
C Changes in Version 1.3. – April 16th 2012

To switch from version 1.0 or 1.1 or 1.2 to version 1.3, download the new version and copy
a previously written scheduler.c and scheduler.h to the src/ directory in the new version.

The version 1.3 distribution now also includes a subset of the workloads that will be used
for the final competition. Here are the noteworthy points about the workloads:

• The following ten benchmark traces are included in the distribution (13 files):

1. black: A single-thread run from PARSEC’s blackscholes.

2. face: A single-thread run from PARSEC’s facesim.

3. ferret: A single-thread run from PARSEC’s ferret.

4. fluid: A single-thread run from PARSEC’s fluidanimate.

5. freq: A single-thread run from PARSEC’s freqmine.

6. stream:A single-thread run from PARSEC’s streamcluster.

7. swapt:A single-thread run from PARSEC’s swaptions.

8. comm1:A trace from a server-class transaction-processing workload.

9. comm2:A trace from a server-class transaction-processing workload.

10. MT*-canneal: A four-thread run from PARSEC’s canneal, organized in four
files, MT0-canneal to MT3-canneal.

• Benchmarks black, face, ferret, freq, stream have about 500million instructions.
These instructions were selected from 5 billion instruction traces with a methodology
similar to that of Simpoint1.

• Benchmarks fluid and swapt are also defined with the Simpoint-like methodology
described for the other PARSEC benchmarks. The only difference is that the traces
include 750 million instructions so they have execution times similar to the other
benchmarks.

• Benchmarks comm1 and comm2 are roughly 500 million instruction windows that
are representative of commercial transaction-processingworkloads.

1SimPoint [28] is used to generate traces which are representative of the benchmarks. SimPoint uses
Basic Block Vectors(BBVs) [28] to recognise intervals of the execution which can be used to replicate the
behavior of the benchmark. It assigns weights to each interval, which can be applied to the results obtained
from each interval.

In our model, each benchmark is simulated for 5 billion instructions with interval sizes of 5 million in-
structions. A number of metrics are collected from each interval, including number of LLC misses, number
of reads, number of writes, number of floating-point, integer, and branch instructions. The collection of these
metrics forms the BBV that is used with SimPoint. The BBVs areclassified into 10 clusters using SimPoint.
The number of intervals selected from each cluster depends on the weight of each cluster. The final trace of
500M instructions is the combination of 100 intervals, taken from the large trace.

21



• The 4-thread canneal traces represent the first 500 million instructions executed by
each thread once the region of interest is started. While allof the other traces were
collected with 512 KB private LLCs for each single-thread program, the 4-thread
canneal traces assumed a 2 MB shared LLC for the four cores. A write in a trace file
represents the dirty block evicted by a block that is being fetched by that thread.

• The 10 traces are used to form 10 different workloads that will be used for the com-
petition. All 10 workloads are run with 4channel.cfg, and the first 8 are also run with
1channel.cfg. The numbers from these 18 simulations will beused to compute the
metrics that must be reported in the papers being submitted to the competition. The
runsim file in the usimm directory lists all 18 simulations. The competition web-
site will also have pointers to scripts, excel files, and latex table templates that can
be used to compute and report the final metrics. The final competition results will
be based on these 18 experiments and a few more; the additional experiments and
workloads will be announced after the submission deadline.The 10 workloads are:

1. comm2

2. comm1 comm1

3. comm1 comm1 comm2 comm2

4. MT0-canneal MT1-canneal MT2-canneal MT3-canneal

5. fluid swapt comm2 comm2

6. face face ferret ferret

7. black black freq freq

8. stream stream stream stream

9. fluid fluid swapt swapt comm2 comm2 ferret ferret

10. fluid fluid swapt swapt comm2 comm2 ferret ferret black black freq freq comm1
comm1 stream stream

• The Fairness metric for the competition is being modified to be the following. Fair-
ness is being defined as the maximum slowdown for any thread inthe workload,
relative to a single-program execution of that thread with an FCFS scheduler (a high
number is bad). The final PFP metric will multiply the{average of maximum slow-
downs across all experiments} and the{sum of execution times of all programs in
those experiments}. For the PFP metric, only 14 of the 18 experiments will be used
(the single-program comm2 workload and the multi-threadedcanneal workload will
not be used to evaluate fairness).

22



In going from version 1.2 to version 1.3, the code in files memory controller.c, mem-
ory controller.h and main.c have changed. USIMM Version 1.3 incorporates the following
changes over version 1.2:

• Bug fix: The isT FAW met is modified to correctly enforce the tFAW condition.
Earlier in a tFAW rolling window, it would be possible for the scheduler toerro-
neously issue a maximum of five activations, (assuming the tRRD timing condition
was met). Now, the scheduler can issue a maximum of 4 activatecommands in the
t FAW window.

• Bug fix: Changed the variable casissuedcurrentcycle to keep track of COLRD or
COL WR commands issued to each bank. Earlier, the variable only kept track of
whether a COLRD or COL WR had been issued in the current simulation cycle to
a channel before issuing an autoprecharge. Also, the variable is now reset when an
autoprecharge command is issued. This has no impact on correct implementations
of the autoprecharge functionality. The change prevents schedulers from incorrectly
issuing multiple auto-precharges to a channel in the same cycle and also prevents an
autoprecharge to be sent to a bank that did not have a COLRD or COL WR issued
to it that very cycle.

• Changes to statistics: New variables, statsreadsmerged and statswrites merged,
counting the number of merged reads and writes respectively, have been exposed to
the scheduler. The variables fetched and committed (which,respectively, contain
the fetched and committed instruction counts for each simulated core) have been mi-
grated from the file main.c to memorycontroller.h to allow the scheduling algorithm
to use this information. The simulator also now prints the sum of execution times on
each core and the EDP metric for the simulation.

23


