
Appendices
A Changes in Version 1.1. – March 21st 2012
To switch from version 1.0 to version 1.1, download the new version and copy a previ-
ously written scheduler.c and scheduler.h to the src/ directory in the new version. USIMM
Version 1.1 incorporates the following changes (multiple new features and one bug fix):

• The trace format has changed in two ways. Instead of representing each non-memory
instruction with an “N” on a new line (version 1.0), each memory instruction line
starts with a number that represents the number of precedingnon-memory instruc-
tions (version 1.1). Also, each memory read instruction line ends with the PC of the
instruction that initiated the memory read.

• The instruction PC for a memory read is recorded in the ROB data structure and
the request queue data structure. The simulator does nothing with this PC, but a
scheduler might potentially find it useful.

• The input/ directory includes billion instruction traces for single-threaded executions
for five PARSEC v2.0 pre-compiled binaries. The traces represent the start of the
region of interest in each program. It takes tens of minutes to simulate about a billion
cycles on modern machines. For short tests, users can simulate a subset of the entire
trace. The “runsim” file has been updated to do an example simulation with these
new traces.

• The main.c file has been updated to also accept traces for multi-threaded applica-
tions (a few multi-threaded applications will be included in the final competition
workload). The individual traces of a multi-threaded application must follow a spe-
cific naming convention (starting with “MT0..”, “MT1..”, and so on). Typically, the
addresses from each trace are given a unique prefix that matches their core ID. When
a multi-threaded application is detected, the addresses from each of those trace files
are given a prefix that matches the core ID for thread 0. In other words, addresses
from each trace are given different prefixes, except when they belong to the same
multi-threaded application.

• The scheduler is now allowed to issue an auto-precharge command in the same cy-
cle as a column-read or column-write. This allows the row to be closed without
consuming an additional command bus cycle. The scheduler does this through the
is autoprechargeallowed() and issueautoprecharge() commands.

• The scheduler is allowed to activate an arbitrary row even ifthere is no pending re-
quest in the queues for that row. This is done via the issueactivatecommand()
and isactivateallowed() commands. The number of such speculative activations is
tracked by statsnum activatespec. By default, we assume that all of these activa-
tions are done for future column-reads. This count is therefore used to influence the
row buffer hit rates for memory reads.

• Bug fix: The function issuerefreshcommand has been updated to correctly set the
next cmd timing constraints based on current DRAM state. In the earlier code,
the dramstate was being set to REFRESHING before the state-dependent next cmd
times were being calculated. This change has a negligible impact on performance.

19

