C Changesin Version 1.3. — April 16th 2012

To switch from version 1.0 or 1.1 or 1.2 to version 1.3, dovad¢he new version and copy
a previously written scheduler.c and scheduler.h to thedémectory in the new version.

The version 1.3 distribution now also includes a subset ®efibrkloads that will be used
for the final competition. Here are the noteworthy pointsiatibe workloads:

e The following ten benchmark traces are included in the ithstion (13 files):

1. black: A single-thread run from PARSEC's blackscholes.

face: A single-thread run from PARSEC's facesim.

ferret: A single-thread run from PARSEC's ferret.

fluid: A single-thread run from PARSEC's fluidanimate.

freq: A single-thread run from PARSEC's fregmine.

stream:A single-thread run from PARSEC's streamcluster.
swapt: A single-thread run from PARSEC’s swaptions.

. comm1:A trace from a server-class transaction-processing watklo

© © N U A WN

. commz2:A trace from a server-class transaction-processing watklo

[EY
o

. MT*-canneal: A four-thread run from PARSEC’s canneal, organized in four
files, MTO-canneal to MT3-canneal.

e Benchmarks black, face, ferret, freq, stream have aboutn®®n instructions.
These instructions were selected from 5 billion instruttiaces with a methodology
similar to that of Simpoirit

e Benchmarks fluid and swapt are also defined with the Simpi@tmethodology
described for the other PARSEC benchmarks. The only diifaes that the traces
include 750 million instructions so they have executione@similar to the other
benchmarks.

e Benchmarks comm1 and commz2 are roughly 500 million insimactvindows that
are representative of commercial transaction-processumgloads.

1SimPoint [28] is used to generate traces which are repratsemf the benchmarks. SimPoint uses
Basic Block Vectors(BBVs) [28] to recognise intervals oé thxecution which can be used to replicate the
behavior of the benchmark. It assigns weights to each iatemwhich can be applied to the results obtained
from each interval.

In our model, each benchmark is simulated for 5 billion imstions with interval sizes of 5 million in-
structions. A number of metrics are collected from eachriatie including number of LLC misses, number
of reads, number of writes, number of floating-point, integad branch instructions. The collection of these
metrics forms the BBV that is used with SimPoint. The BBVsdessified into 10 clusters using SimPoint.
The number of intervals selected from each cluster depemdissoweight of each cluster. The final trace of
500M instructions is the combination of 100 intervals, tak®m the large trace.

21



e The 4-thread canneal traces represent the first 500 millistnuctions executed by
each thread once the region of interest is started. Whilefdhe other traces were
collected with 512 KB private LLCs for each single-threadgmam, the 4-thread
canneal traces assumed a 2 MB shared LLC for the four coregité w a trace file
represents the dirty block evicted by a block that is beinghfed by that thread.

e The 10 traces are used to form 10 different workloads thatoeilused for the com-
petition. All 10 workloads are run with 4channel.cfg, and finst 8 are also run with
1channel.cfg. The numbers from these 18 simulations willsed to compute the
metrics that must be reported in the papers being submitd#tetcompetition. The
runsim file in the usimm directory lists all 18 simulationshelcompetition web-
site will also have pointers to scripts, excel files, andXdaédle templates that can
be used to compute and report the final metrics. The final cttigperesults will
be based on these 18 experiments and a few more; the adtixperiments and
workloads will be announced after the submission deadlihe. 10 workloads are:

1. comm2

comml comml

comml comml comm2 comm?2

MTO-canneal MT1-canneal MT2-canneal MT3-canneal

fluid swapt comm2 comm?2

face face ferret ferret

black black freq freq

stream stream stream stream

© O N O R DN

fluid fluid swapt swapt comm2 comm2 ferret ferret

[EY
o

. fluid fluid swapt swapt comm2 comm?2 ferret ferret blackklaeq freq comm1
comml stream stream

e The Fairness metric for the competition is being modifiededtie following. Fair-
ness is being defined as the maximum slowdown for any threaleirworkload,
relative to a single-program execution of that thread witf-&€FS scheduler (a high
number is bad). The final PFP metric will multiply thaverage of maximum slow-
downs across all experimentand the{sum of execution times of all programs in
those experimengs For the PFP metric, only 14 of the 18 experiments will be used
(the single-program comm2 workload and the multi-threagietheal workload will
not be used to evaluate fairness).

22



In going from version 1.2 to version 1.3, the code in files mgmntroller.c, mem-
ory_controller.h and main.c have changed. USIMM Version 1.8iporates the following
changes over version 1.2:

e Bug fix: The isT_FAW_met is modified to correctly enforce thd=AW condition.
Earlier in a tFAW rolling window, it would be possible for the schedulerdwo-
neously issue a maximum of five activations, (assuming RBRD timing condition
was met). Now, the scheduler can issue a maximum of 4 activatenands in the
t_FAW window.

e Bug fix: Changed the variable cassuedcurrentcycle to keep track of COIRD or
COL_WR commands issued to each bank. Earlier, the variable aapy tkack of
whether a COLRD or COLWR had been issued in the current simulation cycle to
a channel before issuing an autoprecharge. Also, the Varisinow reset when an
autoprecharge command is issued. This has no impact orctamplementations
of the autoprecharge functionality. The change preveritsdders from incorrectly
issuing multiple auto-precharges to a channel in the sarle end also prevents an
autoprecharge to be sent to a bank that did not have a RDlor COLWR issued
to it that very cycle.

e Changes to statistics: New variables, st@@dsmerged and statwrites merged,
counting the number of merged reads and writes respectivalye been exposed to
the scheduler. The variables fetched and committed (whidpectively, contain
the fetched and committed instruction counts for each stedlcore) have been mi-
grated from the file main.c to memanpntroller.h to allow the scheduling algorithm
to use this information. The simulator also now prints the i execution times on
each core and the EDP metric for the simulation.

23



