Commit Algorithms for Scalable
Hardware Transactional Memory

Seth H. Pugsley, Rajeev Balasubramonian

UUCS-07-016

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

August 9, 2007

Abstract

In a hardware transactional memory system with lazy versioning and lazy conflict detec-
tion, the process of transaction commit can emerge as a bottleneck. For a large-scale
distributed memory system, we propose novel algorithms to implement commit that are
deadlock- and livelock-free and do not employ any centralized resource. These algorithms
improve upon the state-of-the-art by yielding up to 59% improvement in average delay and
up to 97% reduction in network traffic.

1 Introduction

Many research groups have identified transactional memory (TM) [3] as a promising ap-
proach to simplify the task of parallel programming. In a TM system, critical sections
are encapsulated within transactions and it is the responsibility of either software or hard-
ware to provide the illusion that the transaction executes atomically and in isolation. Many
recent papers [1, 2, 4, 5] have argued that the implementation of transactional semantics
in hardware is feasible. Most of these studies have considered small-scale multiprocessor
systems (fewer than 16 processors) and have shown that hardware transactional memory
(HTM) imposes tolerable overheads in terms of performance, power, and area. However, it
is expected that the number of cores on a chip will scale with Moore’s Law. Further, trans-
actional parallel programs will also be executed on multi-processors composed of many
multi-core chips. If HTM is to be widely adopted for parallel programming, it is neces-
sary that the implementation scale beyond hundreds of cores. The HTM community is just
starting to explore such scalable implementations.

An HTM system is typically classified by its choice of versioning and conflict detection
mechanisms. For example, the Wisconsin LogTM implementation [4] employs eager ver-
sioning and eager conflict detection. The implementation is expected to have the same scal-
ability properties as a directory-based cache coherence protocol. A salient dis-advantage of
this approach is that it can lead to deadlocks/livelocks and requires a contention manager.
A second approach, employed by the Stanford TCC project [2], adopts lazy versioning and
lazy conflict detection. While this approach is deadlock-free, it is inherently less scalable.
A recent paper attempts to extend the TCC implementation to improve its scalability [2], but
leaves much room for improvement (explained in Section 2). Given the above advantages
and disadvantages of each implementation, there is no consensus within the community on
the most promising approach for HTM. Since the Stanford TCC approach is among the
front-runners and since scalability is the bottleneck for that system, this paper focuses on
improving the scalability for that design. We propose novel algorithms to commit a transac-
tion in a scalable manner. These algorithms are free of deadlocks/livelocks, do not employ
a centralized agent, provide high performance in the common case, and significantly reduce
the number of network messages, relative to the Stanford TCC implementation.

In Section 2, we provide details on the state-of-the-art Stanford TCC implementation and
identify inefficiencies in its commit algorithm. Section 3 describes our proposed algorithms
and these are evaluated in Section 4. Conclusions are drawn in Section 5.

2 Background

In an HTM system, the hardware provides the illusion that each transaction executes atom-
ically and in isolation. In reality, each thread of the application can start executing a trans-
action in parallel. The hardware keeps track of the cache lines that are read and written by
the transaction (referred to as the read-set and write-set). In a lazy versioning system such
as Stanford-TCC, writes are not propagated beyond the private cache. If the transaction
reaches the end without being aborted, it commits by making all of its writes visible to the
rest of the system. The cache coherence protocol ensures that other shared copies of these
cache lines are invalidated. At this time, other in-progress transactions that may have read
these cache lines abort and re-start. Without the above step, the illusion of atomicity for
each transaction cannot be provided. In this lazy versioning system, a number of steps are
taken during the commit process, possibly making it a bottleneck in a large-scale system.
The algorithm for commit can be made quite simple if only one transaction is allowed to
commit at a time. However, this is clearly not acceptable for a system with more than a
hundred processors. In a recent paper, Chafi et al. [2] attempt to provide scalable parallel
commits in a large-scale multiprocessor system.

The following baseline large-scale multiprocessor platform is assumed in that work. Nu-
merous processors (possibly many multi-cores) are connected with a scalable grid network
that allows message re-ordering. Distributed shared-memory is employed along with a
directory-based cache coherence protocol. Since memory is distributed, the directory as-
sociated with each memory block is also distributed. The problem with allowing multiple
parallel transaction commits is that a subset of these transactions may conflict with each
other. The discovery of these conflicts mid-way through the commit process must be han-
dled elegantly. As a solution, Chafi et al. propose the following algorithm that is invoked
by a transaction when it is ready to commit:

1. Obtain TID: A centralized agent is contacted to obtain a transaction ID (TID). The
TIDs enforce an ordering on transaction commits. The hardware goes on to ensure that the
program behaves as if transactions execute atomically in the order of their TIDs.

2. Probe write-set directories: For every directory in the transaction’s write-set, a probe
message is sent to check if earlier transactions (those with smaller TIDs) have already sent
their writes to that directory. If this condition is not true, probes are sent periodically until
the condition is true. For every directory that is not part of the transaction’s write-set, a skip
message is sent so that directory knows not to expect any writes from this transaction.

3. Send mark messages: For all the cache lines in the transaction’s write-set, mark mes-
sages are sent to the corresponding directories. This lets the directories know that these

2

cache lines will soon transition to an Owned state as soon as the final commit message is
received from the transaction.

4. Probe read-set directories: For every directory in the transaction’s read-set, another
probe message is sent to check if those directories have already seen writes from earlier
transactions. If this check succeeds, the transaction can be sure that it will not be forced to
abort because of an earlier transaction’s write. Probes are sent periodically until the check
succeeds.

5. Send commit messages: A commit message is sent to every directory in the transac-
tion’s write-set. The corresponding cache lines transition to Owned state (with the corre-
sponding transaction’s core as owner) and send out invalidates to other caches that may
share those cache lines. These invalidates may cause a younger transaction to abort if the
lines are part of the younger transaction’s read-set.

To summarize, the above algorithm first employs a centralized agent to impart an order-
ing on the transactions. Transactions can proceed with some of the steps of the commit
algorithm in parallel as long as their read-set and write-set directories are distinct. If two
transactions have to access the same directory, the process is serialized based on the TIDs
of the two transactions. In other words, each directory allows only a single transaction to
commit at a time, but assuming that transactions access different directories, there is a high
degree of commit parallelism. The algorithm is deadlock- and livelock-free because trans-
actions are assigned increasing TIDs when they make their first attempt to commit and a
transaction is never forced to wait upon a transaction with a higher TID.

While it was shown that this algorithm has good performance [2], there are many inef-
ficiencies in it. Firstly, a centralized agent hands out TIDs, a feature that is inherently
non-scalable (although, the argument can be made that the data bandwidth requirements
in and out of this centralized agent are modest). Secondly, all of the directories must be
contacted in Step 2 above, an operation that clearly scales poorly as the number of cores is
increased. Thirdly, if the initial probes in steps 2 and 4 fail, the probes must be periodically
re-tried. In this paper, we attempt to address all of the above inefficiencies: our algorithms
employ no centralized agent and significantly reduce the number of required messages (by
avoiding re-tries and communication with every directory).

In the above algorithm, the total number of messages required per commit (not including
the invalidates sent by the cache coherence protocol) equals

242w+ (N —w)+W +2r +2w+ PR

where N represents the number of directories, w represents the number of directories in the
write-set, W represents the number of cache lines in the write-set, r represents the number
3

of directories in the read-set, and PR equals the number of probe re-tries. It must be pointed
out that w, W, and r are typically small [2] and may not scale up with /V if the application
has good locality. The best-case network delay for the above algorithm (not including
coherence operations and not including processing delays at the controllers) equals

(24+2+2+2) x avg_delay,

where avg_delay is the average one-way delay on the network to send a message and we
assume that messages in Step 2, Steps 3 and 4, and Step 5 can be all handled in parallel.

The number of required messages and the complexity of the algorithm can be reduced by
alternative means. For example, in Step 1, when the centralized agent is contacted to ob-
tain the TID, the transaction can also communicate its read and write sets to this agent. The
agent keeps track of the read and write sets for all transactions that have not finished their
commit process. If the agent can confirm that the new transaction has no conflicts with
these outstanding transactions, it allows the new transaction to proceed with its commit.
The new transaction can now freely propagate its writes and finally inform the central-
ized agent when it’s done. This notification may allow a previously blocked transaction
to receive commit permissions from the centralized agent. This approach increases the
bandwidth requirements in and out of the centralized agent. It may be possible to reduce
this requirement with the use of partial addresses or signatures that approximate the read
and write sets. However, we believe that a centralized resource is an inelegant choice for a
scalable algorithm and we do not further consider this option. It is also worth noting that
with such a solution, even a single thread with high locality may have to contact a remote
node to obtain its TID on every transaction commit.

3 Scalable Commit Algorithms

We next propose commit algorithms that avoid a centralized resource and have message
requirements that do not scale up with the number of nodes. We begin with a conceptually
simple algorithm and then add a modest amount of complexity to accelerate its execution
time. Similar to the work by Chafi et al. [2], we assume a distributed shared memory system
with a directory-based cache coherence protocol. To keep the discussion simple, we assume
that the number of processors equals the number of directories, but typically, a single di-
rectory/memory module will be shared by a collection of processors. The above platform
is also representative of a single multi-core processor where the L2 cache is shared, the
L2 maintains directory state to maintain coherence among the L1s, and the L2 banks are
physically distributed among the cores.

3.1 Algorithm 1: Sequential Commit

Each directory has an “Occupied” bit that indicates that a transaction dealing with this
directory is in the middle of its commit phase. In this first algorithm, a transaction sequen-
tially proceeds to “occupy” every directory in its read- and write-set in ascending numerical
order (Step 1) (the transaction must wait for an acknowledgement from the earlier directory
before proceeding to occupy the next directory). A directory is not allowed to be occupied
by multiple transactions, so another transaction that wishes to access one of the above direc-
tories will have to wait for the first transaction to commit. After Step 1, the first transaction
knows it will no longer be forced to abort by another transaction and it proceeds with send-
ing information about its write-set to the corresponding directories (Step 2); these cache
lines will be marked as Owned in the directory and invalidations are sent to other sharers
of these lines. After receiving acknowledgements back from all directories, the transaction
contacts all directories again to re-set the Occupied bit (Step 3).

If a transaction attempts to occupy a directory that is already occupied, the request is
buffered at the directory. If the buffer is full, a NACK is sent back and the transaction
is forced to re-try its request. In our experiments, we observe that re-tries are uncommon
for reasonable buffer sizes. The buffered request will eventually be handled when the ear-
lier transaction commits. There is no possibility of a deadlock because transactions occupy
directories in numerically ascending order and there can be no cycle of dependences. As-
sume transaction A is waiting for transaction B at directory i. Since transaction B has
already occupied directory 7, it can only stall when attempting to occupy directory j, where
j > 4. Thus, a stalled transaction can only be waiting for a transaction that is stalled at a
higher numbered directory, eliminating the possibility for a cycle of resource dependences.
This algorithm imposes an ordering on conflicting transactions without the use of a cen-
tralized agent: the transaction to first occupy the smallest-numbered directory that is in the
read/write-sets of both transactions, will end up committing first.

The total number of messages with this algorithm equals
2(w+r)+2W +2(w +r) + PR/,

where PR’ equals the number of re-tries because of lack of buffer space. The number of
messages in Step 2 can be reduced further if the directory sends the transaction a single
acknowledgement for all the cache lines for that directory. The best-case network delay for
this algorithm equals

(2% (w+7r)+242) x avg-delay.

This assumes that the operations in Step 1 are performed sequentially, operations in Step 2
are performed in parallel, and operations in Step 3 are also performed in parallel.

5

3.2 Algorithm 2: Momentum-Based Commit

While the above algorithm helps reduce the total number of required messages, the delay
may be higher than that of the Stanford-TCC algorithm because each of the directories must
be occupied in sequential order. In most cases, the set of directories accessed by a trans-
action is small and assuming locality, transactions will conflict infrequently for a directory.
Yet, the directories must be occupied sequentially in case there is a conflict. To remove the
dependence on this sequential process, we propose the following momentum-based com-
mit algorithm. Transactions attempt to occupy directories in parallel and a transaction is
allowed to steal a directory from another transaction if it is further along in its commit
process.

In Step 1a, transaction T1 sends out parallel requests to occupy directories in its read- and
write-sets. These requests carry a “momentum” value of 0 to indicate that the transaction
has occupied 0 directories so far. If a directory is unoccupied, it sends back an acknowl-
edgement and transaction T1 increments its momentum. If a directory is occupied, the new
request (and the accompanying momentum) is forwarded to the transaction (T2) that cur-
rently occupies that directory. If T2 has already occupied all of its directories and moved on
to steps 2 and 3, it sends a NACK to T1. If T2 is still trying to occupy its set of directories,
it compares its momentum to that of T1 (currently 0) (in case of a tie, the core number is
used as a tie-breaker). If T2 has a higher momentum, it sends a NACK to T1. On receiving
a NACK, T1 will attempt to occupy the directory again, but with an updated value for its
momentum. If T2 has a lower momentum, it will hand off occupancy of the directory to
T1. T2 decrements its momentum, sends a message to the directory to update that T1 is the
current occupier, and sends an ACK to T1 to indicate its occupancy of the directory.

Consider the following example: T1 and T2 both wish to commit to directories D1-D8.
They send out parallel requests to all of these directories. T1 succeeds in occupying D1-D3
first and T2 succeeds in occupying D4-D8. When T1’s request reaches D4, it is re-directed
to T2 (with a momentum of 0). By now, T2 may have already updated its momentum to 5
and it NACKSs this request. Similarly, T1 may NACK T2’s requests for directories D1-D3.
T1 and T2 will now again attempt to acquire directories D4-D8 and D1-D3, respectively,
but with updated momentums of 3 and 5. When T2 receives T1’s forwarded requests (with
momentum 3), it again sends back NACKs. When T1 receives T2’s forwarded requests
(with momentum 5), it hands off control of those directories to T2. Thus, T2 will soon
end up acquiring occupancy for all directories D1-D8 and will proceed with its commit.
T1 will keep re-trying until it succeeds. Depending on delays on the network and how the
momentum values get updated, it is possible that two transactions may go through a few
exchanges and hand a directory back and forth to each other, but as we show below, forward
progress is guaranteed.

If a transaction (T1) is waiting for another transaction (T2) to release a directory, it means
that T2 has a higher momentum. If T2 is waiting for another transaction T3, then T3
must have an even higher momentum. Thus, there can be no cycle of dependences and
no deadlock. To further show forward progress, consider the transaction with the highest
momentum M in the system. When it sends a request out, this request will likely succeed,
allowing the momentum to increase further. If the request fails, it means that some other
transaction in the meantime has received positive acknowledgements for its requests and
has built up a momentum M’, that is higher than M. Thus, the highest momentum in
the system is always monotonically increasing until a transaction ends up occupying all
directories in its read- and write-sets and proceeds with commit. This guarantees forward
progress.

While more complex, an important feature of this algorithm is that attempts to occupy the
directories happen in parallel. Since this algorithm requires transactions to relinquish di-
rectory occupancies, the concept of momentum reduces the cost of re-acquiring occupancy
and ensures forward progress. The algorithm continues to avoid any centralized resource.

The additional message requirements of this algorithm are difficult to capture with analyti-
cal equations — they are heavily influenced by the number of re-tries and the rate of growth
of momentum.

In terms of related work, the momentum-based algorithm has similarities with contention
management policies in software transactional memory systems proposed by Scherer and
Scott [6].

4 Results

4.1 Methodology

For the preliminary analysis in this paper, we restrict ourselves to workloads that are syn-
thetically generated. This also makes it easier to test scalability. The following additional
simplifications/assumptions are made.

The N nodes in the system (each node has a processor and directory) are organized as a
grid. We ignore processing delays at each node and are primarily concerned with the net-
work delays imposed by each algorithm. Similarly, we do not model the cache coherence
operations of sending invalidations to sharers of a cache line (these should be similar for

7

all the algorithms considered in this paper). The network delays are measured with a lo-
cally developed network simulator that models a grid topology with an adaptive routing
mechanism and virtual channel flow control. Every uncontended hop on the network takes
up two cycles of link delay and three cycles of router pipeline delay. When modeling the
Stanford-TCC algorithm, we assume that the centralized TID vendor is co-located with a
node that is in the middle of the grid.

The synthetic workload is generated as follows. Each of the N nodes is ready to commit a
transaction after executing for a number of cycles that is randomly between 0.5 x 7T'L and
1.5 x T'L, where T'L is the average transaction length. The transaction has a read-set of
fixed size R and a write-set of fixed size W memory blocks (cache lines). The directories
corresponding to these memory blocks are chosen based on the following probabilities that
attempt to mimic locality. A memory block is part of the local node with a probability
Py, (varied between 90 and 95% in our experiments); it is part of a neighboring node with
a probability Py (varied between 4 and 9%); the memory block is part of a remote non-
neighbor node with a probability Pr (1%). In each simulation, measurements are made
over one million cycles and we report averages across three runs with different random
number seeds.

4.2 Results

Figure 1 shows average commit latency per transaction for the two proposed algorithms
and the baseline Stanford-TCC algorithm as a function of the number of nodes N. This
experiment assumes that 7'L is 200, R is 16, W is 4, Py, is 95%, Py is 4%, and Py is 1%.
Figure 2 models the same experiment as above, but reports the average number of required
messages per transaction.

Even for the 16-node system, we observe that the sequential and momentum-based al-
gorithms require much fewer messages than TCC. The number of messages required for
the sequential algorithm remains constant as the nodes are increased, while the TCC al-
gorithm’s message requirements scale up linearly (as also demonstrated in the analytical
equation derived in Section 2). The message requirements of the momentum-based algo-
rithm grow at a much slower rate. As a result, we observe that the sequential algorithm
always does better than TCC and the momentum-based algorithm always does better than
sequential. For a 256-node system, relative to TCC, the momentum algorithm reduces the
number of messages by 86% and the number of cycles by 58%.

These results are strongly influenced by the assumptions on locality. Figure 3 shows la-
tency (left hand Y axis) and message requirements (right hand Y axis) as we vary the lo-

8

Average cycles per transaction commit

Average messages per transaction commit

~
o
o

BTCC
w | S50
500
400 -
300 ~
200
100
0
16 64 256

Number of nodes (N)

Figure 1: Performance of the three algorithms as N scales up.

300

N
a
o

mTCC
8SEQ

N

o

o
I

—

(o)

o
I

—_
o
o

OMOM

a
o
I

16

#II’_\
64

Number of nodes (N)

Figure 2: Message requirements.

9

256

900 350

—=—TCC-cyc
800 |[|——SEQ-cyc 1300 =
= £
£ 700 ||—#—MOM-cyc E
g - 2- TCC-msg + 250 ©
© 600 1. o- SEQ-msg g
[

2 50g 1 +- MOM-msg 1200 @
(o]
3 2
> 400 + +150 @
o Q
$ 300 + E
© +— 100 &
200 ¢ S
150 Z

100 +

s *
0 Rl Rl ot - DTl ol A - ol Lol 0

PL=95; PL=92; PL=90; PL=95; PL=92; PL=90; PL=95; PL=92; PL=90;
PN=4; PN=7; PN=9; PN=4; PN=7; PN=9; PN=4; PN=7; PN=9;
N=16 N=16 N=16 N=64 N=64 N=64 N=256 N=256 N=256

Number of nodes and locality

Figure 3: Cycles and messages required as a function of locality and N.

cality parameters (P, Py) and the number of nodes N. If the application has less locality,
the behavior of all three algorithms degrades significantly. Sequential can perform worse
than TCC because a conflict at a directory prevents it from making forward progress on all
higher numbered directories (unlike the behavior in TCC). Similarly, the momentum-based
algorithm can also suffer from many messages and delays if conflicts cause a directory to
repeatedly exchange occupancies between transactions. We are currently considering algo-
rithm variations to deal with this problem. However, even with poor locality, a 256-node
system yields best performance with the momentum algorithm. These results indicate that
TCC degrades more gracefully as locality worsens, but the proposed algorithms degrade
more gracefully as the number of nodes increases.

5 Conclusions

This paper introduces novel algorithms to commit transactions in a scalable manner. The
proposed algorithms are deadlock- and livelock-free and do not employ any centralized re-
source. While Algorithm 1 requires the least number of messages, it can suffer from longer
delays. The momentum-based algorithm introduces speculation and stealing in an attempt
to reduce delays while increasing the number of messages. We show that relative to the
Stanford-TCC baseline, the average number of messages can be reduced by as much as

10

97% (by Algorithm 1) and the average delay can be reduced by as much as 59% (by Algo-
rithm 2). For future work, we plan to extend our analysis in several ways, most notably by
considering real transactional workloads and by quantifying the impact on power consump-
tion. Variations to the momentum-based algorithm will also be considered, similar to the
contention management policies proposed by Scherer and Scott for software transactional
memory systems [6].

References

[1] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie. Unbounded Trans-
actional Memory. In Proceedings of HPCA-11, February 2005.

[2] H. Chafi, J. Casper, B. Carlstrom, A. McDonald, C. Minh, W. Baek, C. Kozyrakis,
and K. Olukotun. A Scalable Non-Blocking Approach to Transactional Memory. In
Proceedings of HPCA-13, February 2007.

[3] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2006.

[4] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM: Log-Based Trans-
actional Memory. In Proceedings of HPCA-12, February 2006.

[5] R.Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proceedings
of ISCA-32, June 2005.

[6] W. Scherer and M. Scott. Advanced Contention Management for Dynamic Software
Transactional Memory. In Proceedings of PODC, 2005.

11

