with respect to aberrant interrupts using
RID, our restricted interrupt discipline. Under RID, aber-
rant interrupts are ignored by software and remain pending
until they are not aberrant. This results in systems that:

1. Can be tested using random interrupt schedules.

2. Are robust with respect to aberrant interrupts that
occur in deployed systems, for example due to software
bugs or hardware faults.

RID is runtime code that uses a system’s hardware-based
interrupt enable bits to prevent each interrupt vector from
being serviced at all times at which the system is not ready
to handle that interrupt. Implementing RID in embedded
software is fairly straightforward. The first step is manual
and the second step can be largely automated.

First, developers need to ensure that device initializa-
tion code leaves requested interrupts disabled. This requires
manual effort per interrupt source. Spontaneous interrupts,
on the other hand, can be enabled as soon as the system is
ready to handle them—usually this is when the correspond-
ing device subsystem is completely initialized.

Second, requested interrupts should be disabled except
between the time at which they are requested and the time
at which the handler starts to run. Spontaneous interrupts
should be disabled while the handler is running, but can
remain enabled at all other program points. The added
manipulation of interrupt enable bits adds little overhead.
This step can be largely automated, provided that a devel-
oper annotates each piece of code that requests an interrupt.
We use a custom CIL [19] extension to replace the annota-
tions with code that performs the appropriate manipulation
of the interrupt mask. Our CIL code also augments the
prologue and epilogue of each interrupt handler to perform
the appropriate masking operations. The results of this pro-
gram transformation can be seen by contrasting the status
of the ADC interrupt over time in Figure 1 with its status
in Figure 2.

Surprising bugs can occur when an interrupt preempts
the execution of a region of code that a developer had not
considered. Making interrupt requests explicit has the ad-
ditional benefit of providing developers with documentation
of interrupt disciplines. We believe this makes it easier to
create correct interrupt-driven code.

4. IMPLEMENTING RID IN TINYOS
This section introduces TinyOS and describes our imple-

mentation of RID in that system.

4.1 TinyOS and nesC
TinyOS [12] is system-level software for sensor network

nodes, primarily the Berkeley motes based on Atmel’s AVR
family of microcontrollers. TinyOS applications are written
in nesC [10], a dialect of C that has specialized constructs

async command result_t ADC.samplePort(uint8_t port)
{

atomic {
outp((TOSH_adc_portmap[port] & 0x1F), ADMUX);

}
sbi(ADCSR, ADEN);

// this is the actual interrupt request: a write
// to the ADSC (ADC start conversion) bit
sbi(ADCSR, ADSC);

// this is the annotation
RID_request_SIG_ADC();

return SUCCESS;
}

Figure 5: TinyOS ADC driver code annotated to
make the act of requesting an interrupt explicit

for dealing with software components and with concurrency.
We used TinyOS version 1.1.13.

Concurrency in TinyOS follows a two-level structure. First,
interrupt handlers run at high priority, preempting each
other freely when this is permitted by the interrupt masks.
Second, tasks run at low priority. Tasks are scheduled non-
preemptively and in FIFO order. Interrupt context is re-
served for quick computations such as grabbing data from
devices, with the expectation that long computations will
be run in tasks.

4.2 Modifying TinyOS
The TinyOS applications that we examined use five in-

terrupt handlers: a timer, the analog-to-digital converter
(ADC) completion interrupt, the transmit and receive in-
terrupts for a serial port, and the serial peripheral inter-
face (SPI) interrupt. We implemented RID for all five of
these interrupt handlers. In each case, only a single file—
the bottom-level TinyOS driver for the device—needed to be
modified. This is advantageous: low-level drivers are seldom
modified and they are shared among many applications. As
a result, the vast majority of TinyOS application developers
can take advantage of RID without any additional effort.

The ADC driver is representative. First the driver code
was modified to leave the ADC completion interrupt dis-
abled at the end of initialization, requiring the addition of
one line of code. Second, the samplePort function that initi-
ates a conversion is annotated as shown in Figure 5. Finally,
the TinyOS application is post-processed using CIL as de-
scribed in the previous section in order to alter the prologue
and epilogue of each interrupt handler.

5. EXPERIENCE AND EVALUATION
The section describes our experience in applying random

interrupt testing to some TinyOS applications.

5.1 Avrora
All of our experiments were run in Avrora [26, 27], a

cycle-accurate simulator for networks of Mica2 motes. Since
Avrora includes models of the off-chip devices on the motes,
it is a suitable platform for work on interrupt scheduling. We
modified Avrora to read an interrupt schedule and generate
corresponding simulator events. When an interrupt event is

processed by the simulator, it uses an Avrora primitive to
force the interrupt to fire. No further changes to Avrora were
required. We have passed the interrupt scheduling logic to
the Avrora maintainers; it has been included in the sources
and should be available in the 1.6 release.

5.2 Generating interrupt schedules
It is easy to generate an interrupt schedule, which is just

a list of interrupt requests. Each request is represented by
an interrupt vector and a firing time. Our current interrupt
schedule generator takes as input a list of interrupt vectors
to schedule, a duration of the random interrupt schedule,
and then for each vector it takes a density.

The choice of interrupt density is important. If the sched-
ule is too sparse, then preemption among interrupts does not
happen often enough. If the schedule is too dense, then there
are always multiple pending interrupts, a condition that per-
mits the processor’s interrupt arbitration logic to determin-
istically pick the lowest-numbered pending interrupt to run,
subverting the randomness of the interrupt schedule. Fur-
thermore, if the processor is always in interrupt mode, then
background work cannot make progress, limiting the states
that will be visited during testing. Currently we chose inter-
rupt densities empirically. For example, a reasonable initial
guess for interrupt density would be one that forces the sys-
tem to spend 50% of its cycles handling interrupts.

When a fitness function is available to measure the quality
of an interrupt schedule, it becomes possible to perform di-
rected random testing rather than pure random testing. We
do this using a genetic algorithm as described in Section 5.5.

5.3 Test methodology
It is difficult to create precise testing oracles for embedded

systems since these systems have a narrow interface to the
external world and often have no specification, formal or
otherwise. Rather, like Koopman and DeVale [13], we take
a weak view of correctness: the system is assumed to be
operating correctly if it does not fail. We infer failure in two
ways:

1. Using existing interfaces to the simulator. Avrora is
capable of detecting access to illegal memory locations
and execution of illegal instructions.

2. Using existing interfaces to the embedded system. Many
TinyOS kernels report information to a connected PC
using the serial port, or they respond to incoming radio
packets in a predictable way.

We assume that a bug has been found if either Avrora re-
ports a problem or if the system fails to return to normal op-
eration after the interrupt schedule has finished. Since sim-
ulators and interrupt schedules are deterministic, all bugs
that we find are trivially reproducible.

5.4 Case study 1: A buggy application
This section describes a bug that we found in the TinyOS

Oscilloscope application using random interrupt testing. Os-
cilloscope reads sensor values using the analog-to-digital con-
verter and forwards them to a PC using the mote’s serial
interface. The buggy code, shown in Figure 6, is found in
the ADC completion interrupt handler, which stores incom-
ing ADC data in an array. Each time this interrupt fires, it
increments an array index. When the index reaches the size

async event result_t ADC.dataReady(uint16_t data)
{

struct OscopeMsg *pack;
atomic {

pack =
(struct OscopeMsg *)msg[currentMsg].data;

// this line can store out-of-bounds,
// corrupting memory
pack->data[packetReadingNumber++] = data;

readingNumber++;
if (packetReadingNumber == BUFFER_SIZE) {

post dataTask();
}

}
...

}

Figure 6: nesC code that contains a concurrency er-
ror. The index variable packetReadingNumber is incre-
mented on interrupt and it is also used as an array
index. The code assumes that when BUFFER SIZE is
reached, the posted task dataTask will run, clearing
the index variable, before the interrupt is next sig-
naled. However, no interlock exists to ensure that
this actually happens. Under certain random inter-
rupt schedules out-of-bounds array accesses lead to
memory corruption, starting a chain of events that
ends in a crash.

of the array, the interrupt handler posts a TinyOS task to
perform further processing on the data. The task also resets
the index to zero.

The stage is now set for a classic synchronization error:
the ADC interrupt handler is written under the assumption
that the posted task will run before the interrupt handler
next fires. However, since interrupts take priority over tasks,
there is no guarantee that the task will complete before the
interrupt fires again. Under some interrupt schedules, the
task does not complete in time, causing an array overrun in
the ADC interrupt handler. This has the unfortunate effect
of corrupting the TinyOS task queue—the list of tasks that
are waiting to be executed—which happens to be located in
nearby RAM. Corrupting this queue causes the TinyOS task
scheduler to jump to an essentially random address, which
happens to be in the middle of a function, with predictably
disastrous results.

This bug can be fixed by bounds-checking the ADC buffer
or by disabling the ADC interrupt as soon as the buffer be-
comes full. Although fixing this bug was easy, finding it was
difficult as it manifested through multiple levels of mem-
ory corruption. In fact, it would have taken a long time to
track down the error without two tools. First, we used the
Delta debugging algorithm [30] to minimize failure-inducing
interrupt schedules. For example, while the original random
interrupt schedule that caused the Oscilloscope application
to fail contained nearly 300,000 interrupts, the Delta algo-
rithm was able to find a 75-interrupt schedule that caused
the failure, greatly simplifying the search for a root cause.
Second, Avrora is a highly extensible simulator that makes
it straightforward to execute user-defined code in response
to simulated events such as interrupts, accesses to particular
memory locations, etc.

nesC’s built-in race-condition detection, which looks for
non-atomic accesses to shared variables, is incapable of de-
tecting errors of the type reported here, since the problem
is one of sequencing, not atomicity. On the other hand,
type-safe language technology would have trapped the out-
of-bounds reference, making the error much easier to find
and also preventing the store from being corrupted.

Since the Oscilloscope application has existed for several
years, it is reasonable to ask why this bug was not found
and fixed earlier. The answer is that Oscilloscope has a low
duty cycle: it leaves the processor idle much of the time.
In practice, the TinyOS task that resets the array index
completes before the ADC interrupt next fires. However, it
is worth finding even latent bugs: TinyOS is designed as a
collection of reusable components, and the next application
in which the Oscilloscope component is used may have a
higher duty cycle, causing the bug to manifest.

5.5 Case study 2: Approximating the worst-
case stack depth

In addition to using random interrupt schedules to im-
prove software robustness, we were interested in trying to
drive TinyOS applications to their worst-case stack depths.
It is important to understand the stack memory usage of
embedded systems because it is critically important for the
stack not to overflow into memory used for other purposes.
Our previous work on static analysis of the stack depths of
TinyOS applications [22] produced a tool that attempts to
provide as tight a bound on stack depth as possible. Ide-
ally this tool would be sound; in practice we compromised
soundness in several ways to provide tighter bounds. Each
such compromise resulted in an additional assumption that
system developers have to verify through other means, for
example by inspection of source code or object code.

While analysis usually overestimates the true maximum
stack depth of a system, testing usually underestimates. The
goal of both testing and analysis is to make the gap be-
tween the two bounds as narrow as possible. In our previous
work we found that it was impossible to drive any nontriv-
ial TinyOS application even close to its predicted worst-case
stack depth. This left an open question: was the analysis
pessimistic, or was the testing optimistic? Our belief was
that the static analysis was fairly accurate but testing was
failing to execute feasible paths though the code that would
lead to large stack depths. Our present work verifies this
hunch.

Consider again the TinyOS Oscilloscope application. Run-
ning Oscilloscope in the unmodified simulator produces a
worst observed stack depth of 28 bytes, as shown in Fig-
ure 7. On the other hand, using the version of Avrora en-
hanced with interrupt scheduling, we were able to drive the
Oscilloscope application to use 112 bytes of stack space as
shown in Figure 8. This closely approaches the static up-
per bound of 118 bytes. The remaining 6-byte gap appears
to be caused by feasible code paths that are not actually
traversed during simulated execution (our stack tool uses
an aggressive dataflow analysis to avoid following infeasible
paths).

We implemented a genetic algorithm (GA) to direct the
search for interrupt schedules that cause a system to con-
sume a lot of stack memory. For some applications like
Oscilloscope that have four or fewer interrupt handlers, the
GA appeared to be overkill: after only a few generations

990000 990200 990400 990600 990800 991000

Time (cycles)

0

50

100

150

St
ac

k
de

pt
h

(b
yt

es
) Static upper bound on stack depth (118 bytes)

Worst observed stack depth (28 bytes)

Figure 7: Worst observed stack depth of the Oscil-
loscope application without random interrupts

37080600 37080800 37081000 37081200 37081400

Time (cycles)

0

50

100

150

St
ac

k
de

pt
h

(b
yt

es
) Static upper bound on stack depth (118 bytes)

Worst observed stack depth
(112 bytes)

Figure 8: Worst observed stack depth of the Oscillo-
scope application under a random interrupt sched-
ule

0 50 100 150

Generation

70

80

90

100

110

120

130

140

150

St
ac

k
de

pt
h

Figure 9: Results of using a genetic algorithm to
search for interrupt schedules that maximize Cnt-
ToLedsAndRfm’s use of stack memory. Although
the figure stops at 150 generations, the GA was run
to 500 generations without seeing further improve-
ments.

it reached a maximum that could not be improved upon.
However, for other applications such as CntToLedsAndRfm
(discussed in the next section), the search space was large
enough to justify using the GA. For example, it took more
than 100 generations to find a schedule that drove this appli-
cation to its apparent maximum stack depth, corresponding
to about three hours of CPU time on a fast PC. Essen-
tially all of this time was spent in Avrora. Figure 9 illus-
trates the stack depth of the fittest individual produced by
each generation of a run of the GA. The alternative to us-
ing a GA—undirected random search of the space of inter-
rupt schedules—was not able to find any interrupt schedules
closely approximating the best found by the GA, even in an
overnight run.

While the Delta algorithm was helpful in reducing the size
of interesting interrupt schedules, it was disappointing that
it could not make these schedules even smaller. For example,
the minimal failure-inducing schedule for the buggy Oscillo-
scope application contains 75 interrupts, although it is likely
that a human who understands the problem could construct
a schedule containing about a dozen interrupts. Similarly,
the interrupt schedule that induces the worst-known stack
depth for Oscilloscope contains 77 interrupts, which also
seems too large. The likely explanation for Delta’s failure is
that interrupt schedules are fragile since they fire events at
fixed times. A line-oriented Delta implementation can only
delete interrupts rather than moving them around to fire at
different times. This second capability would be required to
create truly minimal offending interrupt schedules.

5.6 Case study 3: Finding a mistaken assump-
tion

In this section we describe a case where random inter-
rupt testing was able to expose an error in our stack depth
analysis. Static analysis of the CntToLedsAndRfm applica-
tion indicated that its worst-case stack depth is 129 bytes.
However, using the genetic algorithm to search for a stack-
depth-maximizing interrupt schedule turned up a schedule
that caused the application to use 141 bytes. Clearly there

22002000 22003000 22004000 22005000 22006000

Time (cycles)

0

50

100

150

200

St
ac

k
de

pt
h

(b
yt

es
)

Initial upper bound (129 bytes)

Revised upper bound (159 bytes)

Figure 10: Initial and revised stack depth bounds
for the CntToLedsAndRfm application. Notice that
the ADC interrupt handler (the lightest colored) is
on the stack twice.

is a major problem when the observed depth exceeds the
static bound.

On investigation we found that the mistaken assumption
behind the erroneous bound was that each interrupt is as-
sumed to be on the stack at most once. While developing
our stack tool we found that most embedded systems that
we looked at (including almost all TinyOS applications) fail
to protect against reentrant interrupts. Rather than doing
the “right thing,” which would be to fail to return a stack
bound for these systems, we made a pragmatic compromise
by permitting the stack tool user to specify a maximum reen-
trancy count for each interrupt, with the default value being
one. A benefit of RID is that it prevents reentrant interrupt
handlers—but only if interrupt handlers themselves do not
request additional interrupts. The SPI interrupt handler
in the TinyOS radio stack does exactly this. It requests an
ADC interrupt and this admits the possibility that the ADC
interrupt handler will be preempted by the SPI handler,
which requests another ADC interrupt, which then reenters
by preempting the SPI interrupt. Figure 10 illustrates the
problem. After understanding the problem it was trivial to
notify the stack tool that there may be two outstanding in-
stances of the ADC interrupt handler, which increases the
stack bound to a conservative 159 bytes.

Interactions between interrupt handlers are often compli-
cated and can have unforeseen consequences. In this case the
reentrant ADC interrupt handler should be considered to be
a bug: inspection of the code reveals that it is not designed
to support reentrancy. The best fix for this error would
probably be to prevent the SPI interrupt handler from pre-
empting the ADC interrupt handler in the first place. Our
experience is that developers seldom take global interrupt
preemption relations into account when creating embedded
software. This is particularly the case for TinyOS, where
the component system encourages black-box reuse of exist-
ing modules.

6. RELATED WORK
The contribution of this paper is to enable random test-

ing of interrupt-driven software. Although there have been
many previous applications of random testing to embedded
software, we know of no previous identification of, or solu-
tion to, the problem of aberrant interrupts in random inter-
rupt schedules. The most closely related work is by Brylow
et al. [4], who used a genetic algorithm to find an interrupt
schedule that caused an embedded system to approach or
reach its worst case stack depth. It appears that the sys-
tems that they studied (small control programs written in
Z86 assembly) were simple enough that neither interrupt
overload or aberrant interrupts were issues. Wegener and
Mueller [29] used a genetic algorithm to search for inputs
that cause a program to run for as long as possible, in or-
der to approximate the worst-case execution time. Simi-
larly, Alander et al. [1] tested software response times using
shared memory and network inputs that were computed us-
ing a genetic algorithm. Both of these projects use random
input data, rather than forcing interrupts to fire at random
times. It would be interesting and probably useful to com-
bine approaches such as these with the work presented in
this paper, in order to perform whole-system testing of task
response times.

The part of our work that uses the Delta algorithm to min-
imize interrupt schedules that elicit bugs is closely analogous
to work done by Choi and Zeller [6]. Their contribution was
a method to find two thread schedules that are as alike as
possible while still differing in some important way; i.e., one
exposes a bug and the other does not. Our work applies
to interrupts instead of threads, and also we minimize the
size of single schedule, rather than minimizing the difference
between two schedules.

There is a large body of literature on model-based and
specification-based testing of embedded systems [9, 15, 20,
24, 25, 28]. These techniques are able to create precise test-
ing oracles, and they are useful for conformance testing. Ro-
bustness testing [7, 8, 14], on the other hand, amounts to
attempting to cause a program or system to fail, often using
random inputs. The primary advantage of robustness test-
ing is that since it uses very simple oracles it can be easily
applied to the many embedded systems—such as the hun-
dreds of existing TinyOS applications—for which no speci-
fications exist.

Random testing is a well-established sub-discipline of soft-
ware testing [11]. Theoretical properties of random testing
have been extensively studied, for example by Mankefors
et al. [17] and Chen et al. [5]. The main advantages of ran-
dom testing appear to be its relative ease of implementation
and the fact that it is more amenable to mathematical anal-
ysis than are other types of testing.

7. FUTURE WORK
Language support for RID.Although nesC makes a dis-
tinction between asynchronous code that is reachable from
interrupt mode and synchronous code that is not, it has
no real semantics for interrupts or interrupt requests. We
would like to make the act of requesting an interrupt ex-
plicit at the level of nesC. This would permit better static
error checking, it would permit the nesC compiler to control
preemption relations among interrupt handlers, and it would
enable the elimination of dead interrupts, and all transitively

called dead code, leading to more effective use of resources
on the motes.

Integrating RID with interrupt overload protection.RID
is about preventing aberrant interrupts from firing. Our
work on interrupt schedulers [21] is about preventing in-
terrupts from firing when their execution would endanger
timely execution of other code running on a node. An
embedded system using both forms of interrupt protection
should be able function correctly even under a truly arbi-
trary interrupt workload, making it easy to perform testing
that should help increase developers’ confidence in the ro-
bustness of a system.

8. CONCLUSION
The growing popularity of sensor networks is exposing

a large number of software developers to low-level micro-
controller programming. Creating robust software for sen-
sor network nodes and other resource-constrained embedded
systems is difficult because there is only a thin layer of OS
code, forcing application developers to write code that runs
in interrupt mode. One way to help these developers create
more robust systems is to support random interrupt test-
ing: firing random interrupts at random times in order to
stress-test a system.

This paper introduces RID: a restricted interrupt disci-
pline that hardens embedded software with respect to aber-
rant interrupts. RID adds no significant overhead because
embedded platforms provide hardware support for disabling
individual interrupt sources. The implementation of RID
can be substantially automated. Also, since RID requires
modifying only low-level device drivers, the vast majority
of application developers can take advantage of it without
taking any special action.

RID permits embedded software to be tested under ran-
dom interrupt loads without encountering false positive er-
rors due to the arrival of aberrant interrupts. RID also
makes systems robust with respect to aberrant interrupts
that can occur in deployed systems due to software bugs or
hardware faults. It discourages reentrant interrupt handlers,
which can lead to stack overflow and are difficult to imple-
ment correctly. Basically, RID is simply a good defensive
programming practice.

We have applied RID to several TinyOS kernels and then
tested them using random interrupt schedules, finding real
bugs and driving applications to near their worst-case stack
depths. RID is what made this random testing approach
feasible.

9. ACKNOWLEDGMENTS
The author would like to thank: Nathan Cooprider for

writing CIL code supporting this work; Nathan Cooprider,
David Coppit, Usit Duongsaa, Eric Eide, David Gay, and
Alastair Reid for their helpful comments and advice; and
Ben Titzer for his help with Avrora. This material is based
upon work supported by the National Science Foundation
under Grant Nos. 0209185 and 0448047.

10. REFERENCES
[1] Jarmo T. Alander, Timo Mantere, and Ghodrat

Moghadampour. Testing software response times using
a genetic algorithm. In Proc. of the 3rd Nordic

Workshop on Genetic Algoritms and their
Applications (3NWGA), pages 293–298, 1997.

[2] Atmel, Inc. ATmega128 datasheet, 2002.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[3] Bart Broekman and Edwin Notenboom. Testing
Embedded Software. Addison-Wesley, 2002.

[4] Dennis Brylow, Niels Damgaard, and Jens Palsberg.
Static checking of interrupt-driven software. In Proc.
of the 23rd Intl. Conf. on Software Engineering
(ICSE), pages 47–56, Toronto, Canada, May 2001.

[5] Tsong Yueh Chen, Fei-Ching Kuo, and Robert G.
Merkel. On the statistical properties of the F-measure.
In Proc. of the 4th International Conference on
Quality Software (QSIC), pages 146–153,
Braunschweig, Germany, September 2004.

[6] Jong-Deok Choi and Andreas Zeller. Isolating
failure-inducing thread schedules. In Proc. of the Intl.
Symp. on Software Testing and Analysis (ISSTA),
pages 210–220, Rome, Italy, July 2002.

[7] Koen Claessen and John Hughes. Testing monadic
code with QuickCheck. In Proc. of the ACM
SIGPLAN 2002 Haskell Workshop, Pittsburgh, PA,
October 2002.

[8] Christoph Csallner and Yannis Smaragdakis.
JCrasher: An automatic robustness tester for Java.
Software—Practice and Experience, 34(11):1025–1050,
2004.

[9] Lydie du Bousquet, Farid Ouabdesselam, Jean-Luc
Richier, and Nicolas Zuanon. Lutess: A
specification-driven testing environment for
synchronous software. In Proc. of the 1999 Intl. Conf.
on Software Engineering (ICSE), pages 267–276, Los
Angeles, CA, 1999.

[10] David Gay, Phil Levis, Robert von Behren, Matt
Welsh, Eric Brewer, and David Culler. The nesC
language: A holistic approach to networked embedded
systems. In Proc. of the Conf. on Programming
Language Design and Implementation (PLDI), pages
1–11, San Diego, CA, June 2003.

[11] Richard Hamlet. Random testing. In J. Marciniak,
editor, Encyclopedia of Software Engineering. Wiley,
second edition, 2001.

[12] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System
architecture directions for networked sensors. In Proc.
of the 9th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 93–104, Cambridge, MA, November
2000.

[13] Philip Koopman and John DeVale. Comparing the
robustness of POSIX operating systems. In Proc. of
the 29th Fault Tolerant Computing Symp., Madison,
WI, June 1999.

[14] Nathan P. Kropp, Philip J. Koopman, and Daniel P.
Siewiorek. Automated robustness testing of
off-the-shelf software components. In Proc. of the
Fault Tolerant Computing Symp., Munich, Germany,
June 1998.

[15] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen.
Online testing of real-time systems using UPPAAL. In
Proc. of the 4th Intl. Workshop on Formal Approaches
to Testing of Software, Linz, Austria, September 2004.

[16] Nancy Leveson. Safeware: System Safety and
Computers. Addison-Wesley, 1995.

[17] S. Mankefors, R. Torkar, and A. Boklund. New quality
estimations in random testing. In Proc. of the 14th
IEEE Intl. Symp. on Software Reliability Engineering
(ISSRE), Denver, CO, November 2003.

[18] Barton P. Miller, Lars Fredriksen, and Bryan So. An
empirical study of the reliability of UNIX utilities.
Communications of the ACM, 33(12):32–44, December
1990.

[19] George C. Necula, Scott McPeak, S. P. Rahul, and
Westley Weimer. CIL: Intermediate language and
tools for analysis and transformation of C programs.
In Proc. of the Intl. Conf. on Compiler Construction
(CC), pages 213–228, Grenoble, France, April 2002.

[20] A. Pretschner, O. Slotosch, E. Aiglstorfer, and
S. Kriebel. Model based testing for real. Software Tools
for Technology Transfer, 5(2–3):140–157, March 2004.

[21] John Regehr and Usit Duongsaa. Preventing interrupt
overload. In Proc. of the 2005 Conf. on Languages,
Compilers, and Tools for Embedded Systems
(LCTES), Chicago, IL, June 2005.

[22] John Regehr, Alastair Reid, and Kirk Webb.
Eliminating stack overflow by abstract interpretation.
In Proc. of the 3rd Intl. Conf. on Embedded Software
(EMSOFT), pages 306–322, Philadelphia, PA,
October 2003.

[23] John Regehr, Alastair Reid, Kirk Webb, Michael
Parker, and Jay Lepreau. Evolving real-time systems
using hierarchical scheduling and concurrency
analysis. In Proc. of the 24th IEEE Real-Time Systems
Symp. (RTSS), Cancun, Mexico, December 2003.

[24] Antoine Rollet. Testing robustness of real-time
embedded systems. In Proc. of the Workshop on
Testing Real-Time and Embedded Systems
(WTRTES), Pisa, Italy, September 2003.

[25] Li Tan, Jesung Kim, and Insup Lee. Testing and
monitoring model-based generated program. In Proc.
of the Runtime Verification Workshop, Boulder,
Colorado, July 2003.

[26] Ben L. Titzer, Daniel Lee, and Jens Palsberg. Avrora:
Scalable sensor network simulation with precise
timing. In Proc. of the 4th Intl. Conf. on Information
Processing in Sensor Networks (IPSN), Los Angeles,
CA, April 2005.

[27] Ben L. Titzer and Jens Palsberg. Nonintrusive
precision instrumentation of microcontroller software.
In Proc. of the 2005 Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES), Chicago,
IL, June 2005.

[28] Aki Watanabe and Ken Sakamura. A
specification-based adaptive test case generation
strategy for open operating system standards. In Proc.
of the 18th Intl. Conf. on Software Engineering
(ICSE), pages 81–89, Berlin, Germany, March 1996.

[29] Joachim Wegener and Frank Mueller. A comparison of
static analysis and evolutionary testing for the
verification of timing constraints. Real-Time Systems,
21(3):241–268, November 2001.

[30] Andreas Zeller and Ralf Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions on
Software Engineering, 28(2):183–200, February 2002.

http: //www.atmel.com/atmel/acrobat/doc2467.pdf

	Introduction
	Interrupts and Interrupt-Driven Software
	A Restricted InterruptDiscipline
	Implementing RID in TinyOS
	TinyOS and nesC
	Modifying TinyOS

	Experience and Evaluation
	Avrora
	Generating interrupt schedules
	Test methodology
	Case study 1: A buggy application
	Case study 2: Approximating the worst-case stack depth
	Case study 3: Finding a mistaken assumption

	Related Work
	Future Work
	Conclusion
	Acknowledgments
	REFERENCES -9pt

