
Dynamic Management of Microarchitecture
Resources in Future Microprocessors

by

Rajeev Balasubramonian

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Sandhya Dwarkadas

Department of Computer Science
The College

Arts and Sciences

University of Rochester
Rochester, New York

2003

ii

Curriculum Vitae

Rajeev Balasubramonian was born in Pune, India on May 26, 1977. He attended the Indian

Institute of Technology, Bombay, receiving the Bachelor of Technology degree in Computer

Science and Engineering in 1998. He arrived in Rochester in the Fall of 1998 and has been in-

volved in computer architecture research under the direction of Professor Sandhya Dwarkadas.

He was supported in part by a University of Rochester Sproull Fellowship and an IBM Ph.D.

Fellowship. He received a Master of Science degree in Computer Science in 2000. His re-

search interests include clustered architectures, memory hierarchy bottlenecks, and complexity-

effective designs.

iii

Acknowledgments

I have been very fortunate to learn about computer architecture and academic life from won-

derful teachers like Sandhya Dwarkadas and Dave Albonesi. I am eternally grateful to Sandhya

for having motivated me through the tough times and for having given me the independence that

made the journey so enjoyable. I am indebted to Dave for enthusiastically participating in and

steering the direction of all my projects. I thank my committee members, Michael Scott and

Chen Ding, for many helpful discussions and the valuable feedback that has helped shape my

dissertation. I also thank Pradip Bose and Viji Srinivasan at IBM for helping me through and

beyond my internship. I thank the co-authors in my papers, especially Alper Buyuktosunoglu,

who was responsible for the circuit-level analysis in the design of the reconfigurable cache. I

am grateful to IBM, the University of Rochester, NSF, and DARPA, that have funded my stint

in grad school.

I thank my friends who helped me preserve my sanity – the Tribals, the TC Thugs, Ali

Rangwala – my classmates at UR, who propped me up in my first year – Isaac Green, who failed

miserably at getting me thrown out of grad school :-) – the systems and architecture groups,

especially Grigoris, Alper, and Srini, for many stimulating discussions – Umit, for tolerating

my pesky simulations – Rob Stets, for having convinced me to join UR and for having been

the perfect role model – Brandon, my hockey, golf, and basketball buddy – the highly-efficient

URCS staff – Thakur, for being a perfect roommate and accomplice in all crimes.

I am grateful to my family for their support in all my endeavors. My brother, Rajesh, was

a great role model and sparked my competitive fire. Many thanks to my wife, Deepthi, whose

love and support helped me breeze through a gruelling final year in grad school. My parents

deserve all credit for instilling the spirit of discovery and academics in me. Their love and

encouragement has been instrumental in my success at every level.

iv

Abstract

Improvements in technology have resulted in steadily improving microprocessor perfor-

mance. However, the shrinking of process technologies and increasing clock speeds introduce

new bottlenecks to performance, viz, long wire delays on the chip and long memory latencies.

We observe a number of trade-offs in the design of various microprocessor structures and the

gap between the different trade-off points only widens as technologies improve and latencies

of wires and memory increase. The emergence of power as a first-order design constraint also

introduces trade-offs involving performance and power consumption. Microprocessor designs

are optimized to balance these trade-offs in the average case, but are highly sub-optimal for

most programs that run on the processor. The dissertation evaluates hardware reconfiguration

as a means to providing a program with multiple trade-off points, thereby allowing the hard-

ware to match the program’s needs at run-time. In all cases, hardware reconfiguration exploits

technology trends and is relatively non-intrusive.

We examine a reconfigurable cache layout that varies the L1 data cache size and helps han-

dle the trade-off between cache capacity and access time. We also study a highly clustered

and communication-bound processor, where a subset of the total clusters yields optimal perfor-

mance by balancing the extraction of distant parallelism with the inter-cluster communication

costs. In a processor with limited resources, distant parallelism can be mined with the help of

a pre-execution thread and the allocation of resources between the primary and pre-execution

thread determines the trade-off between nearby and distant parallelism. In all of these cases, the

dynamic management of on-chip resources can balance the different trade-offs. We propose and

evaluate dynamic adaptation algorithms that detect changes in program behavior and select op-

timal hardware configurations. Our results demonstrate that the adaptation algorithms are very

v

effective in adapting to changes in program behavior, allowing improved processor efficiency

through hardware reconfiguration. Performance is improved and power consumption is reduced

when compared with a static hardware design.

vi

Table of Contents

Curriculum Vitae ii

Acknowledgments iii

Abstract iv

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Recent Technology Trends . 2

1.2 Management of Trade-Offs . 3

1.3 Thesis Statement . 4

1.4 Dissertation Organization . 6

2 Dynamic Adaptation Algorithms 7

2.1 Phase Detection . 7

2.1.1 Phase Changes at Interval Boundaries 8

2.1.2 Positional Adaptation . 11

2.2 Configuration Selection . 13

2.2.1 Exploration . 13

vii

2.2.2 Prediction . 14

2.3 Case Studies . 15

2.3.1 Interval-Based Adaptation with Exploration 15

2.3.2 Interval-Based Adaptation with Prediction 19

2.3.3 Positional Adaptation with Exploration 19

2.3.4 Positional Adaptation with Prediction 21

2.4 Related Work . 21

2.5 Summary . 22

3 Cache Reconfiguration 24

3.1 Cache Design Issues . 24

3.2 The Reconfigurable Cache Layout . 25

3.2.1 Circuit Structures . 25

3.2.2 Configurable Cache Operation . 28

3.2.3 Configurable L2-L3 Cache . 31

3.2.4 The Hot-and-Cold Cache . 31

3.3 Methodology . 32

3.4 Results . 34

3.4.1 Dynamic Selection Mechanisms . 34

3.4.2 Interval-Based Adaptation . 36

3.4.3 TLB Reconfiguration . 39

3.4.4 Positional Adaptation . 42

3.4.5 Energy Consumption . 43

3.4.6 L2/L3 Reconfiguration . 46

3.5 Related Work . 47

3.6 Summary . 49

viii

4 Trade-Offs in Clustered Microprocessors 51

4.1 Technology Trends . 51

4.2 The Base Clustered Processor Architecture 54

4.2.1 The Centralized Cache . 55

4.2.2 The Decentralized Cache . 57

4.2.3 Interconnects . 58

4.3 Methodology . 60

4.3.1 Simulator Parameters . 60

4.3.2 Benchmark Set . 61

4.4 Evaluation . 64

4.4.1 The Dynamically Tunable Clustered Design 64

4.4.2 Comparing the Dynamic Algorithms 65

4.4.3 Evaluating a Decentralized Cache Model 71

4.4.4 Sensitivity Analysis . 75

4.5 Related Work . 78

4.6 Summary . 81

5 The Future Thread 83

5.1 Managing the In-Flight Window . 83

5.2 The Future Thread Microarchitecture . 86

5.2.1 The Base Processor . 86

5.2.2 Overview of the Future Thread . 87

5.2.3 Additional Hardware Structures . 89

5.2.4 Timeout and Register Reuse . 90

5.2.5 Redispatching an Instruction in the Primary 91

5.2.6 Recovery after a Branch Mispredict 92

ix

5.2.7 Exploiting the IRB . 93

5.2.8 Dynamic Partitioning of Registers . 94

5.3 Results . 95

5.3.1 Methodology . 95

5.3.2 Analysis . 97

5.4 Additional Hardware Requirements . 111

5.5 Other Approaches to Improving Register File Complexity 113

5.6 Related Work . 114

5.7 Summary . 117

6 Conclusions 119

Bibliography 124

x

List of Tables

2.1 Benchmark set, including programs from SPEC2k and Mediabench. 9

2.2 Instability factors for different interval lengths. 10

3.1 Architectural parameters. 32

3.2 Benchmarks. 33

3.3 Number of phase changes encountered for each program during cache reconfig-

uration. 38

3.4 Contribution of the cache and the TLB to speedup or slow down in the dynamic

scheme and the number of explorations. 42

4.1 Simplescalar simulator parameters. 59

4.2 Cache parameters for the centralized and decentralized caches. All the caches

are word interleaved. N is the number of clusters. 61

4.3 Benchmark description. Baseline IPC is for a monolithic processor with as

many resources as the 16-cluster system. ”Mispred branch interval” is the num-

ber of instrs before a branch mispredict is encountered. 62

4.4 Number of phase changes encountered for each program. 67

5.1 Simplescalar simulator parameters . 95

5.2 Benchmark description . 96

xi

5.3 Various statistics pertaining to the future thread (with a dynamic interval-based

allocation of registers) and the base case with no future thread (most numbers

are normalized to the number of committed instructions, for example, Num

timeouts is the number of timeouts per committed instruction). 99

5.4 Number of phase changes encountered for each program. 100

xii

List of Figures

2.1 Run-time algorithm to select the best of many candidate hardware organiza-

tions. This is an interval-based mechanism with exploration. The constant

increment/decrements for num ipc variations and instability were chosen to al-

low about 5% instability. The thresholds were picked to be reasonable round

numbers. Note that THRESH1 has to be greater than the number of candidate

configurations. We assume a significant change in memrefs if the memory ref-

erences differ from the reference point by more than 5% of the interval length. A

significant change in branches is signaled if it differs from the reference point

by more than 2% of the interval length. A significant change in IPC refers to a

variation of more than 10% compared to the reference point. 16

2.2 Run-time algorithm to select the best of many candidate hardware organiza-

tions. This uses the positional adaptation approach at the branch level and em-

ploys an exploration process. 20

3.1 The organization of the data array section of one of the 512KB cache structures. 27

xiii

3.2 Possible L1/L2 cache organizations that can be configured shown by the ways

that are allocated to L1 and L2. Only one of the four 512KB SRAM structures

is shown. Abbreviations for each organization are listed to the left of the size

and associativity of the L1 section, while L1 access times in cycles are given

on the right. Note that the TLB access may dominate the overall delay of some

configurations. The numbers listed here simply indicate the relative order of

the access times for all configurations and thus the size/access time trade-offs

allowable. 29

3.3 Cycles Per Instruction (CPI) results for the base case and the interval-based

adaptation schemes. The second bar employs the exploration process and the

third employs prediction. 37

3.4 The Reconfigurable TLB Organization. 40

3.5 Cycles Per Instruction (CPI) results for the base case and for an interval-based

mechanism for the cache and the TLB. 41

3.6 Cycles Per Instruction (CPI) results for the base case, for the interval-based

mechanism with exploration and the subroutine-based technique with exploration. 43

3.7 (a) Memory Energy per Instruction (EPI) results for the base case, for the dy-

namic scheme with the best performing cache configurations, for the dynamic

scheme with the most energy-efficient cache configurations, and for the dy-

namic scheme that employs serial tag and data access. (b) CPI results for the

same four cases. 45

3.8 (a) CPI results for the base three-level cache and for the dynamic scheme with

the dynamic L2-L3. (b) Memory Energy per Instruction (EPI) results for the

same two experiments. 46

4.1 The base clustered processor (4 clusters) with the centralized cache. 55

4.2 The clustered processor (4 clusters) with the decentralized cache. 57

4.3 IPCs for fixed cluster organizations with 2, 4, 8, and 16 clusters. 63

xiv

4.4 IPCs for the base cases and all the dynamic adaptation algorithms. The first two

bars have a fixed set of clusters (4 and 16, respectively). The third bar repre-

sents the interval and exploration based mechanism. The fourth, fifth, and sixth

bars represent interval-based mechanisms with prediction, for interval lengths

of 10K, 1K, and 100 instructions, respectively. The seventh and eighth bars rep-

resent positional adaptation techniques with prediction, while reconfiguring at

every 5th branch and every subroutine, respectively, while the ninth bar employs

positional adaptation and exploration at every 5th branch. 66

4.5 IPCs for dynamic interval-based mechanisms for the processor model with the

decentralized cache. 73

4.6 IPCs for the dynamic interval and exploration-based mechanism for the proces-

sor model with the grid interconnect. 75

4.7 Dynamic interval and exploration-based reconfiguration for processor models

with different resources. The first three bars represent a processor with a total

of 320 registers and 160 issue queue entries (int and fp, each), while the latter

three bars represent a processor with 640 registers and 320 issue queue entries. 76

4.8 Dynamic interval and exploration-based reconfiguration while assuming a la-

tency of two cycles for each hop on the interconnect. 77

4.9 Performance results for all of SPEC2k for the 4 and 16-cluster fixed base cases

and the dynamic interval and exploration-based mechanism. 78

5.1 The base processor structure . 86

5.2 The architecture supporting the future thread (components belonging to the fu-

ture thread are shaded). 88

5.3 Histogram showing waiting time in the issue queue for a portion of the program

perimeter. The X axis shows the time spent (in cycles) waiting in the issue

queue, and the Y axis shows the number of instructions that waited for that

period. 91

xv

5.4 Performance of the future thread for various fixed register allocations between

the primary and future thread. For example, ‘8::32’ represents an allocation

where 8 rename registers are reserved for the primary thread and the remain-

ing 32 are reserved for the future. The second last bar shows performance with

the interval and exploration based scheme that dynamically picks the best allo-

cation. The last bar represents the performance with positional adaptation and

exploration. IPCs have been normalized with respect to a base case that has no

future thread and uses all 40 rename registers for the primary. 98

5.5 Future thread performance broken down as prefetch, natural reuse, early branch

recovery, and instruction reuse. 102

5.6 Selective use of early branch recovery. 103

5.7 The contributions of the various features of the future thread. The leftmost bar

represents the dynamic scheme with all features turned on. The next two bars

show the effect of not using the eager release of registers and the effect of not

using the timeout mechanism. 104

5.8 The effect of a larger issue queue. The left bar shows speedups with the future

thread for the Alpha-like processor, while the right bar shows speedups for a

processor model that has the same parameters except for a larger issue queue. . 105

5.9 Speedups with the future thread for processor models that have different register

file sizes. 106

5.10 Speedups for two future processor models. 108

5.11 Raw IPCs for the base case, for the base case with a stride prefetcher, and for

the combination of the future thread and the stride prefetcher (without and with

an IRB). 109

1

1 Introduction

Microprocessors today are employed for a wide range of applications, including servers, desk-

tops, laptops, palm-pilots, automobiles, washing machines, etc. Most microprocessors used in

low-end devices (home appliances) have relatively simple designs and are not very sensitive to

clock speed and performance specifications. However, performance is the primary concern for

most high-end microprocessors designed today. Microprocessor performance has been steadily

improving because of innovations in microarchitectural design and because of shrinking pro-

cess technologies. The reduction in transistor feature sizes has increased transistor speeds and

chip capacity, but has also introduced new problems in the design of modern processors. Faster

transistors have enabled faster clocks, but wire delays have not improved at the same rate. Since

many microprocessor structures are communication-bound rather than compute-bound, this se-

riously impacts the instruction-level parallelism (ILP) that these structures can help extract.

Higher chip capacity and the growing number of structures on the chip also increases power

consumption and design and verification complexity.

This dissertation studies the effect of recent technology trends and how they introduce trade-

offs in the design of different structures on the processor. We show that by reconfiguring the

hardware organization at run-time, the processor can provide many different trade-off points

to the program it is executing. We examine on-line mechanisms to automatically match the

hardware to the application’s needs.

2

1.1 Recent Technology Trends

Early RISC microprocessors had short and simple pipelines and generally executed instruc-

tions in order. Over the past decade, architects and circuit designers have focused on maximiz-

ing performance. The following approaches have resulted in steadily improving microprocessor

performance in the CMOS era [Hennessy and Patterson, 1996]:

� The feature widths of transistors have been shrinking due to improvements in process

technology. This has resulted in a shrinking of logic delays, which makes it possible to

implement the basic operations (integer arithmetic) within a very short cycle. The net

result is an increase in clock frequency.

� The improvement in clock frequency has also been greatly helped by the implementation

of deeper pipelines. By breaking up operations across multiple stages, the critical path

for the cycle time can be shortened.

� There have been improvements in the number of instructions being executed in parallel,

thanks to innovations in out-of-order execution, speculation, caching, etc.

These advances have resulted in the emergence of new challenges for architects:

� Design Complexity. To extract a high degree of instruction-level parallelism (ILP), a

modern-day microprocessor employs a wide variety of specialized structures such as

branch predictors, caches, issue queues, re-order buffers, etc. [Smith and Sohi, 1995].

This increases the number of pipeline stages and the number of cycle-time critical paths [Palacharla

et al., 1997] and results in a dramatic increase in the design and verification effort. For

each of these structures, designers have to make a number of choices to balance the de-

mands for a high clock speed and high ILP.

� Power Consumption. The power consumption in a processor is roughly proportional to

the clock frequency and the amount of switching activity. Increased clock speeds and

large numbers of structures on chip have made power consumption a first-order design

constraint [Gowan et al., 1998; Tiwari et al., 1998].

3

� Memory Wall. The speeds of DRAM memories have not been improving at the same rate

as microprocessor clock frequencies [Wulf and McKee, 1995]. As a result, the number of

microprocessor clock cycles required to access main memory has been steadily increasing

and represents one of the biggest bottlenecks to overall performance.

� Dominant Wire Delays. Reduced feature sizes can reduce logic delays, but do not re-

duce wire delays at the same rate [Agarwal et al., 2000; Palacharla et al., 1997]. The

resistance per unit length of a wire increases roughly as a quadratic function of the reduc-

tion in feature size, due to the reduction in its cross-sectional area. At the same time, the

capacitance per unit length also increases due to an increase in the coupling capacitance

between neighboring wires. The result of these trends is that the delay of a wire of fixed

length increases as we decrease the feature widths. While the wire length for a micro-

processor structure is likely to scale down roughly linearly with feature size, the clock

cycle time also scales down roughly linearly. The net result is that the delay of that wire

in cycles increases in future microprocessors. Hence, more cycles within the program’s

execution are spent communicating data between different parts of the processor.

1.2 Management of Trade-Offs

In the design of modern microprocessors, architects have to find solutions for all of the

challenges described above. The primary emerging goals are a reduction in design complexity,

power consumption, and the effect of long communication and memory latencies. Unfortu-

nately, not all of these new emerging goals can be simultaneously optimized. This results in

a proliferation of trade-offs in the design of the different structures in a microprocessor. For

example, a large data cache can support a high degree of ILP by providing a high hit rate and

by avoiding the memory wall. However, a large cache is composed of long wires, which im-

plies that every access to the cache costs a number of cycles, and this could be detrimental to

performance in a number of applications. A large cache consumes a large amount of power.

Implementing a large cache as a multi-stage pipeline also results in high design complexity.

Similarly, a large physical register file can help map a large number of in-flight instructions,

which can help extract more instructions to execute in every cycle and also issue memory re-

4

quests early. Unfortunately, a large register file is energy-inefficient and difficult to pipeline.

The long wires in the register file also introduce cycle-time critical paths that limit the maxi-

mum attainable clock speed.

Further, because most processor components (typically storage structures) are composed of

long wires, their access times (in cycles) increase with each improvement in process technology.

As a result, the gap between different design alternatives for a given structure is also widening.

For example, in the past, doubling the cache size would have increased the access latency by

only one cycle, but in the future, this could increase the access time by three or four cycles.

Thus, current technology trends are going to necessitate a more thorough consideration of

trade-offs in different parts of the processor.

Most microprocessor structures are designed to balance different trade-offs and maximize

a single metric. In designing a cache, we could optimize the overall performance of the system

by balancing the trade-off between cache capacity and cache access time. However, this opti-

mization is done while evaluating an entire workload or benchmark suite. The structure design

is selected based on what works best, on average, across a wide range of programs. How-

ever, as we shall observe in later chapters, different programs, and even different parts of the

same program, have widely varying characteristics and display dramatically different behavior

across different hardware designs. Since the gap between different trade-off points is widening,

a design that might be optimal on average might be highly sub-optimal for a large number of

programs within the benchmark set. We propose hardware reconfiguration to deal with the prob-

lem of hardware designs that do not match program needs. By adapting the hardware design at

run-time, trade-offs can be balanced for each individual program behavior.

1.3 Thesis Statement

Our thesis is that technology trends necessitate the management of trade-offs at run-time.

Technology trends also facilitate the adaptation of the hardware, allowing the processor to

choose among multiple trade-off points. Simple control mechanisms that do not involve exces-

sive hardware overhead are very effective at matching the hardware to the program’s dynamic

needs.

5

First, we demonstrate the emergence of trade-offs in a number of different settings. Second,

we introduce novel techniques to adapt the hardware at run time and provide different trade-off

options. These techniques exploit technology trends to provide this adaptivity in an extremely

low-intrusive manner. Finally, we define and evaluate a framework of control mechanisms

that can dynamically and reliably predict program characteristics and the optimal hardware

organization for each distinct program phase. While we focus on maximizing performance and,

in some instances, power, the framework can be employed to maximize any metric.

Our framework of control mechanisms explores design options in detecting reconfiguration

points and in the techniques used to select the optimal reconfiguration. Reconfiguration points

can occur at regular periodic intervals or at specific instructions. An optimal organization can

be selected by profiling each of the candidate organizations or by using hardware metrics to

predict the behavior of the candidates. The most reliable algorithm, which achieves most of the

potential available performance, attempts reconfiguration at interval boundaries and selects the

best organization by exploring the candidate organizations. A variable interval length makes

this algorithm very reliable and allows it to apply to programs with dramatically different char-

acteristics. Note that there are potentially many other dynamic adaptation techniques that could

fruitfully be employed. We consider here, a set of representative techniques.

These techniques can be universally employed over a wide range of reconfigurable hard-

ware. The first such application we study is a reconfigurable cache design [Balasubramonian

et al., 2000a; Balasubramonian et al., 2000b; Balasubramonian et al., 2003a]. The trade-off be-

tween L1 cache capacity and access time can be optimized at run time by allocating an amount

of cache that is just enough to contain the program working set. The next application stud-

ies a highly clustered processor that is communication-bound [Balasubramonian et al., 2002;

Balasubramonian et al., 2003b]. We demonstrate that the optimal number of clusters at any

given time is a function of the degree of parallelism in the program. By employing only this

subset of clusters, we balance the trade-off between communication and parallelism. Finally,

we study how limited processor resources can be allocated across two threads, one of which

attempts to jump ahead in the execution and warm up various processor structures [Balasub-

ramonian et al., 2001b; Balasubramonian et al., 2001c]. There exists an optimal allocation of

resources depending on whether the program is more limited by nearby or distant parallelism.

6

In all of these different problem domains, the best hardware organization is selected by em-

ploying the different adaptation algorithms. Our results show that these techniques are easily

applicable and very effective at improving performance. We also demonstrate for a subset of

the problem domains that power can be reduced in addition to performance improvements.

1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 studies variability in program behavior

and evaluates different algorithms that can predict program characteristics with little overhead.

Chapter 3 describes trade-offs in the design of the data cache and presents an adaptive cache

layout. The algorithms described in Chapter 2 are evaluated on this reconfigurable cache. We

then discuss the emergence of trade-offs in a highly clustered and communication-bound micro-

processor of the future in Chapter 4. We demonstrate that our control mechanisms are equally

effective in this setting. Finally, we discuss trade-offs and their management in a microprocessor

implementing pre-execution threads in Chapter 5. We conclude in Chapter 6.

7

2 Dynamic Adaptation Algorithms

Hardware adaptation can provide a number of options to an executing program. It allows the

use of a hardware design that can balance various trade-offs and maximize a particular metric.

In order to match the hardware to the program’s requirements at run-time, the hardware has to

estimate the optimal design at any point in the program. There are two major components in

such a run-time mechanism. First, it must identify every new program phase. A program phase

is a part of a program that has its own distinct behavior and differs from the other parts of the

program in terms of various statistics relevant to the hardware being adapted. Second, it must

efficiently determine the hardware organization that is optimal for each program phase. The

next two sections deal with these issues in detail.

2.1 Phase Detection

At a low level, a program phase could be defined by its effects on the microarchitecture.

For example, a variation in the data cache miss frequency could signal a new phase. At a higher

level, each program phase can be considered as defined by its functionality. For example, every

subroutine could be considered a new phase. In the first case, a phase change is signaled by

observing hardware statistics over an interval of time. In the second case, a phase change is

signaled by the execution of a particular instruction (a subroutine call/return or a branch).

8

2.1.1 Phase Changes at Interval Boundaries

A phase is characterized by the values of certain hardware metrics observed over a fixed

interval of committed instructions. A phase change occurs every time these metrics vary sig-

nificantly across successive intervals. Candidate metrics that could signal a phase change are

the branch frequency, the cache miss rate, the frequency of memory operations, the cycles per

instruction, the branch misprediction rate, the average window of in-flight instructions, etc. At

the start of each phase, the values of these metrics over an interval are recorded and they serve

as a reference point. After each subsequent interval, the values over that interval are compared

against the reference point. If any of these values are significantly different from the reference

point, a new phase is signaled. To reduce the hardware overhead of monitoring these metrics,

we restrict ourselves to using only a subset of these metrics. We observed that a change in the

branch frequency, or the frequency of memory operations, or the cycles per instruction were

good enough to signal a new phase. We examined a wide range of statistics for each interval

of execution and found that the above three metrics had a strong correlation with a change in a

more exhaustive set of metrics.

Variable Interval Lengths

Once a phase change has been detected, a particular hardware organization, deemed to be

optimal, is selected. This organization is used till the next phase change is detected. Since the

selection of the optimal organization requires at least one interval to monitor the program behav-

ior, during which the hardware organization might be sub-optimal, every phase change entails

some overhead. Hence, a frequent occurrence of phase changes is not desirable. The success of

such an interval-based mechanism is heavily reliant on the program’s ability to sustain a phase

over a number of intervals. Different programs are likely to encounter phase changes at different

granularities. Hence, a single fixed interval length results in dramatic variations in phase change

frequencies across an entire benchmark set. Consequently, for each program, it is important to

use an interval length that keeps the occurrence of a phase change to a minimum.

We studied the applicability of this approach to a wide mix of program types. These pro-

grams are drawn from suites like SPEC2k (Int and FP) and the UCLA Mediabench [Lee et al.,

9

Benchmark Input dataset

gzip (SPEC2k Int) ref

vpr (SPEC2k Int) ref

crafty (SPEC2k Int) ref

parser (SPEC2k Int) ref

swim (SPEC2k FP) ref

mgrid (SPEC2k FP) ref

galgel (SPEC2k FP) ref

cjpeg (Mediabench) testimg

djpeg (Mediabench) testimg

Table 2.1: Benchmark set, including programs from SPEC2k and Mediabench.

1997]. The details on these programs are listed in Table 2.1.

To study the variability of program behavior over different intervals, we ran each of the

programs for billions of instructions to generate a trace of various statistics at regular 10K

instruction intervals [Balasubramonian et al., 2003b]. We used three metrics to define a program

phase - the instructions per cycle (IPC), the branch frequency, and the frequency of memory

references. At the start of each program phase, the statistics collected during the first interval

were used as the reference point. For each ensuing interval, if the three metrics for that interval

were similar to the reference points, the interval was termed ‘stable’. If any of the three metrics

was significantly different (as defined by a set of reasonable thresholds), we declared the interval

as ‘unstable’ and started a new program phase. This analysis was done for various instruction

interval lengths. We define the instability factor for an interval length as the percentage of

intervals that are considered ‘unstable’, i.e., the frequency of the occurrence of a phase change.

Assuming that an instability factor of 5% would result in tolerable overhead, Table 2.2

shows the smallest interval length that affords an instability factor of less than 5% for each

of our programs. As can be seen, the interval lengths that emerge as the best vary from 10K

to 40M. We also show the instability factor for a fixed interval length of 10K instructions.

Clearly, this interval length works poorly for a number of programs and would result in quite

unacceptable performance. Most programs usually show consistent behavior across intervals

10

Benchmark Minimum acceptable interval Instability factor

length and its for a 10K instruction

instability factor interval

gzip 10K / 4% 4%

vpr 320K / 5% 14%

crafty 320K / 4% 30%

parser 40M / 5% 12%

swim 10K / 0% 0%

mgrid 10K / 0% 0%

galgel 10K / 1% 1%

cjpeg 40K / 4% 9%

djpeg 1280K / 1% 31%

Table 2.2: Instability factors for different interval lengths.
for a coarse enough interval length, making interval-based schemes very robust and universally

applicable. Even a program like parser, whose behavior varies dramatically based on the input

data, has a low instability factor for a large 40M instruction interval.

In addition to selecting the optimal hardware organization at any point in the program, the

hardware has to also select an interval length that allows a low instability factor. This is achieved

at run-time with a simple mechanism. We start with the minimum instruction interval length.

A counter is incremented or decremented after every interval to estimate the instability factor.

When this counter value exceeds a certain threshold, the interval length is doubled. This process

repeats until we either experience a low instability factor or until we reach a pre-specified limit

(say, a billion instructions). If we reach the limit, we cease to employ the selection algorithm

and pick the configuration that was picked most often.

Once we pick an interval length, we need not remain at that interval length forever. The

program might move from one large macrophase to another that might have a completely dif-

ferent optimal instruction interval. To deal with this, we can continue to hierarchically build

phase detection algorithms. An algorithm that inspects statistics at a coarse granularity (say,

every 100 billion instructions) could trigger the detection of a new macrophase, at which point,

we would restart the selection algorithm with a 10K interval length and find the optimal interval

length all over again.

Thus, the interval-based mechanism is very robust – it applies to every program in our

11

benchmark set as there is usually a coarse enough interval length such that behavior across

those intervals is fairly consistent. However, the downside is the inability to target relatively

short phases. We experimented with smaller initial interval lengths, but found great instability

at these small interval lengths, and hence, the interval lengths were increased to a larger value

just as before. This is caused by the fact that measurements become noisier as the interval size

is reduced and it is harder to detect the same program metrics across intervals.

Adaptive Thresholds

In some programs, successive instances of the same phase might be separated by a short

period of time, during which the behavior is slightly different. This triggers a brief period of

instability, after which the same optimal configuration is selected again. In other programs, the

mismatch between the length of a phase and the interval length might result in occasional noisy

measurements that might trigger a phase change. To reduce the occurrence of these phenomena,

the thresholds triggering a phase change can be adapted dynamically. Every phase change that

results in the selection of the same optimal configuration as before increases the value of the

phase change thresholds. These thresholds can be gradually reduced over a long period of time.

Such a technique eliminates the need for pre-defined fixed thresholds that might be tuned for a

certain benchmark set. Note that such a phenomenon is likely to not result in heavy overhead if

the interval length is already selected to maintain a low instability factor.

2.1.2 Positional Adaptation

Phase changes can be signaled every time the program passes through specific locations

in the code [Balasubramonian et al., 2000a; Balasubramonian et al., 2000b]. Recent work

by Huang et al [Huang et al., 2003] refers to this as positional adaptation. Every branch or

subroutine, or even every instruction could be considered a new phase. If the behavior following

a specific instruction is often consistent, this behavior could be monitored to predict the optimal

hardware organization to be used every time this instruction is encountered. These predictions

can be recorded in a table indexed by the program counter value.

12

The primary advantage from this mechanism is the ability to react as soon as there is a

transition to new behavior – the interval-based mechanisms have to wait for interval boundaries

before they can react. Further, every new phase is signaled by a single instruction. This instant

recognition of the phase and the use of a prediction table ensure that a phase transition results

in almost no overhead, allowing hardware reconfigurations at a very fine granularity. With the

interval-based schemes, the recognition of a new phase requires at least one interval.

Very frequent reconfigurations might have to be discouraged if boundary effects influence

the process of monitoring the behavior for a particular phase. Frequent reconfigurations are

also limited by the ability of the hardware to adapt quickly. The rate at which reconfigurations

happen can be tuned by allowing reconfigurations only in certain cases. For example, reconfigu-

rations could be allowed at only every 5th branch, or only at subroutine call and returns for long

subroutines, or only at specific instructions indicated by the compiler. To reconfigure at every
�����

branch [Balasubramonian et al., 2003b], a single hardware counter is enough to detect re-

configuration points. Reconfiguration for long subroutines requires that we gather statistics for

each subroutine. For example, to measure the cycles spent in each subroutine, a stack is used

to checkpoint the cycle count every time a subroutine is entered. While exiting the subroutine,

an inspection of the stack value reveals the number of cycles spent in that subroutine and its

callees. In order to exclude the cycles spent in the callees, the stack can instead checkpoint the

number of cycles spent in each subroutine. Every time a subroutine invokes a callee, the num-

ber of cycles spent in that subroutine is pushed on the stack. When the callee returns, the value

on the stack is popped. This value reflects the number of cycles spent so far in that subroutine

and this value continues to be incremented until it returns or invokes another callee. Given this

information, we can keep track of the long subroutines in the program and only create entries

for them in the prediction tables.

We found that the behavior was more stable if we included the callees while gathering in-

formation for a subroutine. In case of a recursive program, statistics are recorded for only the

outermost invocation of a subroutine. If the stack used to checkpoint statistics overflows, we

assume that subroutines will be unable to update the table. This mechanism entails additional

hardware, primarily to maintain a stack of cycle counts and subroutine call PCs. This is in addi-

tion to the table that maintains information on configuration selection (explored configurations,

13

predictions, etc.) for each candidate subroutine.

While the experiments in the earlier subsection were able to roughly estimate the frequency

of phase changes (and hence, the potential reconfiguration overhead), it is harder to carry out a

similar evaluation for positional adaptation. While a phase transition can be signaled at every

instruction, hardware reconfiguration will occur only if two successive phases have different

optimal hardware organizations. Hence, the evaluation can not be carried out independently of

the particular hardware adaptation being considered.

2.2 Configuration Selection

Once a phase has been identified, the hardware has to employ the organization that is opti-

mal. The selection of this organization can be performed in one of many ways.

2.2.1 Exploration

The most reliable way of selecting the optimal organization is to implement the candidate

organizations and select the best based on actual hardware numbers. While such an exploration

ensures that the optimal is always selected (assuming that current behavior reflects the near

future), it incurs additional overhead. If employed very often, it can result in a large portion of

the execution being spent in organizations that are sub-optimal.

With the interval-based mechanism, every time a new phase is signaled, for the next few

intervals, the hardware can employ a new candidate organization, one for each interval. Based

on this exploration, the optimal organization is selected and used till the next phase is signaled.

If there are three candidate hardware organizations, every new phase triggers an exploration

process that lasts four intervals – one to detect the phase change and three to profile each of

the candidates. Thus, each phase change can result in a maximum of three intervals being

spent in sub-optimal organizations (since one of the explored organizations is the optimal one).

Hence, an instability factor of 5% results in 15% of the intervals being spent in sub-optimal

hardware organizations. If we assume that each sub-optimal organization is within 10% of the

optimal organization on average, the interval-based scheme is likely to be within 1.5% of an

14

optimal interval-based mechanism that uses an oracle to select the best hardware organization

for each interval. Thus, the efficiency of this mechanism is a function of the number of candidate

organizations, the instability factor, and the average distance between the optimal and sub-

optimal organizations. Also note that the “optimal” behavior indicated by the oracle method is

a function of the interval length – the shorter the interval length, the better its ability to target

small variations in program behavior.

Exploration can be used in positional adaptation as well. Every time a new phase is encoun-

tered, a candidate organization is employed till the next phase. This behavior is recorded in a

table indexed by the program counter value. After the same phase has been encountered a few

times and all candidate organizations have been profiled, the best organization is used for that

phase in the future.

2.2.2 Prediction

As discussed, the exploration process accurately selects the optimal organization, but incurs

non-negligible overhead if there are many candidate organizations to choose from. In order to

minimize this overhead, the hardware can estimate the optimal organization without profiling

every single candidate. For example, if we are trying to pick a cache size that can keep the miss

rate within a certain allowed value, exploration would profile the miss rate for each different

cache organization. In order to predict the appropriate cache size, one could monitor usage

statistics within a large cache to estimate the working set size and hence, the miss rate for a

given cache size, e.g., using LRU statistics [Dropsho et al., 2002]. While this technique can

reduce the overhead of exploration, its success depends on the ability to efficiently determine

and implement metrics that can accurately predict the optimal organization for the hardware

being considered.

Both in positional adaptation and in interval-based mechanisms, either the first time a phase

is encountered or when a phase change is detected, the behavior has to be profiled for one phase

or interval in order to determine the optimal organization.

15

2.3 Case Studies

This chapter has discussed orthogonal issues in the design of dynamic selection mecha-

nisms which will be applied to different hardware contexts in the rest of the dissertation. Phase

changes can be detected at time-based interval boundaries or at specific program points. The

optimal organization can be selected through exploration or by prediction based on hardware

metrics. The combinations of these design choices result in a number of meaningful dynamic

algorithms. We discuss some of the possible algorithms in this section.

It must be pointed out that all of these algorithms are based on certain heuristics and as-

sumptions. For example, we are using history to predict behavior for the future. Hence, none of

these algorithms are guaranteed to work on all programs – given an algorithm, it is always pos-

sible to construct a program where the algorithm would behave highly sub-optimally. However,

the nature of our assumptions is such that they hold for most common programs and excep-

tions will be noted in the evaluations in subsequent chapters. The algorithms have features that

minimize the damage when these exceptions are encountered.

2.3.1 Interval-Based Adaptation with Exploration

In our evaluations, we found that a mechanism with little overhead was the interval-based

algorithm with exploration. Behavior across successive intervals is monitored to detect phase

changes. At the start of each phase, an exploration process profiles the behavior for all of the

different hardware organizations before selecting the best. The interval length is selected at

run-time to keep the instability factor at a tolerable overhead.

The entire algorithm is listed in Figure 2.1. At the start of a phase, the statistics collected

in the first interval serve as a reference point against which to compare future statistics and

detect a phase change. The branch and memory reference frequencies are microarchitecture-

independent parameters and can be used to detect phase changes even during the exploration

process. After exploration, the best performing configuration is picked and its IPC is also used

as a reference. A phase change is signaled if either the number of branches, the number of

memory references, or the IPC differs significantly from the reference point. Occasionally,

there is a slight change in IPC characteristics during an interval (perhaps caused by a burst

16

 use first configuration for the next interval;

 use the next configuration in the next interval;

 if (all configurations have been profiled)

Initializations and definitions:
interval_length = 10K;
discontinue_algorithm = FALSE; (if this is set, no more reconfigurations are attempted until the next macrophase)
have_reference_point = FALSE; (the first interval in a new phase provides a reference point against which to copare future intervals)
significant_change_in_ipc; (this is set if the IPC in the current interval differs from that in the reference point by more than 10%)

significant_change_in_branches; (this is set if the number of branches in the current interval differs from the reference point by more than interval_length/100)
num_ipc_variations = 0; (this indicates the number of times there was a significant_change_in_ipc)
stable_state = FALSE; (this is set only after all configurations are explored and the best is picked)

Inspect statistics every 100 billion instructions.
If (new macrophase)
 Initialize all variables;

If (not discontinue_algorithm) execute the following after every interval_length instructions.
If (have_reference_point)
 If (significant_change_in_memrefs or significant_change_in_branches or ((significant_change_in_ipc and num_ipc_variations > THRESH1))
 have_reference_point = stable_state = FALSE;
 num_ipc_variations = 0;

 instability = instability + 2;
 if (instability > THRESH2)
 interval_length = interval_length * 2;
 instability = 0;
 if (interval_length > THRESH3)
 Pick most popular configuration;
 discontinue_algorithm = TRUE;
 else
 if (significant_change_in_ipc)
 num_ipc_variations = num_ipc_variations + 2;
 else
 num_ipc_variations = MAX(−2,num_ipc_variations−0.125);
 instability = instability − 0.125;
else
 have_reference_point = TRUE;
 Record branches and memrefs.

If (have_reference_point and not stable_state)
 record IPC;

 pick the best performing configuration;
 make its IPC the IPC_reference_point;
 stable_state = TRUE;

Constants and Thresholds

The constant increments/decrements for
num_ipc_variations and instability were
chosen to roughly allow about 5% instability.

The other thresholds were picked to be
reasonable round numbers.
THRESH1 = THRESH2 = 5.
THRESH3 = 1 billion instructions.

 (number of committed instructions before invoking the algorithm)

significant_change_in_memrefs; (this is set if the memory references in the current interval differs from the reference point by more than interval_length/100)

instability = 0; (a number indicating the frequency of occurrence of a phase change)

Figure 2.1: Run-time algorithm to select the best of many candidate hardware organizations.

This is an interval-based mechanism with exploration. The constant increment/decrements for

num ipc variations and instability were chosen to allow about 5% instability. The thresholds

were picked to be reasonable round numbers. Note that THRESH1 has to be greater than

the number of candidate configurations. We assume a significant change in memrefs if the

memory references differ from the reference point by more than 5% of the interval length. A

significant change in branches is signaled if it differs from the reference point by more than

2% of the interval length. A significant change in IPC refers to a variation of more than 10%

compared to the reference point.

17

of branch mispredicts or cache misses), after which, behavior returns to that of the previous

phase. To discourage needless explorations in this scenario, we tolerate some noise in the

IPC measurements (with the num ipc variations parameter). In addition, if phase changes are

frequent, the instability variable is incremented and eventually, the interval length is doubled.

This entire process of run-time reconfiguration can be implemented in software with support

from hardware event counters. A low-overhead software routine (like that used for software

TLB miss handling) that inspects various hardware counters before making a decision on the

subsequent configuration is invoked at every interval. The algorithm amounts to about 100

assembly instructions, only a small fraction of which are executed at each invocation. Even for

the minimum interval length of 10K instructions, this amounts to an overhead of much less than

1%. Implementing the selection algorithm in software allows greater flexibility and opens up the

possibility for application-specific algorithms. Algorithms at higher levels that detect changes

in macrophases have an even lower overhead. Since the algorithm runs entirely in software,

most program-specific state resides in memory as opposed to hardware registers. Hence, apart

from the event counters, no additional state has to be saved and restored on a context switch.

The algorithm in Figure 2.1 assumes a dynamic interval length. As an alternative, below

we detail an algorithm that uses adaptive thresholds to tolerate noise and the mismatch between

the length of a program phase and the interval length. This algorithm was employed for cache

reconfiguration in [Balasubramonian et al., 2000b; Balasubramonian et al., 2003a] and uses

the number of branches and the number of cache misses as metrics to detect a phase change.

Initializations and definitions:

base_br_noise = 4500; base_miss_rate_noise = 450;

br_incr = 1000; br_decr = 50;

miss_rate_incr = 100; miss_rate_decr = 5;

miss_rate_noise = base_miss_rate_noise;

br_noise = base_br_noise;

state = UNSTABLE;

Repeat the following every 100K cycles:

(inputs: num_miss, num_br, CPI)

if (state == STABLE)

if ((|num_miss-last_num_miss|) < miss_rate_noise &&

18

(|num_br-last_num_br|) < br_noise)

miss_rate_noise = max(miss_rate_noise-miss_rate_decr,

base_miss_rate_noise);

br_noise = max(br_noise - br_decr, base_br_noise);

else

last_cache_size = cache_size;

cache_size = SMALLEST; state = UNSTABLE;

else if (state == UNSTABLE)

record CPI, num_miss, num_br;

if ((num_miss > THRESHOLD) && (cache_size != MAX))

Increase cache_size;

else

cache_size = that with best CPI; state = STABLE;

last_num_miss = num_miss recorded for selected size;

last_num_br = num_br recorded for selected size;

if (cache_size == last_cache_size)

miss_rate_noise= miss_rate_noise + miss_rate_incr;

br_noise = br_noise + br_incr;

In order to reduce the overhead of the exploration process, behavior of past phases could be

recorded and re-used when the same phase is again encountered. Dhodapkar and Smith [Dho-

dapkar and Smith, 2002] suggest using working set signatures to characterize a given phase.

Instructions executed during an interval are combined to create a signature for that particular

phase. The optimal organization selected for a phase is recorded in a table. Every phase change

results in an interval during which the working set signature is computed to index into the table

and retrieve the optimal organization. This ensures that each phase change results in a modest

overhead – one interval to detect the phase change and one to compute the working set signature.

However, if program behavior changes over time, an initial estimate of the optimal organization

might be incorrect. Hence, at periodic intervals, the prediction tables have to be cleared and

re-computed.

In all the interval-based algorithms, statistics collected during the interval that flags a phase

change are discarded. The assumption is that it takes an interval to eliminate boundary effects

(cache misses, branch mispredictions, surrounding code, etc.).

19

2.3.2 Interval-Based Adaptation with Prediction

This mechanism is identical to the one in the previous subsection, except that at the start of

each phase, instead of exploring across multiple candidate organizations, one interval is spent at

an organization that can help reveal the optimal hardware organization. This organization is then

employed till the next phase change. The IPC reference point is the IPC for the first interval with

the selected organization. The overhead per phase change potentially equals two intervals – one

to detect the phase change and one to compute the optimal organization. Since the overhead is

already at a minimum, it is not very meaningful to employ working set signatures to remember

past behavior.

2.3.3 Positional Adaptation with Exploration

An algorithm based on positional adaptation requires a table to maintain state for every

program counter value that signals a new phase. As an example, consider an algorithm that

defines every
� ���

branch as a phase change (Figure 2.2). The table is cleared at the start of the

execution and at periodic intervals (say, every 10 million instructions). At every
� ���

branch,

the program counter is used to look up the table. If the table has no entry for this branch,

the hardware has to detect which organization is optimal with an exploration process. Every

time this branch is encountered, a new hardware organization is implemented and profiled (this

organization is maintained till the program moves to the next phase.). This information is stored

in the table just before the start of the next phase. After all the organizations have been profiled,

the table is inspected to determine the best. Accordingly, the next time this phase is encountered,

the table recommends that this optimal organization be used. While every
� ���

branch signals

a phase change, successive phases might continue to use the same organization – this is unlike

the interval-based mechanism, where every new phase requires at least one interval of profiling

a particular hardware organization.

A few important details have to be taken into consideration. An initial exploration or mon-

itoring process updates a table that is used for the remainder of the execution. This results in

initial overhead that gets amortized over the whole program. However, if program behavior

changes over time, an initial estimate of the optimal organization might be incorrect. Hence, at

20

Every 10 million instructions,

At every Nth branch,

 For the phase just exited,

 Record statistics for the organization just profiled;
 if (all organizations profiled)
 stable_state[branch_pc] = TRUE;
 prediction[branch_pc] = optimal organization;

 branch_pc = the current branch encountered;

 Select the first candidate hardware organization;
 else if (not stable_state[branch_pc])
 Select the next organization to be explored;

 else

 Start exploration process;

 Select prediction[branch_pc] as the next organization;

 else if (not stable_state[branch_pc])

The length of the exploration
process depends on the number
of candidate hardware organizations
and the number of samples required
for each. The table has to be large
enough to record these data points
and this has to be taken into account
while determining the next organization
to be explored.

 If (no valid_entry[branch_pc])
 valid_entry[branch_pc] = TRUE; Record statistics for the first organization;

 If (no valid_entry[branch_pc])

 Reset all the valid_entry[] bits to FALSE;

stable_state[]; The bits that indicate if a given branch has completed the exploration process
prediction[]; The table that indicates the predicted optimal organization for each phase

valid_entry[]=FALSE; The bits that indicate if a given branch has a valid entry in the tables
Initializations and definitions. (All the tables are indexed by using some bits of the program counter)

statistics[]; The table that maintains exploration statistics for each phase

Figure 2.2: Run-time algorithm to select the best of many candidate hardware organizations.

This uses the positional adaptation approach at the branch level and employs an exploration

process.

21

periodic intervals, the prediction tables have to be cleared and re-computed. If phases are sig-

naled frequently, the behavior of neighboring phases might influence the statistics collected for

a phase. To make the mechanism robust to these boundary effects, statistics could be collected

for a number of samples before any decision-making. This could also handle cases where the

behavior within a phase is not always consistent.

Since this algorithm is invoked at every
�����

branch, it has to be implemented in hardware,

so as to not slow down the processor with software interrupts.

The prediction table has finite capacity. Assuming that some of the program counter bits

are used to index into this table, it is possible that multiple phases might conflict for the same

entry in the table. Hence, the table has to be made large enough to minimize these conflicts.

These tables may maintain tags so that a conflict for an entry results in an eviction of an earlier

entry and the creation of a new one. If tags are not maintained, the statistics collected for two

different phases may interfere with each other.

2.3.4 Positional Adaptation with Prediction

Again, this mechanism is very similar to the one described in the earlier subsection. When

there is no entry in the prediction table for a particular phase, instead of going through an

exploration process, a particular organization is selected that helps the hardware profile the

program behavior. Based on this profiling, the behavior of different hardware organizations is

predicted and the estimated optimal organization is selected and recorded in the prediction table.

To minimize boundary effects, a number of samples may have to be taken before the program

behavior is accurately profiled. Otherwise, the algorithm is as described before.

2.4 Related Work

Many recent bodies of work [Albonesi, 1998; Bahar and Manne, 2001; Buyuktosunoglu

et al., 2000; Dhodapkar and Smith, 2002; Folegnani and Gonzalez, 2000; Ghiasi et al., 2000;

Huang et al., 2000; Ponomarev et al., 2001; Yang et al., 2001] have looked at hardware units

with multiple configuration options and algorithms for picking an appropriate configuration at

22

run-time. Many of these algorithms are interval-based, in that, they monitor various statis-

tics over a fixed interval of instructions or cycles and make configuration decisions based

on that information. These algorithms usually employ reactive metrics (throughput, utiliza-

tion, miss rates) to select an organization. Huang et al. [Huang et al., 2003] study adap-

tation at subroutine boundaries and demonstrate that this can be more effective than using

fixed instruction intervals. Magklis et al. [Magklis et al., 2003] also employ positional adap-

tation and use profiled information to identify subroutines and loops that are likely to ben-

efit the most. Sherwood et al. [Sherwood et al., 2003] classify the program into multiple

phases based on the basic blocks executed as well as their frequency of execution in dif-

ferent parts of the program. They also design a run length encoding Markov predictor to

predict the next phase in the program. Our results lead us to believe that simpler metrics

such as branch frequency, miss rates, memory reference frequency, and IPC are sufficient

to detect phase changes. Our proposals [Balasubramonian et al., 2000a; Balasubramonian

et al., 2000b] have been one of the early contributions in this field. We have also been one

of the first to identify the importance of a variable-length instruction interval length [Bala-

subramonian et al., 2003b], as well as adaptive thresholds [Balasubramonian et al., 2000b;

Balasubramonian et al., 2003a]. Since we do not rely on profiled information, the algorithms

behave well regardless of the input data set used for the program.

2.5 Summary

In this chapter, we have examined a number of dynamic adaptation algorithms that attempt

to predict program behavior at run time. Unlike static analysis or profiling, these algorithms

perform well in spite of dynamic changes in input sets and data structures. In the subsequent

chapters, we introduce techniques to adapt the hardware that allows us to optimize various trade-

offs at run-time. In each scenario, one of many candidate hardware organizations yields optimal

performance or power. The algorithms described in this chapter help us detect new behavior and

then select the optimal organization for this new phase. All the adaptation algorithms are based

on the premise that past behavior is likely to repeat in the future. A new program behavior can be

detected by either examining statistics across successive periods of execution (Interval-based)

23

or by the entry into a different basic block or subroutine (Positional adaptation). Once such

a phase change has been detected, the optimal hardware configuration can be selected either

by profiling the behavior of each candidate organization (Exploration) or by gathering program

metrics that can instantly predict the optimal configuration (Prediction). The interval-based

mechanisms have low implementation complexity, but capture program behavior at a fairly

coarse granularity. It can also entail heavy overheads if the number of candidate organizations

is very large. This is likely to be the case if there are a number of configurable hardware

units that interact with each other. Positional adaptation reacts faster to a phase change, but

can occasionally be inaccurate and entails hardware overhead. Exploration is reliable, but can

consume many cycles if the search space is very large. The effectiveness of the prediction

technique relies on the existence of a program metric that can accurately predict the behavior of

the program on the given hardware.

24

3 Cache Reconfiguration

In Chapter 2, we introduced a number of techniques to detect program behavior changes at run-

time so that optimal hardware organizations could be employed at any given point in the pro-

gram’s execution. Modern microprocessors have fixed designs and do not allow the hardware

to adapt dynamically. The widening gap between different trade-off points in future technolo-

gies necessitates the use of adaptive structures on the chip. The primary focus of the thesis is

to study how the different components of a microprocessor lend themselves to such adaptation

and how the control mechanisms described in Chapter 2 behave in these different scenarios. In

this chapter, we examine trade-offs in the design of the on-chip data cache and re-organize the

layout to allow for multiple configurations with differing trade-off characteristics.

3.1 Cache Design Issues

Microprocessor clock speeds have been improving at a much faster rate than memory

speeds. As a result, large caches are employed in modern processors and their design has a

significant impact on processor performance and power consumption. The most common con-

ventional memory system today is the multi-level memory hierarchy. The rationale behind

this approach, which is used primarily in caches but also in some TLBs (e.g., in the MIPS

R10000 [Yeager, 1996]), is that a combination of a small, low-latency L1 memory backed

by a higher capacity, yet slower, L2 memory and finally by main memory provides the best

trade-off between optimizing hit time and miss time. The fundamental issue with these designs

is that they are targeted to the average application — no single memory hierarchy organiza-

25

tion proves to be the best for all applications. When running a diverse range of applications,

there will inevitably be significant periods of execution during which performance degrades

and energy is needlessly expended due to a mismatch between the memory system require-

ments of the application and the memory hierarchy implementation. As an example, programs

whose working sets exceed the L1 capacity may expend considerable time and energy trans-

ferring data between the various levels of the hierarchy. If the miss tolerance of the applica-

tion is lower than the effective L1 miss penalty, then performance may degrade significantly

due to instructions waiting for operands to arrive. For such applications, a large, single-level

cache (as used in the HP PA-8X00 series of microprocessors [Gwennap, 1997; Kumar, 1997;

Lesartre and Hunt, 1997]) may perform better and be more energy-efficient than a two-level

hierarchy for the same total amount of memory.

To meet the needs of a diverse set of applications, we evaluate a cache layout that is flexible.

Key to our approach is the exploitation of the properties of conventional caches and future tech-

nology trends in order to provide cache configurability in a low-intrusive and low-latency man-

ner. Our cache is logically designed and laid out as a virtual two-level, physical one-level non-

inclusive hierarchy, where the partition between the two levels is dynamic. The non-inclusive

nature of the hierarchy minimizes the overheads at the time of repartitioning. To maximize

performance, an organization that balances hit and miss latency intolerance is chosen.

3.2 The Reconfigurable Cache Layout

3.2.1 Circuit Structures

The cache layouts (both conventional and configurable) that we model follow that described

by McFarland in his thesis [McFarland, 1997]. McFarland developed a detailed timing model

for both the cache and TLB that balances both performance and energy considerations in sub-

array partitioning, and which includes the effects of technology scaling.

We took into account several considerations in choosing the cache layout as well as parame-

ters such as size and associativity for our configurable cache and the L2 cache in a conventional

processor. First, we determined that the cache should be at least 1MB in size. We based this

26

on the size of on-chip L2 caches slated to be implemented in modern processors (such as the

Alpha 21364 [Bannon, 1998] which has 1.5MB of on-chip cache). Based on performance sim-

ulation results with our benchmark suite, we picked 2MB as the target size for our configurable

cache as well as for the L2 (or combined L1 and L2 in the case of an exclusive cache) of the

conventional baseline memory hierarchies.

To further define the number of subarrays and associativity, we calculated (following Bakoglu

[Bakoglu and Meindl, 1985]) the SRAM array wordline delay as a function of the number of ar-

ray columns and the number of wire sections (separated by repeater switches) using the 0.1 mi-

crometer parameters of McFarland [McFarland and Flynn, 1995]. The best delay was achieved

with four repeater switches for 2048 columns, and eight for 4096 columns.

Based on the above constraints, on delay calculations using various numbers of subarrays

and layouts, and on the need to make the cache banked to obtain sufficient bandwidth, we

arrived at an organization in which the cache is structured as two 1MB interleaved banks1. In

order to reduce access time and energy consumption, each 1MB bank is further divided into

two 512KB SRAM structures (with data being block interleaved among the structures), one of

which is selected on each bank access.

The data array section of the configurable structure is shown in Figure 3.1 in which only the

details of one subarray are shown for simplicity. (The other subarrays are identically organized).

There are four subarrays, each of which contains four ways. Each of these subarrays has 512

rows and 2048 columns. In both the conventional and configurable cache, two address bits

(Subarray Select) are used to select only one of the four subarrays on each access in order to

reduce energy dissipation. The other three subarrays have their local wordlines disabled and

their precharge, sense amp, and output driver circuits are not activated. The TLB virtual to real

page number translation and tag check proceed in parallel and only the output drivers for the

way in which the hit occurred are turned on. Parallel TLB and tag access can be accomplished if

the operating system can ensure that index bits-page offset bits bits of the virtual and physical

addresses are identical, as is the case for the four-way set associative 1MB dual-banked L1 data

cache in the HP PA-8500 [Fleischman, 1999].

1The banks are word-interleaved when used as an L1/L2 cache hierarchy and block interleaved when used as

L2/L3.

27

...

Pre-
decoder

...

Local Wordline

Global Wordline

Precharge

Subarray0 Subarray1Subarray2

Decoder
Row

Column

Sense
Amps

...

MUXes

Subarray/Way Select

Logic

(from tags)
Tag Hit

(from address)
Subarray Select

(from Config Register)
Configuration Control

Cache Select

Data Bus

Subarray3

Way0Way1Way2Way3

Figure 3.1: The organization of the data array section of one of the 512KB cache structures.

The key modifications to McFarland’s baseline design that allow for multiple configuration

options are the conscious placement of repeaters in the local and global wordlines. Repeater

switches are used in the global wordlines to electrically isolate each subarray. That is, subarrays

0 and 1 do not suffer additional global wordline delay due to the presence of subarrays 2 and 3.

Providing switches as opposed to simple repeaters also prevents wordline switching in disabled

subarrays thereby saving dynamic power. Repeater switches are also used in the local wordlines

to electrically isolate each way in a subarray. The result is that the presence of additional ways

does not impact the delay of the fastest ways. Dynamic power dissipation is also reduced

by disabling the wordline drivers of disabled ways. Configuration Control signals from the

Configuration Register provide the ability to disable entire subarrays or ways within an enabled

subarray. Local wordline and data output drivers and precharge and sense amp circuits are not

activated for a disabled subarray or way. More details on the circuit structures can be found in

[Balasubramonian et al., 2000b].

28

3.2.2 Configurable Cache Operation

With these modifications, the sizes, associativities, and latencies of the resulting virtual two-

level, physical one-level non-inclusive cache hierarchy are dynamic. That is, a single large cache

organization serves as a configurable two-level non-inclusive cache hierarchy, where the ways

within each subarray that are initially enabled for an L1 access are varied to match application

characteristics. The latency of the two sections is changed on half-cycle increments according to

the timing of each configuration. Half cycle increments are required to provide the granularity

to distinguish the different configurations in terms of their organization and speed. Such an

approach can be implemented by capturing cache data using both phases of the clock, similar to

the double-pumped Alpha 21264 data cache [Kessler et al., 1998], and enabling the appropriate

latch according to the configuration. The advantages of this approach is that the timing of the

cache can change with its configuration while the main processor clock remains unaffected, and

that no clock synchronization is necessary between the pipeline and cache/TLB.

However, because a constant two-stage cache pipeline is maintained regardless of the cache

configuration, cache bandwidth degrades for the larger, slower configurations. Furthermore,

the implementation of a cache whose latency can vary on half-cycle increments requires two

pipeline modifications. First, the dynamic scheduling hardware must be able to speculatively

issue (assuming a data cache hit) load-dependent instructions at different times depending on

the currently enabled cache configuration. Second, for some configurations, running the cache

on half-cycle increments requires an extra half-cycle for accesses to be caught by the processor

clock phase.

The possible configurations for a 2MB L1/L2 on-chip cache hierarchy at 0.1 � m technology

are shown in Figure 3.2. Although multiple subarrays may be enabled as L1 in an organization,

as in a conventional cache, only one is selected each access according to the Subarray Select

field of the address. When a miss in the L1 section is detected, all tag subarrays and ways are

read. This permits hit detection to data in the remaining portion of the cache (designated as L2

in Figure 3.2). When such a hit occurs, the data in the L1 section (which has already been read

out and placed into a buffer) is swapped with the data in the L2 section. In the case of a miss

to both sections, the displaced block from the L1 section is placed into the L2 section. This

29

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

L2

256-1

512-2

768-3

1024-4

512-1

1024-2

1536-3

2048-4

C
ac

he
 C

on
fi

gu
ra

tio
n

W0W1W2W3 W3 W2 W1 W0 W1 W2 W3

Subarray 0Subarray 2 Subarray 1

W0 W1 W2 W3

Subarray 3

256KB

1024KB

1024KB

1536KB

2048KB

512KB

768KB

512KB

W0Acc TimeSize
L1

Assoc
L1 L1

L2 L1

Subarray/Way Allocation (L1 or L2)

L2L2

L2 L2

L2 L2

L2 L2

L2 L2L2

L1L1

L1 L1 L1

L1L1L1L1 L1

L1

L1

L1

L1

L1 L1

L1L1 L1

L1L1

L1L1L1

L1L1L1L1

L2L2L2

L2 L2

L2

L1

L1 L1

L1 L1

L1 L1 L1

L1

L2 L2 L2

L2 L2

L2

L1

4.5

4.0

3.5

3.0

3.0

2.5

2.5

4 way

2 way

3 way

1 way

2 way

3 way

4 way

1 way

2.0

L1

L1L1

L1L1L1

L1L1

L2L2L2

L2 L2

L2

L1L1

L1 L1

L1 L1

L1 L1 L1

L1

L2 L2 L2

L2 L2

L2

L1

L1 L1

Figure 3.2: Possible L1/L2 cache organizations that can be configured shown by the ways

that are allocated to L1 and L2. Only one of the four 512KB SRAM structures is shown.

Abbreviations for each organization are listed to the left of the size and associativity of the L1

section, while L1 access times in cycles are given on the right. Note that the TLB access may

dominate the overall delay of some configurations. The numbers listed here simply indicate the

relative order of the access times for all configurations and thus the size/access time trade-offs

allowable.

30

prevents thrashing in the case of low-associative L1 organizations.

The direct-mapped 512KB and two-way set associative 1MB cache organizations are lower

energy, and lower performance, alternatives to the 512KB two-way and 1MB four-way orga-

nizations, respectively. These options activate half the number of ways on each access for the

same capacity as their counterparts. For execution periods in which there are few cache con-

flicts and hit latency tolerance is high, the low energy alternatives may result in comparable

performance yet potentially save considerable energy. These configurations can be used in an

energy-aware mode of operation.

Note that because some of the configurations span only two subarrays, while others span

four, the number of sets is not always the same. Hence, it is possible that a given address

might map into a certain cache line at one time and into another at another time (called a mis-

map). However, the non-inclusive nature of our cache helps prevent aliasing and guarantees

correctness. The high-order Subarray Select signal is replicated as an extra tag bit. This extra

tag bit is used to detect mis-maps. In order to minimize the performance impact of mis-mapped

data, an L2 look-up examines twice as many tags as the conventional L2 in order to examine

all subarrays where mis-mapped data may reside. Mis-mapped data is handled the same way

as a L1 miss and L2 hit, i.e., it results in a swap. Our simulations indicate that such events are

infrequent.

In conventional two-level hierarchies, the L2 implements additional hardware to ensure

cache coherence with the L2 caches of other chips. This involves replication of its tags and a

snooping protocol on the system bus. The use of a non-inclusive L1-L2 does not affect this in

any way. The tags for the entire 2MB of on-chip cache are replicated (just as for the 2MB L2

in the conventional hierarchy) and the snooping protocol ensures that data in the L1 and L2 are

coherent with other caches. There is potential for added interference with the processor to L1

datapath when compared to a conventional design in the presence of inactive shared data that

would only be present in the L2 in the case of a conventional design.

31

3.2.3 Configurable L2-L3 Cache

In sub-0.1 � m technologies, the long access latencies of a large on-chip L2 cache [Agarwal

et al., 2000] may be too expensive for those applications which make use of only a small fraction

of the L2 cache. Thus, for performance reasons, a three-level hierarchy with a moderate size

(e.g., 512KB) L2 cache will become an attractive alternative to two-level hierarchies at these

feature sizes. However, the cost may be a significant increase in energy dissipation due to

transfers involving the additional cache level. The use of the aforementioned configurable cache

structure as a replacement for conventional L2 and L3 caches can significantly reduce energy

dissipation without any compromise in performance as feature sizes scale below 0.1 � m.

3.2.4 The Hot-and-Cold Cache

The primary focus in this chapter has been on dynamic cache reorganization to improve per-

formance and power consumption. We have also explored static organizations that can reduce

power consumption in the cache.

A significant saving in leakage and dynamic power is possible if circuit techniques are

leveraged, for example, high threshold voltage devices for low leakage, transistor sizing to

reduce capacitance, etc. However, by doing this, it is harder to switch between different modes

of operation and the cache organization has to be statically defined. Unfortunately, most of

these energy-saving techniques incur a cost in access times, which can significantly impact

performance.

We proposed a banked cache organization, where half the cache banks (the hot banks) are

designed to optimize performance, while the remaining banks (the cold banks) are designed to

minimize power consumption. The cold banks could have an access time that is longer than

the hot banks, but they potentially consume a small fraction of the power consumed by the hot

banks. A number of instructions, which are not on the program critical path, can be slowed

down with a minimal impact on performance. If these non-critical instructions and the data

they access are restricted to the cold cache banks, a large saving in energy consumption could

be had, while minimally impacting performance. We studied if instructions and data readily

lend themselves to such a classification and found that this is often the case. On average, 90%

32

Branch predictor comb. of bimodal & 2-level gshare; Combining pred. entries - 1024;

bimodal/Gshare Level1/2 entries - 2048, 1024 (hist. 10), 4096 (global);

RAS entries - 32; BTB - 2048 sets, 2-way

Branch mispred. latency 8 cycles

Fetch, decode, issue width 4

RUU and LSQ entries 64 and 32

L1 I-cache 2-way; 64KB (0.1 � m), 32KB (0.035 � m)

Memory latency 80 cycles (0.1 � m), 114 cycles (0.035 � m)

Integer ALUs/mult-div 4/2

FP ALUs/mult-div 2/1

Table 3.1: Architectural parameters.

of all instructions were steered to the bank that cached their data and 80% of all loads and stores

were serviced by a cache bank that matched their criticality characteristics.

3.3 Methodology

For our simulations, we used Simplescalar-3.0 [Burger and Austin, 1997] for the Alpha

AXP ISA. We modeled an aggressive 4-way superscalar out-of-order processor. The architec-

tural parameters used in the simulation are summarized in Table 3.1. The data memory hierarchy

is modeled in great detail. For example, contention for all caches and buses in the memory hier-

archy as well as for writeback buffers is modeled. A line size of 128 bytes was chosen because

it yielded a much lower miss rate for our benchmark set than smaller line sizes. We use cycles

per instruction (CPI) to represent program performance. This metric has the nice property that

the execution cycles can be intuitively broken down as those spent accessing memory and those

spent in the CPU.

As a benchmark set, we select a variety of programs drawn from different suites like

SPEC95, SPEC2000, and the Olden suite [Rogers et al., 1995]. Since we are evaluating a

cache layout that provides configurations of sizes between 256KB and 2MB, our benchmark

set primarily consists of programs that have working set sizes in this range or higher. Including

programs with smaller working sets would result in the smallest organization being used con-

33

Benchmark Suite Datasets Simulation window 256KB-1way

(instructions) L1 miss rate

em3d Olden 20,000 nodes, arity 20 1000M-1100M 16%

health Olden 4 levels, 1000 iters 80M-140M 11%

mst Olden 256 nodes entire program 14M 5%

compress SPEC95 INT ref 1900M-2100M 6%

hydro2d SPEC95 FP ref 2000M-4000M 4%

apsi SPEC95 FP ref 2200M-4200M 7%

swim SPEC2000 FP ref 2500M-3500M 9%

art SPEC2000 FP ref 300M-2300M 14%

Table 3.2: Benchmarks.

stantly, thus proving to be uninteresting. Note that the cache layout is one potential example at

a single technology point. Other layouts with different cache options might target a different

class of benchmark programs. The programs were compiled with the Compaq cc, f77, and f90

compilers at an optimization level of O3. Warm-up times were determined for each benchmark,

and the simulation was fast-forwarded through these phases. A further million instructions were

simulated in detail to prime all structures before starting the performance measurements. In al-

most all cases, simulation windows have been picked to represent overall program behavior.

Table 3.2 summarizes the benchmarks and their miss rates for the smallest cache.

For the 0.1 � m design point, we use the cache and TLB timing model developed by McFar-

land [McFarland, 1997] to estimate timings for both the configurable and conventional caches

and TLBs. McFarland’s model contains several optimizations, including the automatic sizing of

gates according to loading characteristics, and the careful consideration of the effects of tech-

nology scaling down to 0.1 � m technology [McFarland and Flynn, 1995]. The model integrates

a fully-associative TLB with the cache to account for cases in which the TLB dominates the L1

cache access path. For the global wordline, local wordline, and output driver select wires, we re-

calculate cache and TLB wire delays using RC delay equations for repeater insertion [Dally and

Poulton, 1998]. Repeaters are used in the configurable cache as well as in the conventional L1

cache whenever they reduce wire propagation delay. The energy dissipation of these repeaters

was accounted for, and they add only 2-3% to the total cache energy. For our experiments at the

34

0.035 � m design point, we use the cache latency values of Agarwal et al. [Agarwal et al., 2000]

whose model parameters are based on projections from the Semiconductor Industry Association

Technology Roadmap [Association, 1999].

3.4 Results

3.4.1 Dynamic Selection Mechanisms

Our configurable cache permits picking appropriate configurations and sizes based on ap-

plication requirements. The different configurations spend different amounts of time and energy

accessing the L1 and the lower levels of the memory hierarchy. Our primary focus is to study

the impact of these selection mechanisms on performance by balancing hit latency and miss

rate for each application phase. We also demonstrate how the mechanisms can be modified to

opportunistically trade off a small amount of performance for significant energy savings.

Chapter 2 presents a number of selection mechanisms that differ in how they select the

optimal configurations and the configuration points. We evaluate how some of these selection

mechanisms perform in the context of the reconfigurable cache.

The interval-based mechanism with exploration entails the least amount of overhead. Chap-

ter 2 illustrates that it is applicable to a wide class of applications. Every phase change requires

an exploration process, during which different configurations are profiled. A property of this

specific problem domain that has to be considered while designing the algorithm is the relatively

long time it takes to warm up a cache and profile it accurately. In our study, it takes an interval

of at least 100K instructions to allow the cache enough time to react to the reconfiguration and

demonstrate its representative behavior. The following five cache configurations are the most

meaningful from the point of view of performance: 256KB 1-way L1, 768KB 3-way L1, 1MB

4-way L1, 1.5MB 3-way L1, and 2MB 4-way L1. The 512KB 2-way L1 configuration pro-

vides no performance advantage over the 768KB 3-way L1 configuration (due to their identical

access times in cycles) and thus this configuration is not used. For similar reasons, the two

low-energy configurations (direct-mapped 512KB L1 and two-way set associative 1MB L1) are

not used while maximizing performance. Hence, every phase change results in six intervals of

35

overhead – one to detect the phase change and five to explore all the candidate organizations.

The algorithm is exactly like that described in Chapter 2, with the thresholds attempting to pick

an interval length that allows an instability factor of 5%.

The mechanism using positional adaptation and exploration is also just as described in

Chapter 2. The primary advantage of positional adaptation is its ability to react quickly to

short program phases. Unfortunately, the adaptation of the hardware itself is not very quick

in this case. While it takes only a few cycles to change the hardware organization, it can take

many hundreds of cycles for the L1 cache to contain relevant data and improve performance.

Hence, it is meaningful to attempt reconfiguration at a relatively coarse granularity (at every

100 branches or only for large subroutines). The results in the next subsections deal with these

issues in greater detail.

As an alternative to the exploration process, we also evaluate the use of a metric to pre-

dict the optimal organization. This metric, which is based on those proposed by Dropsho et

al. [Dropsho et al., 2002], attempts to estimate the working set size of the executing program.

While employing this in tandem with the interval-based mechanism, at the start of each phase,

we select the largest 2MB 4-way set-associative L1 cache for an interval. During this interval,

we keep track of the number of accesses to the different ways in the cache. Combined with the

LRU state maintained in the tags, we have the information to predict the miss rate for any given

cache size. For example, if the most recently used way is accessed 90% of the time, the miss

rate for a 1-way cache is about 10%. To simplify the hardware overhead, we maintain a single

counter to estimate the required cache size (the LRU counter). If the least recently used way is

accessed, the counter is incremented by three, if the next least recently used way is accessed,

the counter is incremented by two, and so on. At the end of the interval, we compare the counter

value against empirically pre-determined thresholds to predict the working set size and hence,

the cache organization to be used. A low counter value indicates that the most recently used

way is accessed most of the time and a small cache is good enough to maintain a low miss rate.

In our experiments, while using a 100K instruction interval, cache sizes of 256KB, 768KB,

1MB, and 1.5MB were used if the LRU counter values were less than 0.5K, 6K, 9K, and 12K,

respectively. The same predictive metric can also be employed with positional adaptation.

36

3.4.2 Interval-Based Adaptation

The performance afforded by a given cache organization is determined greatly by the L1

miss rate and to a lesser extent by the L1 access time. A number of programs have working sets

that do not fit in today’s L1 caches. For our chosen memory-intensive benchmark set, half of the

total execution time can be attributed to memory hierarchy accesses. Increasing the size of the

L1 and thereby reducing the miss rate has a big impact on cycles per instruction (CPI) for such

programs. At the same time, the increased access time for the L1 results in poorer performance

for other non-memory-intensive programs. For example, we observed that for most SPEC95

integer programs, each additional cycle in the L1 access time resulted in a 4-5% performance

loss.

The reconfigurable L1/L2 cache provides a number of attractive design points for both

memory-intensive and non-memory-intensive applications. Programs that do not have large

working sets and do not suffer from many conflict misses can use the smaller and faster 256KB

direct-mapped L1. Programs with large working set sizes, whose execution times are dominated

by accesses to the L2 and beyond can use large L1 sizes so that most accesses are satisfied by

a single cache look-up. While each access now takes longer, its performance effect is usually

smaller than the cost of a higher miss rate. Moving to a larger cache size not only handles many

of the capacity misses, it also takes care of a number of conflict misses as the associativity is

increased in tandem. In our experiments, the combined L1-L2 hierarchy has a 2MB capacity.

If the working set of the program is close to 2MB, the entire cache can be used as the L1. This

not only reduces the miss rate, it also eliminates the L2 look-up altogether, reducing the ef-

fective memory access time. Our benchmark set represents programs with various working set

sizes and associativity needs (even for different phases of the same program) and the dynamic

selection mechanisms adapt the underlying L1-L2 cache hierarchy to these needs.

In Figure 3.3, we demonstrate how the different adaptation algorithms influence the perfor-

mance of the reconfigurable cache. As a base case, we use a fixed L1-L2 non-inclusive cache

hierarchy, where the L1 is a 256KB direct-mapped 2-cycle cache and is backed by a 14-way

1.75MB L2. Each access to the L2 takes 15 cycles and is pipelined to allow a new request every

four cycles. This organization is exactly like a reconfigurable cache where the smallest cache

37

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

em3d mst health comp hydro apsi swim art AM

CP
I

base case
interval-expl
interval-pred

Figure 3.3: Cycles Per Instruction (CPI) results for the base case and the interval-based adapta-

tion schemes. The second bar employs the exploration process and the third employs prediction.

size is always used. The second bar in Figure 3.3 represents an interval-based mechanism with

exploration while the third bar represents the interval-based mechanism while employing the

LRU counter to predict the optimal organization.

We see that in terms of overall performance (arithmetic mean of CPIs), the interval-based

mechanisms work best. We found that the branch and memory reference frequency and the

CPI were excellent metrics to detect phase changes. Half the programs did not display much

variation and worked well with a 100K instruction interval length. Em3d and Mst spent most of

their execution time with a 768KB cache, while health employed a 1.5MB cache for most of the

time and swim used all 2MB as its L1 cache. Swim and health showed different behaviors over

different program phases, but ended up selecting the same optimal cache size. Compress was

another program that worked well with a 100K instruction interval length and had two distinct

phases, one that did well with the smallest 256KB cache and the other with a 768KB cache. Apsi

is a program that needs a set-associative cache to contain its working set size. Hence, it spends

most of its time with a 1MB 4-way cache. However, it moves through a number of subroutines,

38

Benchmark Number of phase changes Most commonly selected configurations

em3d 0 1MB

health 9 1.5MB

mst 5 768KB, 1MB, 1.5MB

compress 41 256KB, 768KB

hydro2d 29 256KB, 768KB, 2MB

apsi 29 256KB, 768KB

swim 5 2MB

art 24 256KB, 1MB, 1.5MB, 2MB

Table 3.3: Number of phase changes encountered for each program during cache reconfigura-

tion.

each lasting a few million instructions, and experiences frequent phase changes at small interval

lengths. The interval length is increased to 12.8M before the phase changes are reduced to a

tolerable extent. A similar phenomenon is also observed for art – the interval length has to be

increased to 25.6M before the behavior is consistent across intervals, at which point the 768KB

cache is selected as the optimal organization. Since the results include the cycles spent initially

to select the appropriate interval length, the overall performance is slightly poorer than the base

case.

Table 3.3 details the number of phase changes observed for each benchmark. This includes

the phase changes encountered at the start of the simulation, while the appropriate interval

length is still being selected.

The only program that we were unable to target was hydro2d. Even at the end of the two

billion instruction simulation, the appropriate interval length could not be computed. As a

result, performance degraded by about 4%. Note that if the dynamic scheme is unable to detect

a reasonable interval length quickly, it can turn itself off and use the smallest cache organization

so that it does no worse than the base case. Thus the negative performance impact can be

controlled. Overall, we observed a 6.5% improvement in performance by using the interval-

based technique with exploration, with the performance improvement ranging from -4% to

39

16%.

In prior work [Balasubramonian et al., 2000a; Balasubramonian et al., 2003a], we also

examined the use of hit and miss intolerance metrics to limit the exploration process. When

the stall cycles associated with a cache miss are fairly low, a larger cache is unlikely to yield

improved performance. This was exploited to limit the search space of the exploration process

and it yielded marginal performance improvements.

The third bar in Figure 3.3 represents the interval-based mechanism where every phase

change triggers an interval at the largest L1 cache size that helps compute the LRU counter

value to predict the optimal cache size. In most cases, this technique performs marginally better

than with the exploration process. In mst the improvement is as high as 7% because of its ability

to react quickly to a short phase. In the other programs, since phase changes might not occur

very frequently, the improvement is marginal, if at all. Hydro2d was the only program where

this technique did noticeably worse (5%), but this can be attributed to the fact that its behavior

is not consistent across successive intervals and any mechanism that uses history to select a

configuration for the future is likely to exhibit unpredictable performance. We observed that

the predictions made with the LRU counter were quite accurate – often, the predicted optimal

organization was either identical to or within a few per cent of the optimal organization selected

by the exploration process. The overall improvement across the benchmark set was 6.5%.

Summary. Our conclusion from this portion of the study is that an interval-based technique

is likely to provide most of the available benefits from a reconfigurable cache. Except for

one example, we were able to keep the instability factor to a minimum and thus, reduce the

overhead of detecting the optimal organization. Prediction with the LRU counter is effective,

though, empirically, not much better than using exploration.

3.4.3 TLB Reconfiguration

The discussion so far has assumed that only the cache size is adapted at run-time. This

helps isolate the effect of the adaptation algorithms on a single processor structure. However,

the TLB is another storage structure that is accessed in parallel with the cache. A large working

set size can not only result in a large cache miss rate, but also a large TLB miss rate. The access

40

CAM RAM

enable

vpn ppn

enable

CAM RAM

CAM RAM

enable

CAM RAM

enable

switch

Figure 3.4: The Reconfigurable TLB Organization.

time and capacity trade-off observed for the cache also applies in the design of the TLB.

Figure 3.4 illustrates how a 512-entry, fully-associative TLB can be laid out to allow for

reconfigurability. There are eight TLB increments, each of which contains a CAM of 64 virtual

page numbers and an associated RAM of 64 physical page numbers. Switches are inserted on

the input and output buses to electrically isolate successive increments. Thus, the ability to

configure a larger TLB does not degrade the access time of the minimal size (64 entry) TLB.

Similar to the cache design, TLB misses result in a second access but to the back-up portion of

the TLB.

After every million-cycle interval, we examine hardware counters to determine the TLB

size in the next interval. One counter keeps track of the TLB miss handler cycles and the L1

TLB size is doubled if this counter exceeds a threshold (3% in this study) of the total execution

time. A single bit is also added to each TLB entry that is set to indicate if it has been used in an

interval (and is flash cleared in hardware at the start of an interval). At the end of each interval,

the number of TLB entries that have their bit set is counted. This can be done in hardware with

fairly simple and energy-efficient logic. Similar logic that aggregates usage information within

the issue queue has been proposed by Buyuktosunoglu et al. [Buyuktosunoglu et al., 2001]. The

41

0

0.5

1

1.5

2

2.5

em3d mst health comp hydro apsi swim art AM

CP
I

base case
dynamic

Figure 3.5: Cycles Per Instruction (CPI) results for the base case and for an interval-based

mechanism for the cache and the TLB.

L1 TLB size is halved if the TLB usage is less than half. This mechanism can be classified as an

interval-based technique using prediction. Note that an interval length of a million cycles has

to be used so that there is sufficient time to collect an accurate estimate of TLB usage. For the

cache, we use an interval-based mechanism with exploration. This algorithm uses the adaptive

thresholds and a fixed interval length of 100K cycles. The simulation windows used in these

experiments were also slightly smaller in some cases.

Figure 3.5 shows performance results when cache and TLB reconfiguration are simultane-

ously employed. The base case has a 64-entry L1 TLB and a 448-entry L2 TLB, while the

configurable TLB has 64 entries when in its smallest configuration. We see that the overall

processor performance improves by 15%. Table 3.4 attributes this improvement to either cache

or TLB reconfiguration and lists the number of TLB size changes in each case. We see that

the most significant improvements from TLB reconfiguration happen in health, compress, and

swim. Health and compress perform best with 256 and 128 entries, respectively, and the dy-

namic scheme settles at these sizes. Swim shows phase change behavior with respect to TLB

42

Cache TLB TLB Cache TLB TLB

contribution contribution changes contribution contribution changes

em3d 73% 27% 2 hydro2d 100% 0% 0

health 33% 67% 2 apsi 100% 0% 27

mst 100% 0% 3 swim 49% 51% 6

compress 64% 36% 2 art 100% 0% 5

Table 3.4: Contribution of the cache and the TLB to speedup or slow down in the dynamic

scheme and the number of explorations.

usage, resulting in five stable phases requiring either 256 or 512 TLB entries.

3.4.4 Positional Adaptation

The primary advantage of using positional adaptation is to be able to target fine-grained

phase changes. However, the cache does not react quickly to a reconfiguration. Due to this mis-

match, we noticed that these techniques do not perform as well as the interval-based schemes.

We attempted reconfigurations for every
� ���

branch and determined that best performance

was seen when a phase change was signaled after every 100 branches or every 50 subroutine

calls/returns. Because of this relatively coarse granularity, it takes a while for the predictions

to be computed and used (we also record three samples of each event to minimize noise and

boundary effects). In order to improve the granularity match, we attempted reconfigurations

based on the length of the subroutine. We maintained a stack to keep track of the instructions

executed within each subroutine and recorded statistics in a table only if the subroutine length

exceeded 1000 dynamic instructions. Similar approaches have been employed by Huang et

al. [Huang et al., 2003] and Magklis et al. [Magklis et al., 2003].

Figure 3.6 shows the use of positional adaptation with exploration for cache reconfiguration

and also includes dynamic TLB management. For comparison, we also show results for the

base case and the interval-based mechanism with exploration. As the results show, the simpler

interval-based scheme usually outperforms the subroutine-based approach. If the application

phase behavior is data or time-dependent rather than code location dependent, the subroutine-

based scheme will be slower to adapt to the change. In addition, there is potential for instability

43

0

0.5

1

1.5

2

2.5

em3d mst health comp hydro apsi swim art AM

CP
I

base case
interval-expl
subr-based

Figure 3.6: Cycles Per Instruction (CPI) results for the base case, for the interval-based mecha-

nism with exploration and the subroutine-based technique with exploration.

across subroutine invocations especially if the same procedure is called from multiple loca-

tions or phases in the program. The exception in our benchmark suite is apsi, for which the

subroutine-based scheme improves performance relative to the interval-based approach as each

subroutine exhibits consistent behavior across subroutine invocations. With the interval-based

scheme, apsi shows inconsistent behavior across intervals, causing it to thrash between a 256KB

L1 and a 768KB L1. However, the interval-based scheme is better able to capture application

behavior on average than the subroutine-based scheme, in addition to being more practical since

it requires simpler hardware.

3.4.5 Energy Consumption

In our study so far, the dynamic schemes try to maximize performance. This can also have

implications for energy consumption. If some of the cache organizations are more energy-

efficient than the base case, the use of those organizations may result in improved performance

and improved energy utilization. There are two energy-aware modifications to the selection

44

mechanisms that we consider. The first takes advantage of the inherently low-energy configu-

rations (those with direct-mapped 512KB and two-way set associative 1MB L1 caches). With

this approach, the selection mechanism simply uses these configurations in place of the 768KB

3-way L1 and 1MB 4-way L1 configurations. The second approach is to serially access the tag

and data arrays of the L1 data cache, as is the case for the L2 caches. Conventional L1 caches

always perform parallel tag and data look-up to reduce hit time, thereby reading data out of mul-

tiple cache ways and ultimately discarding data from all but one way. By performing the tag

and data look-up in series, only the data way associated with the matching tag can be accessed,

thereby reducing energy consumption. Hence, if we assume that the base case is direct-mapped

and all the set-associative configurations use serial tag and data access, every organization con-

sumes the same energy for every read and write. However, the set-associative organizations

have relatively longer access times because of the serialization. In spite of this increased access

time, using these larger organizations may improve performance because of the reduced miss

times that they afford. Further, because of the reduced miss rate and the fewer transfers between

L1 and L2, the larger cache organizations can also reduce energy consumption.

We estimate cache and TLB energy dissipation using a modified version of the analytical

model of Kamble and Ghose [Kamble and Ghose, 1997]. This model calculates cache energy

dissipation using similar technology and layout parameters as those used by the timing model

(including voltages and all electrical parameters appropriately scaled for 0.1 � m technology).

Note that we assume serial tag and data access for every L2 look-up, so the bitlines for at most

one way are precharged and discharged. The TLB energy model was derived from this model

and included CAM match line precharging and discharging, CAM wordline and bitline energy

dissipation, as well as the energy of the RAM portion of the TLB. For main memory, we include

only the energy dissipated due to driving the off-chip capacitive busses. Detailed event counts

were captured during the simulations of each benchmark. These event counts include all cache

and TLB operations and are used to obtain final energy estimations.

Figure 3.7(a) shows the memory energy per instruction (memory EPI) consumed for the

base case and for three interval and exploration-based techniques. The first is for the best-

performing parallel tag and data access organizations as before, the second is for the most

energy-efficient parallel tag and data access organizations, and the third uses serial tag and data

45

0

0.1

0.2

0.3

0.4

0.5

0.6

em
3d

he
alth mst

com
pre

ss

hyd
ro2

d ap
si

sw
im art AM

M
em

or
y

E
P

I

base case
dynamic
dynamic-energy-aware-configs
dynamic-serial-access

(a) Memory EPI results.

0

0.5

1

1.5

2

2.5

em
3d

he
alth mst

com
pre

ss

hyd
ro2

d ap
si

sw
im art AM

C
P

I

base case
dynamic
dynamic-energy-aware-configs
dynamic-serial-access

(b) CPI results.

Figure 3.7: (a) Memory Energy per Instruction (EPI) results for the base case, for the dynamic

scheme with the best performing cache configurations, for the dynamic scheme with the most

energy-efficient cache configurations, and for the dynamic scheme that employs serial tag and

data access. (b) CPI results for the same four cases.

access for the set-associative caches to make them more energy-efficient. In the first case, the

use of the larger caches results in higher energy consumption than the base case (35%) as the

set-associativity increases the energy consumed per access, compared to the base case. Every

memory access results in all ways being accessed for larger L1s, while for the base case, misses

in the L1 result in accesses to the L2, which use serial tag and data access. In the second case,

we observe that merely selecting the energy-aware configurations has only a nominal impact

on energy. In the third case, by using serial tag and data access, the memory EPI reduces by

38% relative to the dynamic mechanism and by 16% relative to the base case. Note that the

exploration process continues to pick the best performing organization, so this improvement

in energy consumption happens in tandem with improved performance. Figure 3.7(b) shows

the performance results for these organizations. In spite of the longer access times for the set-

associative caches with serial access, the overall performance is 7% better than the base case.

Thus, the use of the energy-efficient cache organizations with serial access provides balanced

improvements in both performance and energy in portable applications where design constraints

such as battery life are of utmost importance. Furthermore, as with the dynamic voltage and

frequency scaling approaches used today, this mode may be switched on under particular envi-

ronmental conditions (e.g., when remaining battery life drops below a given threshold), thereby

providing on-demand energy-efficient operation.

46

0

1

2

3

4

5

6

7

em3d mst health comp hydro apsi swim art AM

C
P

I

base case
dynamic

(a) CPI results.

0

0.05

0.1

0.15

0.2

0.25

0.3

em
3d

he
alt

h
mst

co
mpr

es
s

hy
dr

o2
d

ap
si

sw
im ar

t
AM

M
em
or
y�
E
P
I

3-level
dynamic

(b) Memory EPI results.

Figure 3.8: (a) CPI results for the base three-level cache and for the dynamic scheme with the

dynamic L2-L3. (b) Memory Energy per Instruction (EPI) results for the same two experiments.

3.4.6 L2/L3 Reconfiguration

In sub-0.1 � m technologies, the long access latencies of a large on-chip L2 cache [Agarwal

et al., 2000] may be prohibitive for those applications which make use of only a small fraction

of the L2 cache. Thus, for performance reasons, a three-level hierarchy with a moderate size

(e.g., 512KB) L2 cache will become an attractive alternative to two-level hierarchies at these

feature sizes. However, the cost may be a significant increase in energy dissipation due to trans-

fers involving the additional cache level. The use of the reconfigurable cache structure as a

replacement for conventional L2 and L3 caches can help match the L2 size to the program’s

working set size. This helps reduce the number of transfers between L2 and L3, thereby signifi-

cantly reducing energy dissipation without compromising performance. Note that L2s typically

employ serial tag and data access, so using a larger set-associative L2 does not incur an energy

cost. To further reduce the energy consumption, we modified the search mechanism to pick a

larger sized cache if its performance was within 95% of the best performing cache during the

exploration.

We used latencies corresponding to a model at 0.035 � m technology. The L1 caches are

32KB 2-way with a three cycle latency, the L2 is 512KB 2-way with a 21 cycle latency, and

the L3 is 2MB 16-way with a 60 cycle latency. We do not attempt TLB reconfiguration in

these experiments so as to not affect the latency for the L1 cache access. Figure 3.8 compares

the performance and energy of the conventional three-level cache hierarchy with the config-

47

urable scheme. Since the L1 cache organization has the largest impact on cache hierarchy

performance, as expected, there is little performance difference between the two, as each uses

an identical conventional L1 cache. However, the ability of the dynamic scheme to adapt the

L2/L3 configuration to the application results in a 42% reduction in memory EPI on average.

3.5 Related Work

In this section, we briefly describe other approaches to improving the efficiency of on-chip

caches. In order to address the growing gap between memory and processor speeds, tech-

niques such as non-blocking caches [Farkas and Jouppi, 1994] and hardware and software-

based prefetching [Jouppi, 1990; Callahan and Porterfield, 1990; Mowry et al., 1992] have

been proposed to reduce memory latency. However, their effectiveness can be greatly improved

by changing the underlying structure of the memory hierarchy.

Recently, Ranganathan, Adve, and Jouppi [Ranganathan et al., 2000] proposed a reconfig-

urable cache in which a portion of the cache could be used for another function, such as an

instruction reuse buffer. Although the authors show that such an approach only modestly in-

creases cache access time, fundamental changes to the cache may be required so that it may

be used for other functionality as well, and long wire delays may be incurred in sourcing and

sinking data from potentially several pipeline stages.

Dahlgren and Stenstrom [Dahlgren and Stenstrom, 1991] describe a cache whose organiza-

tion can be changed by the compiler on a per-application basis. To handle conflict misses in a

direct-mapped cache, they break the cache into multiple subunits and map different virtual ad-

dress regions to these different subunits. This changes the way the cache is indexed. They also

propose using different cache line sizes for different address ranges. Veidenbaum et al. [Vei-

denbaum et al., 1999] also talk about such a reconfigurable cache, where the cache line size can

be changed dynamically based on the spatial locality exhibited by the program. These changes

are not done at the layout level – the cache has a small line size and depending on the program

needs, an appropriate number of adjacent cache lines are fetched on a miss.

Albonesi [Albonesi, 1999] proposed the disabling of data cache ways for programs with

small working sets to reduce energy consumption. A similar proposal by Yang et al. [Yang

48

et al., 2001] that reduces the number of sets in an instruction cache helps reduce leakage power

for programs with small instruction working sets.

The reconfigurable cache is effective at reducing cache energy consumption in certain cases.

A number of circuit-level and architectural techniques can be employed to reduce dynamic and

leakage energy in caches. At the circuit level, careful transistor sizing and lowering of 	�
�

can be used to reduce dynamic energy. Simultaneous to the above circuit-level techniques,

architectural techniques such as banking, serial tag and data access, and way prediction [Powell

et al., 2001], help lower dynamic energy consumption by reducing the number of transistors that

are switched on each access. All the above techniques usually entail performance penalties.

Several combined circuit-level and architectural techniques have been proposed to reduce

leakage energy while minimizing the performance loss. Higher 	 � devices help reduce leakage

energy [Nii et al., 1998]. When applied statically to the entire cache, especially the L1 cache,

these techniques increase the latency of access, however. Kaxiras et al. [Kaxiras et al., 2001]

present a control scheme that dynamically adjusts when 	
�
 is gated on a per cache line basis.

They apply their algorithm to the L1 data cache and the L2 cache. The state of the cell is lost

in the above schemes, and hence careful architectural control needs to be exercised in order to

ensure that cells are turned off only when the probability of access is very low in order to avoid

both energy and access time penalties. Agarwal et al. [Agarwal et al., 2002] propose and employ

a gated-ground SRAM cell that retains state even when put in standby mode. By gating ground,

leakage energy consumption is reduced in cache lines that are not accessed. However, the cost

is an increase in access time as well as in dynamic energy, and additional design complexity

in the cache arrays. Multi-threshold CMOS (MT-CMOS [Nii et al., 1998]) uses dynamic 	 �

scaling to reduce leakage energy consumption in caches. This also incurs additional energy

as well as latency in switching between modes and results in increased fabrication complexity.

Flautner et al. [Flautner et al., 2002] propose a drowsy cache design for the L1 data cache

that uses dynamic 	�
�
 scaling, resulting in higher leakage current than with gated 	
�
 . Using

controlled scaling, the state of the memory cell is maintained, allowing more aggressive use of

the sleep mode. However, access to a cell in sleep mode incurs additional latency to restore 	�
�

since the cell can only be read in high 	�
�
 mode. Their study concludes that a simple control

scheme suffices to achieve most of the energy savings. Heo et al. [Heo et al., 2002] take a novel

49

approach to reduce the static energy associated with the bitlines in a RAM by simply tristating

the drivers to the lines.

The reconfigurable cache layout described here was also employed in the Accounting Cache

design of Dropsho et al. [Dropsho et al., 2002]. The Accounting Cache uses LRU information

to accurately estimate the miss rate for each cache organization and hence, the time and energy

spent. Accordingly, lower-associative and lower-energy caches are selected, while maintaining

performance within a specified percentage of the base case. When employed for all the on-chip

caches, cache energy savings of 40% were observed, while incurring a performance loss of only

1.1%.

Various works [Srinivasan and Lebeck, 1999; Fisk and Bahar, 1999; Srinivasan et al., 2001]

have characterized load latency tolerance and metrics for identifying critical loads. Such metrics

could prove useful in determining the cache requirements for a program phase (tolerance to a

longer hit latency, tolerance to cache misses, etc), but we found that such hints do not improve

the performance of the selection mechanisms [Balasubramonian et al., 2000a; Balasubramonian

et al., 2003a].

3.6 Summary

This chapter has described a novel configurable cache and TLB as a higher performance

and lower energy alternative to conventional on-chip memory hierarchies. Cache and TLB re-

configuration is effected by leveraging repeater insertion to allow dynamic speed/size trade-offs

while limiting the impact of speed changes to within the memory hierarchy. We evaluate the

effect of different adaptation algorithms on this cache and our results demonstrate that a simple

interval-based technique is sufficient to achieve good performance. The algorithm is able to

dynamically balance the trade-off between an application’s hit and miss intolerance, thereby

maximizing performance for each program phase. Information on the LRU nature of accesses

can help predict the optimal organization without profiling each candidate organization. Posi-

tional adaptation is not as effective in this context because of the slow reaction of the hardware

to any reconfiguration. Its effectiveness can, however, be improved by employing adaptation

only for large subroutines [Balasubramonian et al., 2003a]. At 0.1 � m technologies, our re-

50

sults show an average 15% reduction in CPI in comparison with a conventional L1-L2 design

of comparable total size, with the benefit almost equally attributable on average to the config-

urable cache and TLB. Furthermore, energy-aware enhancements to the algorithm trade off a

more modest performance improvement for a significant reduction in energy. Projecting to a

3-level cache hierarchy potentially necessitated by sub-micron technologies, we show an aver-

age 42% reduction in memory hierarchy energy at 0.035 � m technology when compared to a

conventional design.

51

4 Trade-Offs in Clustered Microprocessors

In this chapter, we evaluate trade-offs in the design of communication-bound processors of

the future. In this context, current technology trends facilitate the implementation of hardware

reconfiguration. We employ the adaptation algorithms introduced in Chapter 2 to dynamically

manage the trade-offs.

4.1 Technology Trends

The extraction of large amounts of instruction-level parallelism (ILP) from common ap-

plications on modern processors requires the use of many functional units and large on-chip

structures such as issue queues, register files, caches, and branch predictors. As CMOS pro-

cess technologies continue to shrink, wire delays become dominant (compared to logic de-

lays) [Agarwal et al., 2000; Matzke, 1997; Palacharla et al., 1997]. This, combined with the

continuing trend towards faster clock speeds, increases the time in cycles to access regular on-

chip structures (caches, register files, etc.). Not only does this degrade instructions per cycle

(IPC) performance, it also presents various design problems in breaking up the access into mul-

tiple pipeline stages. In spite of the growing numbers of transistors available to architects, it

is becoming increasingly difficult to design large monolithic structures that aid ILP extraction

without increasing design complexity, compromising clock speed, and limiting scalability in

future process technologies.

A potential solution to these design challenges is a clustered microarchitecture [Farkas et al.,

1997; Palacharla et al., 1997] in which the key processor resources are distributed across multi-

52

ple clusters, each of which contains a subset of the issue queues, register files, and the functional

units. In such a design, at the time of instruction rename, each instruction is steered into one of

the clusters. As a result of decreasing the size and bandwidth requirements of the issue queues

and register files, the access times of these cycle-time critical structures are greatly reduced,

thereby permitting a faster clock. The simplification of these structures also reduces their de-

sign complexity.

An attractive feature of a clustered microarchitecture is the reduced design effort in pro-

ducing successive generations of a processor. Not only is the design of a single cluster greatly

simplified, but once a single cluster core has been designed, more of these cores can be put into

the processor for a low design cost (including increasing front-end bandwidth) as the transistor

budget increases. Adding more clusters could potentially improve IPC performance because

each program has more resources to work with. There is little effect if any on clock speed

from doing this as the implementation of each individual cluster does not change. In addi-

tion, even if the resources in a large clustered processor cannot be effectively used by a single

thread, the scheduling of multiple threads on a clustered processor can significantly increase

the overall instruction throughput. The relatively low design complexity and the potential to

exploit thread-level parallelism make a highly-clustered processor in the billion transistor era

an extremely attractive option.

The primary disadvantage of clustered microarchitectures is their reduced IPC compared

to a monolithic design with identical resources. Although dependent instructions within a sin-

gle cluster can issue in successive cycles, extra inter-cluster bypass delays prevent dependent

instructions that lie in different clusters from issuing in successive cycles. While monolithic

processors might use a potentially much slower clock to allow a single-cycle bypass among

all functional units, a clustered processor allows a faster clock, thereby introducing additional

latencies in cycles between some of the functional units. The clustered design is a viable option

only if the IPC degradation does not offset the clock speed improvement.

Modern processors like the Alpha 21264 [Kessler, 1999] at ��������� technology already em-

ploy a limited clustered design, wherein the integer domain, for example, is split into two clus-

ters. A number of recent studies [Aggarwal and Franklin, 2001; Baniasadi and Moshovos, 2000;

Canal et al., 2000; Canal et al., 2001; Farkas et al., 1997] have explored the design of heuristics

53

to steer instructions to clusters. Despite these advances, the results from these studies will likely

need to be reconsidered in the near future for the following reasons:

� Due to the growing dominance of wire delays [Matzke, 1997; Palacharla et al., 1997] and

the trend of increasing clock speeds, the resources in each cluster core will need to be

significantly reduced relative to those assumed in prior studies.

� There will be more clusters on the die than assumed in prior studies due to larger transistor

budgets and the potential for exploiting thread-level parallelism [Tullsen et al., 1995].

� The number of cycles to communicate data between the furthest two clusters will in-

crease due to the wire delay problem [Agarwal et al., 2000]. Furthermore, communica-

tion delays will be heterogeneous, varying according to the position of the producer and

consumer nodes.

� The data cache will need to be distributed among clusters, unlike the centralized cache

assumed by most prior studies, due to increased interconnect costs and the desire to scale

the cache commensurately with other cluster resources.

While the use of a large number of clusters could greatly boost overall throughput for a

multi-threaded workload, its impact on the performance of a single-threaded program is not as

evident. The cumulative effect of the above trends is that clustered processors will be much

more communication bound than assumed in prior models.

As the number of clusters on the chip increases, the number of resources available to the

thread also increases, supporting a larger window of in-flight instructions and thereby allowing

more distant instruction-level parallelism (ILP) to be exploited. At the same time, the vari-

ous instructions and data of the program get distributed over a larger on-chip space. If data

has to be communicated across the various clusters frequently, the performance penalty from

this increased communication can offset any benefit derived from the parallelism exploited by

additional resources.

In this chapter, we present and evaluate a dynamically tunable clustered architecture that

attempts to optimize the communication-parallelism trade-off for improved single-threaded per-

formance in the face of the above trends. The balance is effected by employing only a subset

54

of the total number of available clusters for the thread. Our results show that the performance

trend as a function of the number of clusters varies across different programs depending on the

degree of distant ILP present in them. This motivates the need for dynamic algorithms that

identify the optimal number of clusters for any program phase and match the hardware to the

program’s requirements. Our evaluation studies the performance benefits and the overhead of

employing the algorithms described in Chapter 2.

Disabling a subset of the clusters for a given program phase in order to improve single-

threaded performance has other favorable implications. Entire clusters can turn off their supply

voltage, thereby greatly saving on leakage energy, a technique that would not have been possible

in a monolithic processor. Alternatively, these clusters can be used by (partitioned among)

other threads, thereby simultaneously achieving the goals of optimal single and multi-threaded

throughput.

4.2 The Base Clustered Processor Architecture

We start by describing a baseline clustered processor model that has been commonly used

in earlier studies [Aggarwal and Franklin, 2001; Baniasadi and Moshovos, 2000; Canal et al.,

2000; Canal et al., 2001; Farkas et al., 1997]. Such a model with four clusters is shown in

Figure 4.1. The branch predictor and instruction cache are centralized structures, just as in a

conventional processor. At the time of register renaming, each instruction gets assigned to a

specific cluster. Each cluster has its own issue queue, register file, a set of functional units,

and its own local bypass network. Bypassing of results within a cluster does not take additional

cycles (in other words, dependent instructions in the same cluster can issue in successive cycles).

However, if the consuming instruction is not in the same cluster as the producer, it has to wait

additional cycles until the result is communicated across the two clusters.

A conventional clustered processor [Aggarwal and Franklin, 2001; Baniasadi and Moshovos,

2000; Canal et al., 2000; Canal et al., 2001; Farkas et al., 1997] distributes only the register file,

issue queue, and the functional units among the clusters. The data cache is centrally located.

An alternative organization [Zyuban and Kogge, 2001] distributes the cache among the clusters,

thereby making the design more scalable, but also increasing the implementation complexity.

55

I−CACHE
I
F
Q

STEERING,
 REGISTER
 RENAME

R
O
B

 I
Q

 I
Q

 Regfile Regfile

FUs FUs

D−CACHE

L
S
Q

 Regfile

 I
Q

FUsFUs

 Regfile

 I
Q

IFQ − Instr Fetch Queue
IQ − Issue Queue
FU − Functional unit
LSQ − Load/store Queue

PRED
BRANCH

ROB − Re−Order Buffer

Figure 4.1: The base clustered processor (4 clusters) with the centralized cache.

Since both organizations are attractive design options, we evaluate the effect of dynamic tuning

on both organizations.

4.2.1 The Centralized Cache

In the traditional clustered designs, once loads and stores are ready, they are inserted into a

centralized load-store queue (LSQ) (Figure 4.1). From here, stores are sent to the centralized L1

cache when they commit and loads are issued when they are known to not conflict with earlier

stores. The LSQ is centralized because a load in any cluster could conflict with an earlier store

from any of the other clusters.

For the aggressive processor models that we are studying, the cache has to service a number

of requests every cycle. An efficient way to implement a high bandwidth cache is to make

it word-interleaved [Rivers et al., 1997]. For a 4-way word-interleaved cache, the data array

is split into four banks and each bank can service one request every cycle. Data with word

addresses (where a word is eight bytes long) of the form 4N are stored in bank 0, of the form

4N+1 are stored in bank 1, and so on. Such an organization supports a maximum bandwidth of

56

four accesses in a cycle so long as these accesses are all to different banks. A word-interleaved

banked cache minimizes conflicts to a bank and hence usually outperforms other alternatives

like a replicated or line-interleaved cache [Rivers et al., 1997].

In a processor with a centralized cache, the load latency depends on the distance between the

centralized cache and the cluster issuing the load. In our study, we assume that the centralized

LSQ and cache are co-located with cluster 1. Hence, a load issuing from cluster 1 does not

experience any communication cost. A load issuing from cluster 2 takes one cycle to send the

address to the LSQ and cache and another cycle to get the data back (assuming that each hop

between clusters takes a cycle). Similarly, cluster 3 experiences a total communication cost of

four cycles for each load. This is in addition to the few cycles required to perform the cache

RAM look-up.

A clustered design allows a faster clock, but incurs a noticeable IPC degradation because

of inter-cluster communication and load imbalance. Minimizing these penalties with smart in-

struction steering has been the focus of many recent studies [Aggarwal and Franklin, 2001;

Baniasadi and Moshovos, 2000; Canal et al., 2000; Canal et al., 2001; Capitanio et al., 1992;

Farkas et al., 1997]. We use an effective steering heuristic [Canal et al., 2000] that steers an

instruction (and its destination register) to the cluster that produces most of its operands. In

the event of a tie or under circumstances where an imbalance in issue queue occupancy is seen,

instructions are steered to the least loaded cluster. By picking an appropriate threshold to de-

tect load imbalance, such an algorithm can also approximate other proposed steering heuristics

like ����� � and � �"!�#%$ � �"$ [Baniasadi and Moshovos, 2000]. The former minimizes load

imbalance by steering
�

instructions to one cluster, then steering to its neighbor. The latter

minimizes communication by filling up one cluster before steering instructions to its neighbor.

We empirically determined the optimal threshold value for load balance. Further, our steering

heuristic also uses a criticality predictor [Fields et al., 2001; Tune et al., 2001] to give a higher

priority to the cluster that produces the critical source operand. Thus, our heuristic represents

the state-of-the-art in steering mechanisms.

57

I−CACHE
I
F
Q

STEERING,
 REGISTER
 RENAME

R
O
B

 I
Q

 I
Q

 Regfile Regfile

FUs FUs

 Regfile

 I
Q

FUsFUs

 Regfile

 I
Q

L
S
Q

Cache
D

L
S
Q

D
Cache

L L
S S
Q Q

D D
Cache Cache

BANK PREDICTOR

PRED

BRANCH

Figure 4.2: The clustered processor (4 clusters) with the decentralized cache.

4.2.2 The Decentralized Cache

In a highly clustered processor, the centralized cache can be a major bottleneck - (i) The

centralized structure has to service requests from a number of clusters and implementing a

large, high bandwidth cache imposes access time penalties. (ii) The average load latency goes

up because of the distance between the cache and the requesting cluster. (iii) The contention

for the interconnect increases because each access requires two transfers. Hence, a distributed

cache model [Zyuban and Kogge, 2001] represents an attractive design option.

For an N-cluster system, we assume that the L1 cache is broken into N word-interleaved

banks. Each bank is associated with its own cluster. The LSQ is also split across the different

clusters. The example in Figure 4.2 shows an organization with four clusters. Because they

are word-interleaved, the various banks cache mutually exclusive data and do not require any

cache coherence protocol between them. The goal of the steering mechanism is to steer a load

or store to the cluster that caches the corresponding memory address. That way, the instruction

naturally progresses from its issue queue, to the corresponding LSQ, and then to its own cache

58

bank. It need not bother with loads and stores in other clusters that are necessarily handling

different memory addresses. We discuss the additional steering complexities arising from the

distributed nature of the cache in Section 4.4.3.

The L2 cache continues to be co-located with cluster 1 and a miss in any of the L1 cache

banks other than that associated with this cluster incurs additional latency depending on the

number of hops.

4.2.3 Interconnects

As process technologies shrink and the number of clusters is increased, attention must be

paid to the communication delays and interconnect topology between clusters. Cross-cluster

communication occurs at the front-end as well as when communicating register values across

clusters or when accessing the cache. Since the former occurs in every cycle, we assume a

separate network for this purpose and model non-uniform dispatch latencies as well as the

additional latency in communicating a branch mispredict back to the front-end. Since the latter

two (cache and register-to-register communication) involve data transfer to/from registers, we

assume that the same (separate) network is used.

In our study, we focus on a ring interconnect because of its low implementation complexity.

Each cluster is directly connected to two other clusters. We assume two uni-directional rings,

implying that a 16-cluster system has 32 total links (allowing 32 total transfers in a cycle), with

the maximum number of hops between any two nodes being 8.

In a later section, as part of our sensitivity analysis, we also show results for a grid intercon-

nect, which has a higher implementation cost but higher performance. The clusters are laid out

in a two-dimensional array. Each cluster is directly connected to up to four other clusters. For

16 clusters, there are 48 total links, with the maximum number of hops being 6, thus reducing

the overall communication cost.

59

Fetch queue size 64

Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 2048

Level 1 predictor 1024 entries, history 10

Level 2 predictor 4096 entries

BTB size 2048 sets, 2-way

Branch mispredict penalty at least 12 cycles

Fetch width 8 (across up to two basic blocks)

Dispatch and commit width 16

Issue queue size 15 in each cluster (int and fp, each)

Register file size 30 in each cluster (int and fp, each)

Re-order Buffer (ROB) size 480

Integer ALUs/mult-div 1/1 (in each cluster)

FP ALUs/mult-div 1/1 (in each cluster)

L1 I-cache 32KB 2-way

L2 unified cache 2MB 8-way, 25 cycles

TLB 128 entries, 8KB page size (I and D)

Memory latency 160 cycles for the first chunk

Table 4.1: Simplescalar simulator parameters.

60

4.3 Methodology

4.3.1 Simulator Parameters

Our simulator is based on Simplescalar-3.0 [Burger and Austin, 1997] for the Alpha AXP

instruction set and is similar to the one used in Chapter 3. The processor parameters have been

modified to reflect projections of future designs and are summarized in Table 4.1. The simulator

has been modified to represent a microarchitecture resembling the Alpha 21264 [Kessler, 1999].

The register update unit (RUU) is decomposed into issue queues, physical register files, and

the reorder buffer (ROB). The issue queue and the physical register file are further split into

integer and floating-point. Thus, each cluster in our study is itself decomposed into an integer

and floating-point cluster. The memory hierarchy is also modeled in detail (including word-

interleaved access, bus and port contention, writeback buffers, etc).

This base processor structure was modified to model the clustered microarchitecture. To

represent a wire-delay constrained processor at future technologies, each cluster core was as-

sumed to have one functional unit of each type, 30 physical registers (int and fp, each), and 15

issue queue entries (int and fp, each). As many instructions can issue in a cycle as the number

of available functional units. We assume that each hop on the interconnect takes a single cycle.

While we did not model a trace cache, we assumed that instructions could be fetched from up

to two basic blocks at a time.

The number of resources in each cluster and the latency for each hop on the interconnect

are critical parameters in such a study as they determine the amount and cost of inter-cluster

communication. These parameters are highly technology, layout, and design-dependent, and

determining them is beyond the scope of this study. Our results include a sensitivity analysis to

see how the results change as our assumptions on the number of registers, issue queue entries,

functional units, and cycles per hop are varied. We use instructions per cycle (IPC) to repre-

sent program performance as it is directly indicative of the instruction-level parallelism in the

program.

Our study focuses on wire-limited technologies of the future and we pick latencies accord-

ing to projections for ���&�'����� . We used CACTI-3.0 [Shivakumar and Jouppi, 2001] to estimate

access times for the cache organizations. We used the methodology in [Agarwal et al., 2000] to

61

Parameter Centralized Decentralized cache

cache each cluster total

Cache size 32 KB 16 KB 16N KB

Set-associativity 2-way 2-way 2-way

Line size 32 bytes 8 bytes 8N bytes

Bandwidth 4 words/cycle 1 word/cycle N words/cycle

RAM look-up time 6 cycles 4 cycles 4 cycles

LSQ size 15N 15 15N

Table 4.2: Cache parameters for the centralized and decentralized caches. All the caches are

word interleaved. N is the number of clusters.

estimate clock speeds and memory latencies, following SIA roadmap projections [Association,

1999]. With Simplescalar, we simulated cache organizations with different size and port pa-

rameters (and hence different latencies) to determine the best base cases. These parameters are

summarized in Table 4.2. The centralized cache yielded best performance for a 4-way word-

interleaved 32KB cache. Such a cache has a bandwidth of four accesses per cycle and an access

time of six cycles. The best decentralized cache organization has a single-ported four-cycle

16KB bank in each cluster.

4.3.2 Benchmark Set

Our proposed design exploits the fact that different programs in most benchmark sets have

vastly different parallelism characteristics. To limit the simulation effort, we restrict ourselves to

a subset of programs that are representative of these diverse characteristics. These programs that

are described in Table 4.3 include four SPEC2K Integer programs, three SPEC2K FP programs,

and two programs from the UCLA Mediabench [Lee et al., 1997]. The programs represent a

mix of various program types, including high and low IPC codes, and those limited by memory,

branch mispredictions, etc. We focus our discussions on these programs because they show high

variability in interval lengths, as discussed in Chapter 2. We also verify some of our results for

all of SPEC2k. They were compiled with Compaq’s cc, f77, and f90 compilers for the Alpha

62

Benchmark Input Simulation Base Mispred

dataset window IPC branch

interval

cjpeg (Mediabench) testimg 150M-250M 2.06 82

crafty (SPEC2k Int) ref 2000M-2200M 1.85 118

djpeg (Mediabench) testimg 30M-180M 4.07 249

galgel (SPEC2k FP) ref 2000M-2300M 3.43 88

gzip (SPEC2k Int) ref 2000M-2100M 1.83 87

mgrid (SPEC2k FP) ref 2000M-2050M 2.28 8977

parser (SPEC2k Int) ref 2000M-2100M 1.42 88

swim (SPEC2k FP) ref 2000M-2050M 1.67 22600

vpr (SPEC2k Int) ref 2000M-2100M 1.20 171

Table 4.3: Benchmark description. Baseline IPC is for a monolithic processor with as many

resources as the 16-cluster system. ”Mispred branch interval” is the number of instrs before a

branch mispredict is encountered.

63

0

0.5

1

1.5

2

2.5

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

IP
C

s
2 clusters
4 clusters
8 clusters
16 clusters

Figure 4.3: IPCs for fixed cluster organizations with 2, 4, 8, and 16 clusters.

21164 at the highest optimization level. Most of these programs were fast forwarded through

the first two billion instructions and simulated in detail to warm the various processor structures

before measurements were taken. Because of the high complexity in simulating 16 clusters, we

restrict our simulation windows to at most 300M instructions for any program. While we are

simulating an aggressive processor model, not all our benchmark programs have a high IPC.

Note that an aggressive processor design is motivated by the need to run high IPC codes and by

the need to support multiple threads. In both cases, the quick completion of a single low-IPC

thread is still important – hence the need to include such programs in the benchmark set.

64

4.4 Evaluation

4.4.1 The Dynamically Tunable Clustered Design

For brevity, we focus our initial analysis on the 16-cluster model with the centralized cache

and the ring interconnect. Figure 4.3 shows the effect of statically using a fixed subset of clusters

for a program. Increasing the number of clusters increases the average distance of a load/store

instruction from the centralized cache and the worst-case inter-cluster bypass delay, thereby

greatly affecting the overall communication cost. Assuming zero inter-cluster communication

cost for loads and stores improved performance by 31%, while assuming zero cost for register-

to-register communication improved performance by 11%, indicating that increased load/store

latency dominates the communication overhead. This latency could be reduced by steering

load/store instructions to the cluster closest to the cache, but this would increase load imbalance

and register communication. The average latency for inter-cluster register communication in the

16-cluster system was 4.1 cycles. At the same time, using more clusters also provides the pro-

gram with more functional units, registers, and issue queue entries, thus allowing it to dispatch

a larger window of in-flight instructions. Depending on which of these two conflicting forces

dominates, performance either improves or worsens as the number of clusters is increased. Pro-

grams with distant ILP, like djpeg (JPEG decoding from Mediabench), swim, mgrid, and galgel

(loop-based floating-point programs from SPEC2K) benefit from using many resources. On the

other hand, most integer programs with low branch prediction accuracies can not exploit a large

window of in-flight instructions. Hence, increasing the resources only degrades performance

because of the additional communication cost. This is a phenomenon hitherto unobserved in a

clustered processor (partly because very few studies have looked at more than four clusters and

partly because earlier studies assumed no communication cost in accessing a centralized cache).

Our goal is to tune the hardware to the program’s requirements by dynamically allocating

clusters to the program. This can be very trivially achieved by modifying the steering heuristic

to disallow instruction dispatch to the disabled clusters. In other words, disabling is equivalent

to not assigning any new instructions to the cluster. Instructions already assigned to the disabled

clusters are allowed to complete, resulting in a natural draining of the cluster.

65

4.4.2 Comparing the Dynamic Algorithms

Chapter 2 describes four different adaptation algorithms, based on the reconfiguration points

and on how they pick an optimal configuration. Figure 4.4 shows the IPC performance for

these different algorithms and for two base cases. The first two bars represent the base cases

– clustered organizations that have a fixed set of 4 and 16 clusters, respectively. Note that in

terms of overall harmonic mean performance across the benchmark set, both base cases are

comparable. Next, we discuss the behavior of each of the dynamic algorithms.

Using Intervals and Exploration. The third bar in Figure 4.4 illustrates the impact of using

the interval-based selection mechanism with exploration at the start of each program phase. The

exploration process lasts four intervals and profiles behavior with 2, 4, 8, and 16 clusters before

selecting the best. We see that in almost all cases, the dynamic scheme does a very good job

in approximating the performance of the best static organization. For floating-point programs

with little instability (galgel, mgrid, swim), the dynamic scheme easily matches the hardware to

the program’s requirements. For the integer programs, in most cases, there is an initial unstable

period when the interval size is inappropriate. Consistent with our analysis in Chapter 2, the

interval size is increased until it settles at one that allows an instability factor of less than 5%.

In parser, the simulation interval was not long enough to allow the dynamic scheme to settle at

the required 40M instruction interval.

In djpeg, it takes a number of intervals for the interval size to be large enough (1.28M

instructions) to allow a small instability factor. Further, since the interval length is large, many

opportunities for reconfiguration are missed. There are small phases within each interval where

the ILP characteristics are different. For these two reasons, the dynamic scheme falls short of

the performance of the fixed static organization with 16 clusters for djpeg.

In the case of gzip, there are a number of prolonged phases, some with distant ILP charac-

teristics, and others with low amounts of distant ILP. Since the dynamic scheme picks the best

configuration at any time, its performance is better than even the best static fixed organization.

Table 4.4 enumerates the number of phase changes encountered for each program and the most

commonly selected organizations.

On average, 8.3 of the 16 clusters were disabled at any time across the benchmark set. In

66

0

0.5

1

1.5

2

2.5

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

IP
C

s

base - 4 clusters base - 16 clusters
interval - exploration interval - prediction - 10K
interval - prediction - 1K interval - prediction - 100
positional - prediction - branches positional - prediction - subroutines
positional - exploration - branches

Figure 4.4: IPCs for the base cases and all the dynamic adaptation algorithms. The first two bars

have a fixed set of clusters (4 and 16, respectively). The third bar represents the interval and

exploration based mechanism. The fourth, fifth, and sixth bars represent interval-based mecha-

nisms with prediction, for interval lengths of 10K, 1K, and 100 instructions, respectively. The

seventh and eighth bars represent positional adaptation techniques with prediction, while re-

configuring at every 5th branch and every subroutine, respectively, while the ninth bar employs

positional adaptation and exploration at every 5th branch.

67

Benchmark Number of phase changes Most commonly selected configurations

cjpeg 286 4, 16 clusters

crafty 53 4, 16 clusters

djpeg 24 16 clusters

galgel 4 16 clusters

gzip 295 4, 16 clusters

mgrid 0 16 clusters

parser 34 4 clusters

swim 0 16 clusters

vpr 422 4 clusters

Table 4.4: Number of phase changes encountered for each program.

the absence of any other workload, this produces a great savings in leakage energy, provided

the supply voltage to these unused clusters can be turned off. Likewise, for a multi-threaded

workload, even after optimizing single-thread performance, more than eight clusters still remain

for use by the other threads.

Overall, the dynamic interval-based scheme with exploration performs about 11% better

than the best static fixed organization. It is also very robust – it applies to every program in

our benchmark set as there is usually a coarse enough interval length such that behavior across

those intervals is fairly consistent. However, the downside is the inability to target relatively

short phases. We experimented with smaller initial interval lengths, but found that the dynamic

scheme encountered great instability at these small interval lengths, and hence, the interval

lengths were increased to a larger value just as before. This is caused by the fact that measure-

ments become noisier as the interval size is reduced and it is harder to detect the same program

metrics across intervals and accordingly identify the best configuration for any phase.

Using Intervals and Prediction. To alleviate these problems, we investigate the use of

hardware metrics to predict the optimal organization without going through an exploration pro-

cess. Instead of exploring various configurations at the start of each program phase, we used

a 16-cluster configuration for an interval and based on the degree of available distant ILP, we

68

selected either a four or 16-cluster configuration for subsequent intervals until the next phase

change (our earlier results indicate that these are the two most meaningful configurations and

cover most cases). An instruction is marked as distant if it is at least 120 instructions younger

than the oldest instruction in the ROB. At the time of issue, the instruction sets a bit in its ROB

entry if it is distant. At the time of commit, this bit is used to increment the ‘degree of distant

ILP’. Since each cluster has 30 physical registers, four clusters are enough to support about 120

in-flight instructions. If the number of distant instructions issued in an interval exceeds a certain

threshold, it indicates that 16 clusters would be required to exploit the available distant ILP. In

our experiments, we use a threshold value of 160 for an interval length of 1000. Because there

is no exploration phase, the hardware reacts quickly to a program phase change and reconfig-

uration at a finer granularity becomes meaningful. Hence, we focus on small fixed instruction

intervals and do not attempt to increase the interval length at run-time. However, since the

decision is based on program metrics instead of exploration, some accuracy is compromised.

Further, the smaller the interval length, the faster the reaction to a phase change, but the noisier

the measurements, resulting in some incorrect decisions.

The fourth, fifth, and sixth bars in Figure 4.4 represent such a mechanism for three different

fixed interval lengths. An interval length of 1K instructions provides the best trade-off between

accuracy and fast reactions to phase changes. Overall, it shows the same 11% improvement

over the best static base case. However, in a program like djpeg, it does much better (21%)

than the interval-based scheme with exploration because of its ability to target small phases

with different requirements. Unfortunately, it takes a performance hit in programs like galgel

and gzip because the small interval-length and the noisy measurements result in frequent phase

changes and inaccurate decision-making.

One of the primary reasons for this is the fact that the basic blocks executed in successive

1000 instruction intervals are not always the same. As a result, frequent phase changes are

signaled and each new phase change results in an interval with 16 clusters, to help determine

the distant ILP.

Positional Adaptation with Prediction. To allow reconfiguration at a fine granularity, we

attempt positional adaptation at branch and subroutine boundaries. We have to determine if

a branch is followed by a high degree of distant ILP, in which case, dispatch should continue

69

freely, else, dispatch should be limited to only the first four clusters. Exploring various config-

urations is not a feasible option as there are likely to be many neighboring branches in different

stages of exploration resulting in noisy measurements for each branch. Hence, until we have

enough information, we assume dispatch to 16 clusters and compute the distant ILP characteris-

tics following every branch. This is used to update a reconfiguration table so that when the same

branch is later encountered, it is able to pick the right number of clusters. If we encounter a

branch with no entry in the table, we assume a 16-cluster organization so that we can determine

its degree of distant ILP.

Assuming that four clusters can support roughly 120 instructions, to determine if a branch

is followed by distant ILP, we need to identify how many of the 360 committed instructions

following a branch were distant when they issued. Accordingly, either four or 16 clusters would

be appropriate. To effect this computation, we keep track of the distant ILP nature of the

360 last committed instructions. A single counter can be updated by the instructions entering

and leaving this queue of 360 instructions so that a running count of the distant ILP can be

maintained. When a branch happens to be the oldest of these 360 instructions, its degree of

distant ILP is indicated by the value in the counter.

There is likely to still be some interference from neighboring branches. To make the mech-

anism more robust, we sample the behavior for a number of instances of the same branch before

creating an entry for it in the reconfiguration table. Further, we can fine-tune the granularity of

reconfiguration by attempting changes only for specific branches. For example, we found that

best performance was achieved when we attempted changes for only every fifth branch. We

also show results for a mechanism that attempts changes only at subroutine calls and returns.

As discussed in Chapter 2, the downside of the approach just described is the fact that initial

measurements dictate future behavior. The nature of the code following a branch could change

over the course of the program. It might not always be easy to detect such a change, especially

if only four clusters are being used and the degree of distant ILP is not evident. To deal with this

situation, we flush the reconfiguration table at periodic intervals. We found that re-constructing

the table every 10M instructions resulted in negligible overheads.

The seventh and eighth bars in Figure 4.4 represent two positional adaptation algorithms

based on the distant ILP metrics. The first of these two algorithms attempts reconfiguration at

70

every 5th branch and creates an entry in the table after collecting 10 samples for each branch.

To eliminate effects from aliasing, we use a large 16K-entry table, though, in almost all cases,

a much smaller table works as well. The second scheme attempts changes at every subroutine

call and return and uses three samples. The figure indicates that the ability to quickly react to

phase changes results in improved performance in programs like djpeg, cjpeg, crafty, parser,

and vpr. The maximum number of configuration changes was observed for crafty (1.5 million).

Unlike in the interval-based schemes with no exploration, instability is not caused by noisy

measurements. However, gzip fails to match the performance achieved by the interval-based

scheme. This is because the nature of the code following a branch changes over the course

of the program. Hence, our policy of using initial measurements to pick a configuration for

the future is not always accurate. The same behavior is observed to a lesser extent in galgel.

Overall, the fine-grained schemes yield a 15% improvement over the base cases, compared to

the 11% improvements seen with the interval-based schemes.

Positional Adaptation with Exploration. Finally, we study an example of positional adap-

tation while using an exploration process to pick the best organization. As described in Chap-

ter 2, phase changes are signaled at specific branches or subroutines. Initially (and at regular

10M instruction intervals), the prediction table is cleared. For each branch PC encountered,

we go through an exploration process, where we profile the performance of each candidate

hardware organization for the instructions following the branch. A number of samples of each

measurement are taken. Once all the organizations have been profiled, the best performing one

is recorded in the prediction table and it is used every time the branch is encountered. We em-

pirically determined that the best performance was observed when phase changes were signaled

at every 20th branch and when 10 samples were recorded for each event.

The last bar in Figure 4.4 represents such an adaptation mechanism. Overall, the improve-

ment is roughly 13%, slightly poorer than when using prediction with the distant ILP metric.

This is primarily because measurements are being made across fairly short periods and neigh-

boring phases might employ completely different configurations. This results in inaccuracies

in the exploration process. However, the ability to react quickly to a new phase allows it to

outperform the interval-based mechanisms.

Summary. We see that the interval-based schemes are reliable in that they are able to target

71

all of the studied programs. They also achieve most of the improvements possible with run-

time adaptation and entail negligible hardware overheads. The techniques involving positional

adaptation are able to provide additional benefits of 4% beyond those achieved by the interval-

based schemes. This is made possible by their ability to react quickly to short phases. However,

because of the predictor tables required, the hardware overhead is not negligible.

By matching the hardware to the program’s parallelism needs, overall processor efficiency

can be improved. We see appreciable single thread speed-ups and more than half the clusters

are freed up. These clusters can be employed to improve the performance of other threads or

they can be turned off to reduce leakage energy consumption on the chip.

4.4.3 Evaluating a Decentralized Cache Model

The earlier subsection has focused on a processor model where the cache is centrally lo-

cated. The potential bottleneck that this creates can be alleviated by distributing the cache

across the clusters. We next study the implications of such an organization on the system’s

ability to adapt.

Clustered LSQ Implementation. In the decentralized cache model, if an effective address

is known when a memory instruction is renamed, then it can be directed to the cluster that caches

the corresponding data. However, the effective address is generally not known at rename time,

requiring that we predict the bank that this memory operation is going to access. Based on this

prediction, the instruction is sent to one of the clusters. Once the effective address is computed,

appropriate recovery action has to be taken in the case of a bank misprediction.

If the operation is a load, recovery is simple - the effective address is sent to the correct

cluster, where memory conflicts are resolved in the LSQ, data is fetched from the cache bank,

and returned to the requesting cluster. If the memory operation is a store, the mis-direction could

result in correctness problems. A load in a different cluster could have proceeded while being

unaware of the existence of a mis-directed store to the same address. To deal with this problem,

we adopt a policy similar to that in [Zyuban and Kogge, 2001]. While renaming, a store whose

effective address is unknown is assigned to a particular cluster (where its effective address is

computed), but at the same time, a dummy slot is also created in the other clusters. Subsequent

72

loads behind the dummy slot in other clusters are prevented from proceeding because there is an

earlier store with an unresolved address that could potentially cause conflicts. Once the effective

address is computed, the information is broadcast to all the clusters and the dummy slots in all

the LSQs except one are removed. This ensures that no recovery has to be initiated on a store

mis-direction. However, this policy does reduce the effective size of the LSQ as some of the

entries are replicated until the effective address is computed. The broadcast increases the traffic

on the interconnect for register and cache data (which we model).

Bank prediction. Earlier work by Yoaz et al. [Yoaz et al., 1999] had proposed the use of

branch-predictor-like tables to predict the bank accessed by a load or store, with the intention of

using it to improve instruction scheduling. They had also suggested its use in steering memory

operations into different memory pipelines. We employ the use of similar bank predictors to

determine which bank the instruction will access. For a 16-cluster system, we need a 4-bit

prediction and each of these bits requires an independent predictor. In our simulations, we use

a two-level bank predictor with 1024 entries in the first level and 4096 entries in the second.

At the first level, bank histories of the predicted banks are maintained for a number of different

instructions (indexed by program counter (PC)). The history is xor-ed with some of the PC bits

to index into the second level that maintains 2-bit saturating counters that indicate the prediction

for the bit.

Steering heuristics. In a processor with a decentralized cache, the steering heuristic has to

handle three data dependences for each load or store – the two source operands and the bank

that caches the data. Since the transfer of cache data involves two communications (the address

and the data), performance is maximized when a load or store is steered to the cluster that is

predicted to cache the corresponding data (note that unlike in the centralized cache model, doing

so does not increase load imbalance as the cache is not at a single location). Even so, frequent

bank mispredictions and the increased traffic from store address broadcasts seriously impact

performance. Ignoring these effects improved performance by 29%. At the same time, favoring

the dependence from the cache bank results in increased register communication. Assuming

free register communication improved performance by 27%. Thus, register and cache traffic

contribute equally to the communication bottleneck in such a system.

Disabling clusters. So far, our results have assumed a clustered processor with a centralized

73

0

0.5

1

1.5

2

2.5

3

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

IP
C

s

4 clusters
16 clusters
variable-interval with expl
Interval length = 10K; no expl
Interval length = 1K; no expl

Figure 4.5: IPCs for dynamic interval-based mechanisms for the processor model with the

decentralized cache.

74

cache. Hence, reconfiguration is only a matter of allowing the steering heuristic to dispatch to a

subset of the total clusters. With a decentralized cache, each cluster has a cache bank associated

with it. Data is allocated to these cache banks in a word-interleaved manner. In going from 16

to four clusters, the number of cache banks and hence, the mapping of data to physical cache

lines changes. To fix this problem, the least complex solution is to stall the processor while the

L1 data cache is flushed to L2. Alternatively, we could allow the processor to make progress

while the flush took place in the background, but then, any cache miss would have to probe the

other clusters that could cache that data, in addition to probing the L2. We chose to go with

the former implementation because of its simplicity. Fortunately, the bank predictor need not

be flushed. With 16 clusters, the bank predictor produces a 4-bit prediction. When four clusters

are used, the two lower order bits of the prediction indicate the correct bank.

Results. Because the indexing of data to physical cache locations changes, reconfiguration

is not as seamless as in the centralized cache model. Every reconfiguration requires a stall

of the processor and a cache flush. Hence, the fine-grained reconfiguration schemes from the

earlier subsection do not apply. Figure 4.5 shows IPCs for the base cases and the interval-based

mechanisms. The third bar shows the scheme with exploration and a minimum interval length

of 10K instructions. The fourth and fifth bars show interval-based schemes with no exploration

and the use of distant ILP metrics to pick the best configuration. The simulation parameters for

the decentralized cache are summarized in Table 4.2. We find that the results trend is similar to

that seen before for the centralized cache model. Except in the case of djpeg, there is no benefit

from reconfiguring using shorter intervals. Overall, the interval-based scheme with exploration

yielded a 10% speedup over the base cases. More importantly, the performance achieved for

individual benchmarks is comparable to that for the best static organization.

Since the dynamic scheme attempts to minimize reconfigurations, cache flushes are kept to

a minimum. Vpr encountered the maximum number of writebacks due to flushes (400K), which

resulted in a 1% IPC slowdown. Overall, these flushes resulted in a 0.3% IPC degradation.

75

0

0.5

1

1.5

2

2.5

3

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

IP
C

s
4 clusters

16 clusters

variable-interval with expl

Figure 4.6: IPCs for the dynamic interval and exploration-based mechanism for the processor

model with the grid interconnect.

4.4.4 Sensitivity Analysis

Our results have shown that the communication-parallelism trade-off greatly affects the

scalability of different programs as the number of clusters is increased for two important cache

organizations. In this section, we confirm the applicability of our dynamic reconfiguration

algorithms to other meaningful base cases. Some of the key parameters that affect the degree

of communication and the degree of distant ILP are the choice of interconnect between the

clusters, the latency of communication across a hop, the number of functional units in each

cluster, and the number of instructions that can be supported by each cluster (the number of

registers and issue queue entries per cluster).

Figure 4.6 shows the effect of using a grid interconnect as described in Section 4.2.3 with a

centralized cache model. Because of the better connectivity, the communication is less of a bot-

tleneck and the performance of the 16-cluster organization is 8% better than that of the 4-cluster

system. For brevity, we only show results with the interval-based scheme with exploration. The

76

0

0.5

1

1.5

2

2.5

3

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

IP
C

s
4 clusters; few regs
16 clusters; few regs
dynamic; few regs
4 clusters; many regs
16 clusters; many regs
dynamic; many regs

Figure 4.7: Dynamic interval and exploration-based reconfiguration for processor models with

different resources. The first three bars represent a processor with a total of 320 registers and

160 issue queue entries (int and fp, each), while the latter three bars represent a processor with

640 registers and 320 issue queue entries.

trend is as seen before, but because the communication penalty is not as pronounced, the over-

all improvement over the best base case is only 7%. The use of fine-grained reconfiguration

techniques yields qualitatively similar results as with the ring interconnect.

Next, we study the sensitivity of the results to the size of various resources within a cluster.

Figure 4.7 shows IPCs for a processor model that reduces the number of registers to 20 and

the number of issue queue entries to 10 per cluster, and also for a model that increases the

number of registers to 40 and the number of issue queue entries to 20. With fewer resources

per cluster, the 16 cluster model performs best on an average (since more clusters are needed

to exploit the ILP) assuming a fixed configuration, whereas the performance of the 4 and 16

cluster models were nearly identical for the baseline set of resources. Thus, the improvement

relative to the 16-cluster model for the dynamic scheme is less (8%). With more resources per

77

0

0.5

1

1.5

2

2.5

cjpeg crafty djpeg galgel gzip mgrid parser swim vpr HM

IP
C

s
4 clusters
16 clusters
dynamic interval-based

Figure 4.8: Dynamic interval and exploration-based reconfiguration while assuming a latency

of two cycles for each hop on the interconnect.

cluster, the 4-cluster fixed configuration outperforms the 16-cluster configuration. The dynamic

scheme yields overall improvements of 9% relative to the 4-cluster base and 13% relative to the

16-cluster base.

In Figure 4.8, we show results for a model that is highly communication-bound and assumes

two cycles for each hop on the interconnect. While the 16-cluster base system performs 14%

worse than the 4-cluster system, the 16-cluster system with the interval-based dynamic scheme

performs 8% better than the 4-cluster system (and correspondingly, 23% better than the 16-

cluster base).

Finally, in Figure 4.9, we show the behavior of the interval and exploration based mech-

anism on all of SPEC2k1. We see that for most SPECInt programs, because of high branch

mispredict rates, 4 clusters are enough to exploit most of the available parallelism. The longest

1We exclude three programs that did not run with our simulator and two others that had extremely low IPCs and

dominated the overall HM numbers. Our algorithms do not adversely affect the performance of these two programs.

78

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gzip vpr gcc crafty parser eon gap vortex bzip2 twolf HM

IP
C

s

4 clusters
16 clusters
dynamic

(a) SPEC2k Integer results.

0

0.5

1

1.5

2

2.5

wup
wise sw

im
mgri

d
ap

plu
mesa

ga
lge

l art

eq
ua

ke
luc

as
fm

a3
d

ap
si HM

IP
C

s

4 clusters
16 clusters
dynamic

(b) SPEC2k FP results.

Figure 4.9: Performance results for all of SPEC2k for the 4 and 16-cluster fixed base cases and

the dynamic interval and exploration-based mechanism.

selected interval lengths were observed for bzip (2.56M) and gcc (640K). For most SPECFP

programs, 16 clusters yield optimal performance because of the high parallelism in these codes.

The dynamic mechanism is able to detect these differences in behaviors and adapts the hardware

so that performance closely matches the best static organization. Over the entire benchmark set,

this not only improves processor utilization, freeing up 8.2 clusters on average, but also im-

proves performance by 6% when compared to the overall best base case.

These results are qualitatively similar to the improvements seen with the interval-based

schemes in the earlier subsections, indicating that the dynamically tunable design can help im-

prove performance significantly across a wide range of processor parameters and applications.

Thus, the communication-parallelism trade-off and its management are likely to be important

in most processor settings of the future.

4.5 Related Work

A number of proposals based on clustered processors have emerged over the past decade

[Akkary and Driscoll, 1998; Baniasadi and Moshovos, 2000; Canal et al., 2000; Canal et al.,

2001; Capitanio et al., 1992; Farkas et al., 1997; Keckler and Dally, 1992; Lowney et al., 1993;

Nagarajan et al., 2001; Parcerisa et al., 2002; Ranganathan and Franklin, 1998; Rotenberg

et al., 1997; Sohi et al., 1995]. These differ in the kinds of resources that get allocated, the

79

instruction steering heuristics, and the semantics for cross-cluster communication. The cache

is a centralized structure in all these models. These studies assume a small number of total

clusters with modest communication costs. The Multiflow architecture [Lowney et al., 1993]

and the Limited Connectivity VLIW [Capitanio et al., 1992] were among the earlier works

that distributed the register file among groups of ALUs. Farkas et al [Farkas et al., 1997] deal

with a dynamically scheduled processor and also distribute the issue queue across the clusters.

They do a compile-time assignment of instructions to clusters by looking at neighboring static

instructions. Canal et al [Canal et al., 2000; Canal et al., 2001] use run-time statistics to do a

dynamic steering of instructions to clusters. The best performing heuristic uses information on

register dependences and load imbalance. Baniasadi and Moshovos [Baniasadi and Moshovos,

2000] do a similar study for a quad-clustered processor model. Their results show that a simple

heuristic that assigns a series of (instructions to a cluster, where the cluster is picked in a round-

robin manner, performs as well as other more complicated heuristics that take dependences and

past history into account. The Alpha 21264 [Kessler, 1999] is a clustered microarchitecture

with two clusters, but replicates the entire register file. Ranganathan and Franklin [Ranganathan

and Franklin, 1998] cluster the functional units and the issue queue, but maintain a centralized

register file.

Various other architectures like Multiscalar [Sohi et al., 1995], Trace processors [Rotenberg

et al., 1997], and DMT [Akkary and Driscoll, 1998] have been proposed that use multiple

execution units (clusters). Each cluster is assigned a sequential segment of the program, with

all except one of them being speculative in nature. Palacharla [Palacharla et al., 1997] proposes

a clustered issue queue, where successively dependent instructions are steered into a single

cluster. The head entries of each queue are the only instructions that could be made ready in a

cycle, hence the complexity of the wakeup and select logic is greatly reduced.

All these various bodies of work do not attempt to distribute the cache among the various

clusters. Recent studies have looked at the problem of increasing cache bandwidth, but have not

placed them in the context of clustered microarchitectures. A truly multi-ported cache would

be very expensive to implement, prompting the proposal of various alternatives. One such

alternative is double-pumping, which runs the cache at a frequency that is an integral multiple

of the processor frequency. Since this technique has limited scalability, banked caches have

80

emerged as the acceptable means of providing high bandwidth [Rivers et al., 1997]. Rivers et

al [Rivers et al., 1997] discuss the trade-offs of various designs. Replicating the data cache,

with each bank having a single read and write port, can accommodate multiple reads in the

same cycle, but only a single write can occur in a cycle as it would have to write simultaneously

to each bank. In a line interleaved cache, each bank gets a subset of the total cache lines.

Multiple accesses can be supported in a cycle so long as they are to different cache lines. This

restriction degrades IPC somewhat as spatial locality dictates that successive accesses are often

to the same cache line. Word interleaving tries to alleviate this problem by distributing each

cache line across the various banks. This implies that, for example, in a dual-banked cache, at

most one odd and one even word can be accessed in a cycle. However, each bank would have

to replicate the tag storage, unlike in a line interleaved cache. The banked organizations cluster

the cache, but leave the rest of the processor, including the load-store queue (LSQ) untouched.

Cho et al [Cho et al., 1999b; Cho et al., 1999a] cluster the cache and the LSQ, but not

the rest of the processor. This helps reduce the size of the LSQ and also serves to increase

the bandwidth of the cache system without true multi-porting. They use a different criterion

for splitting the cache into banks. They notice that 50% of all data accesses are made to the

stack/frame and this can often be detected by just looking at the instruction. Only in rare cases

can a load be ambiguous in terms of which data region it is accessing. Loads and stores are split

into one of two streams early in the pipeline. They make the optimistic assumption that stores

in one stream will not conflict with loads in the other stream. As a result, loads in one stream

need not compare their address with the addresses of pending stores in the other stream, and this

helps reduce the size of the LSQ. One of the cache banks only contains stack and frame data,

while the other bank maintains the rest of the data, allowing one access to each bank per cycle.

The authors further make the observation that due to the small size of temporary data allocated

on the stack, the cache bank servicing the stack accesses can be as small as 4KB. At the time of

actually issuing the ld/st, if it is discovered that the instruction was mis-categorized, recovery is

initiated. The authors do not address the problem of how such a partition would scale beyond

two clusters.

Yoaz et al [Yoaz et al., 1999] anticipate the importance of splitting data accesses across

multiple streams early and propose predictors to do the same. They evaluate the accuracy of

81

branch predictor-like schemes to do the prediction and find them to be about 70% accurate for

two streams. They propose two uses for such a predictor - (i) improved scheduling of memory

operations, and (ii) the use of multiple memory pipelines like that proposed by Cho et al [Cho

et al., 1999b; Cho et al., 1999a]. They mention that predictions with low confidence can direct

the instruction to all the memory pipelines.

Recently, Zyuban and Kogge [Zyuban and Kogge, 2001] incorporated a clustered cache in

their study on the power efficiency of a clustered processor. Our implementation of the decen-

tralized cache closely resembles theirs. A recent study by Aggarwal and Franklin [Aggarwal

and Franklin, 2001] explores the performance of various steering heuristics as the number of

clusters scale up. Theirs is the only study that looks at as many as 12 clusters and proposes the

use of a ring interconnect. They conclude that the best steering heuristic varies depending on

the number of clusters and the processor model. To take this into account, each of our clustered

organizations was optimized by tuning the various thresholds in our steering heuristic.

Agarwal et al. [Agarwal et al., 2000] show that processors in future generations are likely

to suffer from lower IPCs because of the high cost of wire delays. Ours is the first study to

focus on a single process technology and examine the effects of adding more resources. The

clustered processor model exposes a clear trade-off between communication and parallelism,

and it readily lends itself to low-cost reconfiguration.

4.6 Summary

In this chapter, we evaluated the effects of shrinking process technologies and dominat-

ing wire delays on the design of future clustered processors. While increasing the number of

clusters to take advantage of the increasing chip densities improves the processor’s ability to

support multiple threads, the performance of a single thread can be adversely affected. This

is because performance on such processors is limited by cross-cluster communication costs.

These costs can tend to dominate any increased extraction of instruction-level parallelism as the

processor is scaled to large numbers of clusters. We have demonstrated that dynamically choos-

ing the number of clusters using an exploration-based approach at regular intervals is effective

in optimizing the communication-parallelism trade-off for a single thread. It is applicable to

82

almost every program and yields average performance improvements of 11% over our base

architecture. In order to exploit phase changes at a fine grain, additional hardware has to be

invested, allowing overall improvements of 15%. Since 8.3 clusters, on average, are disabled

by the reconfiguration schemes, there is the potential to save a great deal of leakage energy in

single-threaded mode. The throughput of a multi-threaded workload can also be improved by

avoiding cross-thread interference by dynamically dedicating a set of clusters to each thread.

We have verified the validity of our results for a number of interesting processor models, thus

highlighting the importance of the management of the communication-parallelism trade-off in

future processors.

83

5 The Future Thread

In this chapter, we extend the exploitation of the concept of distant and nearby parallelism

introduced in Chapter 4. We show how a processor with limited resources could mine distant

ILP by using a helper pre-execution thread. The allocation of the limited processor resources

between the two threads significantly impacts performance and introduces a trade-off between

nearby and distant parallelism. We employ the adaptation algorithms introduced in Chapter 2

to determine the optimal allocation of these resources.

5.1 Managing the In-Flight Window

Dynamic superscalar processors perform register renaming and out-of-order issue in hard-

ware to extract greater instruction-level parallelism (ILP) from existing programs. A significant

performance limitation in such processors is the lack of forward progress in the midst of long

latency operations (e.g., cache misses). Ideally, these operations should be overlapped with

the execution of other independent instructions, especially other performance-degrading long-

latency loads or branch mispredicts. However, in order to continue to keep the processor busy,

a sufficiently large instruction window would have to be examined to find these independent

instructions.

This problem cannot be solved by simply increasing the number of in-flight instructions, as

it would require larger register files and reorder buffers that may impact critical timing paths.

The register file, in particular, can often determine the cycle time and several approaches that

attempt to balance latency and IPC have been proposed. The Alpha 21264 implements a clus-

84

tered register file [Kessler, 1999] in an attempt to reduce average latency. Similarly, register

file caches have also been proposed [Cruz et al., 2000] in order to access a smaller subset of

registers in a single cycle. Both of these techniques, however, cause IPC degradation when

compared to a single monolithic register file of the same size. A multi-cycle register file

has its own problems - design complexity in pipelining a RAM structure, having two levels

of bypass (which is one of the critical factors in determining cycle time [Cruz et al., 2000;

Palacharla et al., 1997]), and reduced IPC because of longer branch mispredict penalties and

increased register lifetimes. These problems are only exacerbated in an SMT processor, where

the register file resources have to be shared by multiple threads. Further, as we move to

smaller process technologies, the dominating effect of long wire delays will make it even

more prohibitive to implement large register files in wide-issue machines [Farkas et al., 1996;

Palacharla et al., 1997].

The fundamental reason why the register file size has such a large impact on the size of the

instruction window, and hence performance, is that instructions can be renamed and dispatched

only when there are free registers available. Registers are freed only when instructions commit,

and instructions are committed in order. A single instruction that takes a long time to complete

could stall the commit stage, thereby holding up all the registers and not allowing subsequent

instructions to dispatch. During this period, the out-of-order execution core can only look at a

restricted window of instructions to extract ILP. As the processor-memory speed gap increases,

there will be an increasing number of long-latency loads, causing dispatch to frequently stall as

it runs out of physical registers. Thus, there is a need for new approaches that allow for forward

progress to be made without increasing the complexity of critical hardware structures.

In this chapter, we present a novel architecture that uses the limited number of physical

registers to dynamically trade nearby with distant ILP, while still maintaining precise exceptions

and program correctness. The front-end can support fetch from two threads, the second of which

is dynamically spawned by the hardware rather than being statically created by the program.

Initially, the only thread to run is the main (primary) program. The secondary (future) thread

consists only of a program counter and register state. Out of the available rename registers, we

dynamically reserve a certain number for the future thread, according to the program’s current

needs to exploit far-flung ILP. Once the primary thread runs out of its allocated registers, it

85

stalls, and the future thread gets triggered and starts off from where the primary left off. This

future thread cannot alter program state, i.e., it cannot write to memory or update the primary

thread’s registers. It uses the remaining registers to rename and dispatch its instructions.

The future thread serves the purpose of potentially warming up the register file, data and

instruction caches, and resolving mispredicted branches early. In order to allow the future

thread to make progress beyond the instructions to which its registers are allocated, we relax

the constraints on when these registers are released back into the free list. First, a register is

released as soon as all its consumers have read its value, i.e., we make the optimistic assumption

that there will be no branch mispredicts or exceptions raised. Second, in order to avoid holding

future thread resources that prevent other independent instructions from executing, we also add

a timeout mechanism to remove instructions that wait for operands in the issue queue for too

long. This frees up registers and issue queue slots so that other productive dependence chains

can make progress, thereby allowing the future thread to get far ahead of the primary. When

the primary thread ceases to be stalled, it dispatches its subsequent instructions, which are

potentially already executed by the future thread. However, progress is faster since its loads

have been prefetched and its branches have been correctly predicted by the future thread. The

use of an Instruction Reuse Buffer (IRB) [Sodani and Sohi, 1997] could speed up the execution

even more as some of these instructions would not have to be re-executed.

Thus, we rob the main (primary) program thread of some of its resources (which are in

effect idle) and allocate them to this opportunistic ‘helper’ (future) thread that seeks indepen-

dent instructions that are more distant. The benefit of such an approach would depend on the

nature of the program, and we present a mechanism that dynamically performs this allocation

of resources between the primary and future threads. As a result, in situations where the future

thread degrades performance, the processor can always revert back to an organization like the

base case, where all resources belong to the primary thread. Our simulation results indicate that

relative to the base simulated architecture, performance is improved overall by 21% with the

dynamic helper thread.

86

 IFQ
RENAME
TABLE ROB

ISSUE Q

PHYSICAL
REGISTER FILE

FUs

BRANCH
PREDICTOR

I−CACHE

Figure 5.1: The base processor structure

5.2 The Future Thread Microarchitecture

5.2.1 The Base Processor

In a typical processor architecture (Figure 5.1) such as that of the R10000 [Yeager, 1996]

and the Alpha 21264 [Kessler, 1999], the processor front-end performs branch prediction,

fetches instructions from the instruction or trace cache, and deposits them in the instruction

fetch queue (IFQ). The IFQ holds the fetched instructions until they get renamed and dispatched

into the issue queue. In the dispatch stage, the logical registers are mapped to the processor’s

pool of physical registers. The rename table keeps track of logical to physical register mappings

and is used to rename instructions before putting them into the issue queue. The destination reg-

ister is mapped to a new physical register that is picked out of the free list (the list of registers

not presently in use). The mapping is also entered into the re-order buffer (ROB), which keeps

track of register mappings for all instructions that have been dispatched, but not committed. The

issue queue checks for register dependences. As instructions become ready and issue, they free

up their issue queue entry. A branch stack within the rename table checkpoints the mappings at

every branch so that they can be reinstated in the event of a branch misprediction.

Instructions are issued from the issue queue when their register and memory dependences

are satisfied, and they are committed from the ROB in program order as they complete. Consider

the following example:

87

Original code Renamed code

lr7 <- ... pr15 <- ...

... <- lr7 ... <- pr15

branch to x branch to x

lr9 <- lr3 pr31 <- pr19

lr7 <- ... pr43 <- ...

... ...

end end

x: x:

... <- lr7 ... <- pr15

At dispatch, the first write to logical register 7 (lr7) causes it to get mapped to physical register

15 (pr15). This is followed by an instruction that reads lr7. The branch is then predicted to be

not taken and the next instructions to be dispatched are a write to lr9 and a write to lr7. At this

point, lr7 gets mapped to pr43 and subsequent users of lr7 will now read from pr43. Even if the

instruction that reads pr15 has completed, pr15 cannot be released back into the free list unless

the write to pr43 has committed. There are two reasons for this: (i) if the write to pr31 raises

an exception, to reflect an accurate register file state, lr7 should show the value held in pr15,

(ii) if the branch was mispredicted, we would need to jump to x, where the read from lr7 would

actually refer to pr15. Hence, pr15 remains live until all instructions prior to the write to pr43

are known to not raise an exception and have all their branches resolved.

In the example shown above, if the write to pr31 was a load instruction that missed in the L2

and had to go to memory, it could occupy the head of the ROB for potentially a hundred cycles.

If the processor has 24 rename registers, only up to 23 more instructions that write to registers

can be dispatched in this period. This severely limits the ability of the processor to extract ILP.

5.2.2 Overview of the Future Thread

The goal of the proposed architecture is to circumvent the in-order commit process in order

to exploit any potential far-flung ILP in addition to nearby ILP. We begin with an overview of the

88

 IFQ
RENAME
TABLE ROB

ISSUE Q

PHYSICAL
REGISTER FILE

FUs

 TABLE

PREG STATUS TABLE
(fields − pregnum, seqnum,
 users, overwrite, timeout)

seqnum

FUTURE IFQ
FUTURE RENAME

BRANCH
PREDICTOR

I−CACHE

BRANCH
FIFO

Figure 5.2: The architecture supporting the future thread (components belonging to the future

thread are shaded).

proposed microarchitecture, followed by a more detailed description of the various operations.

As an illustrative example, we begin with a base processor that has 32 int and 32 fp logical

registers, and 72 int and 72 fp physical registers (i.e., there are 40 int and 40 fp rename registers).

In the future thread architecture, the front-end, comprising the IFQ and the register rename

table, is replicated (Figure 5.2). While the primary thread is not stalled, the future thread does

not dispatch instructions, but continues to update its rename table to reflect the new mappings

in the primary thread. Some of the 40 integer rename registers (12, for example), are reserved

for the future instructions. When the primary thread runs out of registers and stalls, the future

thread begins to dispatch subsequent instructions using its allocated physical registers. These

registers are then freed according to two criteria. Registers are reused as soon as there is no

use for them (assuming no mispredicts and exceptions). In addition, if an instruction waits

too long in the issue queue, it gets timed out and its register is reused. Instructions waiting in

the issue queue for this register are also removed. Application of these two criteria is possible

because of the fact that the primary thread will re-execute these instructions in order to ensure

in-order commit and program correctness. Thus, registers reserved for the future thread can be

reused much more quickly, potentially allowing the thread to execute far ahead of the primary,

89

enabling prefetching of data into the cache, early branch prediction, and value reuse. The future

thread does not engage in any speculation apart from speculating across branches. It respects

register and memory dependences while issuing instructions.

5.2.3 Additional Hardware Structures

The three main additional structures are the future IFQ, the future rename table, and the

Preg Status Table.

There are two program counters, one for the primary thread, and one for the future. These

are identical at first, and fetched instructions are placed in each IFQ. Every cycle, instructions

can potentially be renamed by both threads and dispatched into the issue queue. If the same

instruction is being handled by both threads, the future thread will not dispatch it. The mapping

corresponding to that instruction in the primary rename table is copied into the future rename

table.

Each dynamic instruction is assigned a sequence number (this is a counter that wraps around

when full and is large enough to ensure that all in-flight sequence numbers are unique — pos-

sibly 10 bits long). Sequence numbers are rolled back on a branch mispredict. These sequence

numbers make it possible to relate the primary instructions to their future counterparts.

When the primary thread runs out of physical registers, it stalls. The future thread contin-

ues, using the remaining physical registers to map subsequent instructions. For each instruction

that is dispatched by the future thread, an entry is added to the Preg Status Table. This is a

small CAM structure, the size of the number of registers reserved for the future thread (12 en-

tries, in this example, for int and fp each), that keeps track of the current physical registers in

use within the future thread. The other fields in this structure are: (i) Seqnum, the sequence

number corresponding to the instruction that has the physical register as destination, (ii) Users,

indicating how many more consumers of that register still remain in the pipeline, (iii) Over-

write, indicating that the corresponding logical register has been remapped by a subsequent

instruction, (iv) Written, indicating that the result has been written into the physical register, (v)

Timeout, set to a particular value (30 in our case) at the time of dispatch, and decremented every

cycle if the instruction has still not been issued. The Users field is incremented every time an

90

instruction is dispatched that sources that physical register. It is correspondingly decremented

when that instruction issues. The design considerations of the Preg Status Table are discussed

in Section 5.4.

5.2.4 Timeout and Register Reuse

To help the future thread use its register resources more efficiently, we eagerly free up

registers using the timeout mechanism and the register reuse criteria.

The rationale for the timeout mechanism can be illustrated by Figure 5.3. It shows a his-

togram of the number of instructions that wait in the issue queue for a given period of time. The

histogram is for a 20 million instruction window from the program perimeter, and is typical of

most memory-intensive programs. It can be seen that instructions are made ready within the

first few cycles of their dispatch, or after about 20 cycles, or after 100 cycles. These correspond

roughly to the L1, L2, and memory access times. The timeout heuristic models the fact that

the non-readiness of an instruction in the first 30 cycles implies that it is waiting on a memory

access and is likely to not be woken up for another 70 cycles. Hence, we time it out and allow

its register and issue queue entry to be used by other instructions.

Registers get put back into the free list as soon as their overwrite and written bits are set

and the number of users becomes zero. Likewise, when the timeout counter becomes zero,

the register is put back in the free list, its mappings in the rename table (if still active) and

the Preg Status Table are removed, and the instruction is removed from the issue queue. In

order to ensure the correct execution of instructions, in the next cycle, the tag of this timed out

register is broadcast through the issue queue and all instructions that source it, time themselves

out. This not only frees up the issue queue slots but also ensures that the instructions do not

wake themselves up when the same register tag (corresponding to the completion of a later

instruction) is broadcast as ready. The process is repeated for the newly timed out instructions.

Future instructions dependent on this value will not be dispatched due to the invalid entry in the

rename table. This operation could take a few cycles depending on the length of the dependence

chain in the issue queue. To reduce hardware overhead, we could impose the restriction that

future instructions only occupy certain issue queue slots, thereby having this associative logic

91

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3
x 106

Figure 5.3: Histogram showing waiting time in the issue queue for a portion of the program

perimeter. The X axis shows the time spent (in cycles) waiting in the issue queue, and the Y

axis shows the number of instructions that waited for that period.

for only a subset of the issue queue. While dispatching a primary instruction, if the issue queue

is full, one of the future instructions is explicitly timed out to make room for it. This ‘stealing’

of issue queue slots ensures that priority is always given to the primary instructions.

5.2.5 Redispatching an Instruction in the Primary

When the instruction at the head of the ROB completes, the primary thread can start making

progress again as registers get put in the free list. Instructions are fetched again from the I-cache

into the IFQ and then dispatched. While dispatching an instruction, the Preg Status Table and

future rename table are looked up. The future rename table keeps track of the sequence number

for the last instruction that mapped the logical register within the future thread, while the Preg

Status Table includes the sequence number of the instruction writing the physical register. The

current instruction’s sequence number is used to associatively look up the Preg Status Table. If a

physical register mapping still exists for that instruction in the future thread, the same physical

register is used to map the instruction in the primary as well. The corresponding physical

register entry is removed from the Preg Status Table, as the register is no longer subject to the

92

rules of the future thread. The future instructions that source this register need not update their

operand tags. Also, the instruction need not be dispatched again into the issue queue, as the

earlier dispatch will suffice to produce a result in that physical register. If a result already exists

in the physical register, the future thread helps speed up the primary thread even more. This

phenomenon is referred to as natural reuse. If a physical register mapping for that instruction

does not exist in the Preg Status Table (the register has already been timed out or reused) and

if there is a match with the sequence number associated with the future rename table’s logical

register entry, the future rename table is updated to reflect the mapping in the primary table.

5.2.6 Recovery after a Branch Mispredict

Once triggered, only the future thread accesses the branch predictor. It communicates its

predictions to the primary thread through a FIFO queue. These predictions in the queue are

updated when resolved by the future thread, so that the primary thread need not go along the

mispredicted path.

When the future thread detects a mispredict, it checkpoints back to the state at the mis-

predict. However, some values may be lost (as the register might have been reused), thereby

disallowing dispatch of instructions along some dependence chains.

As mentioned, the future rename table tracks the sequence number corresponding to the

logical register mapping. A conventional rename table checkpoints its mapping at every branch.

For the future thread, the mappings that might have been true at the time of checkpointing need

not be true when the checkpoint is reinstated – instructions prior to the branch may have timed

out, had their registers reused, or been re-dispatched as part of the primary thread. Hence,

instead of checkpointing the mapping, we checkpoint the sequence number for the mapping.

In addition, the Preg Status Table also checkpoints its overwrite bit. While reinstating the

checkpoint, the sequence number is inspected to figure out where the correct mapping can be

found. If the sequence number is less than the last sequence number encountered by the primary

thread, then it means that the primary rename table has the correct mapping for that register.

If the sequence number is greater, it means that the register, if still valid, should be part of

the future thread and have a mapping in the Preg Status Table. In the subsequent cycles, these

93

mappings are copied back into the future rename table so that it reflects an accurate state, and

the overwrite bit is recovered. The Preg Status Table needs to also have an accurate count of the

number of active users in the pipeline. As unissued instructions along the mispredicted path are

squashed, they decrement the Users field for their corresponding source registers, thus ensuring

its correctness. In Section 5.4, we suggest a few optimizations that would allow this process

to be performed quickly and be overlapped with the time taken to fetch instructions from the

correct path.

If the primary thread detects a mispredict, the future thread starts from scratch after copying

the contents of the primary rename table.

5.2.7 Exploiting the IRB

In the microarchitecture described thus far, instructions may get executed by both the pri-

mary and future threads. An instruction reuse buffer (IRB) could be used to minimize this

redundancy1 . An implementation scheme like)* or) *�+
 [Sodani and Sohi, 1997] could be

easily used with minimal modification. In our simulations, we use the),* scheme because of

its simplicity. In this scheme, the reuse buffer keeps track of the program counter, the operand

names (register addresses) for an instruction, and the result value it produced when it was last

invoked. During dispatch, if a program counter match is found in the IRB and the result value

is valid, an instruction can bypass the issue and execute stages of the pipeline. Each instruction

creates an entry in the IRB at the time of dispatch, and updates the result value at the time of

completion. When an instruction dispatches, it also invalidates all the entries in the IRB that

source the same logical register as its destination. Similarly, a store invalidates all loads in the

IRB that have the same source address.

To support the future thread, two modifications need to be made to the IRB. Primary instruc-

tions cannot create IRB entries once the future thread is triggered (these entries may be invalid

because the future thread may have dispatched instructions that have modified the operands,

which the primary has no way of knowing). In addition, the entries in the IRB also keep track

1An IRB in a conventional microarchitecture exploits value locality by not re-executing instructions if they have

the same operand values.

94

of the sequence number for the future instruction that produced them. The primary thread can

reuse valid results in the IRB as long as these results were produced by instructions with se-

quence numbers smaller than or equal to that of the instruction being dispatched. This ensures

that the contents of the logical registers that are the operands is the same as that used to generate

the result.

5.2.8 Dynamic Partitioning of Registers

The allocation of physical registers between the primary and future threads need not be set

at design time. In fact, a number of programs that do not have distant ILP would be better

off using their registers to exploit nearby ILP rather than have the future thread throw those

results away to advance further. We include a mechanism that dynamically accomplishes this

partitioning on the fly. The number of registers allocated to each thread is controlled by stalling

the thread’s dispatch as soon as it has consumed its allotted registers. A simple counter keeps

track of the registers allotted to and freed by each thread. A register that can be dynamically set

specifies the maximum allowed counter value.

We employ two of the adaptation algorithms described in Chapter 2 to determine the optimal

allocation of registers at run-time. The first is the interval-based mechanism with exploration. If

the processor has forty rename registers, during the exploration process, nine different candidate

organizations are profiled, with four to forty rename registers being allocated to the primary

thread (in steps of four). The best performing organization is then used till the next phase

change is detected. Most of the programs in this study exhibit fairly low instability factors and

we use a fixed 100K instruction interval for all the programs. The second mechanism employs

positional adaptation also with an exploration process.

Chapter 2 also describes mechanisms that rely on hardware metrics to predict the optimal

organization instead of implementing an exploration process. However, in the context of the

future thread, no single metric can estimate the benefit of the pre-execution thread. Even if the

program has a high degree of distant ILP, pre-executing the distant instructions may not impact

the performance of the primary thread if there is no prefetching effect, if no branch mispredicts

are resolved, or if register values are not re-used. The use of the pre-execution thread also

95

Fetch queue size 16

Branch predictor comb. of bimodal and 2-level gshare;

bimodal size 2048;

Level1 1024 entries, history 10;

Level2 4096 entries (global);

Combining predictor size 1024;

RAS size 32; BTB 2048 sets, 2-way

Branch mispredict penalty 9 cycles

Fetch, dispatch, issue, and commit width 4

Issue queue size 20 (int), 15 (fp)

L1 I and D-cache 64KB 2-way, 2 cycles, 32-byte line sizes

L2 unified cache 1.5MB 6-way, 15 cycles, 64-byte line size

TLB 128 entries, 8KB page size

Memory latency 70 cycles for the first chunk

Memory ports 2 (interleaved)

Integer ALUs/mult-div; FP ALUs/mult-div 4/2; 2/1

Table 5.1: Simplescalar simulator parameters

reduces the window seen by the primary thread and its negative impact is hard to estimate.

Hence, we focus our results only on the exploration-based algorithms.

5.3 Results

5.3.1 Methodology

Like in the earlier chapters, we used Simplescalar-3.0 [Burger and Austin, 1997] for the

Alpha AXP instruction set to simulate a dynamically scheduled 4-wide superscalar processor.

The simulation parameters are summarized in Table 5.1 and are again similar to those seen in

previous chapters.

The simulator has been modified to model the memory hierarchy in great detail (including

96

Benchmark Input dataset Simulation window Base case IPC

em3d (Olden) 20000 nodes, arity 20 500M-525M instructions 0.51

mst (Olden) 256 nodes 9M-14M instructions 0.44

perimeter (Olden) 32Kx32K 1515-1540M instrs 0.39

art (SPEC2k) ref 500M-550M instrs 0.96

swim (SPEC2k) ref 1000M-1025M instrs 0.73

lucas (SPEC2k) ref 2000M-2050M instrs 1.03

sp (NAS) A, uniprocessor 2500M-2550M 0.98

bt (NAS) A, uniprocessor 3200M-3250M 0.71

go (SPEC95) ref 1000M-1025M 1.29

compress (SPEC95) ref 2000M-2025M 1.53

Table 5.2: Benchmark description

interleaved access, bus and port contention, writeback buffers). We also model a physical reg-

ister file and an issue queue that is smaller than the ROB size. In Simplescalar, the issue queues

and the ROB constitute one single unified structure called the Register Update Unit (RUU).

These are further divided into separate integer and floating-point structures.

Our base processor has parameters resembling the Alpha 21264 [Kessler, 1999]. We use 72

integer2 (int) and 72 floating-point (fp) physical registers (corresponding to 40 rename registers,

int and fp, each) and integer and fp issue queues of 20 and 15 entries, respectively. We use a

sufficiently large ROB as it is a relatively simple structure and is likely to not be on the critical

path. Dispatch gets stalled as soon as either the registers or the issue queue entries get used up,

so the ROB occupancy rarely exceeds 80 entries, which is the ROB size in the 21264. Our goal is

to demonstrate potential improvements on an existing processor model. In addition, we present

results with and without a small 16-entry fully-associative IRB with the) * implementation

scheme.

We ran our simulations on 10 programs from SPEC2000, SPEC95, the NAS Parallel Bench-

mark [Bailey et al., 1991], and the Olden suite [Rogers et al., 1995]. Eight of these programs

2The Alpha has 80 integer registers. We use 72 for uniformity.

97

are memory-intensive and suffer the most from the problem of a single long latency instruction

holding up the commit stage. We have also included two non-memory-intensive programs (go,

compress) from SPEC95 INT, to illustrate the effect of the future thread on this class of applica-

tions. To reduce simulation time, we studied cache miss rate traces to identify program warm-up

phases and smaller instruction windows that were representative of the program behavior3 . The

programs were also run for 1M instructions in detail to warm up the various structures before

measuring performance. Details on the benchmarks are listed in Table 5.2. The programs were

compiled with Compaq’s cc, f77, and f90 compilers for the Alpha 21164 with full optimizations.

5.3.2 Analysis

We start by examining the effect of the allocation of registers between the two threads. This

demonstrates the trade-off between nearby and distant ILP and we then show the efficiency of

our adaptation algorithms in handling this trade-off. Finally, we identify the contributions of

the different features of the future thread to the performance improvement and study the effect

of various parameters like the IRB, issue queue, and register file size. We also evaluate future

processor models with projected parameters and study the combination of the future thread with

a hardware stride prefetcher.

Dynamic partitioning of registers

Figure 5.4 shows speedups with the future thread for various fixed allocations of registers

between the primary and future threads. For all figures, the IPCs have been normalized with

respect to an identical base case that has no future thread (i.e., all rename registers are allocated

to the primary thread). Of these various static organizations, the 28::12 allocation that reserves

28 registers for the primary thread has the best overall speedup (when comparing the harmonic

mean (HM) of IPCs). However, we see that different allocations do well for different programs.

This depends on whether the program has distant or nearby ILP and whether the number of

registers reserved for the future thread are enough to allow it to advance far enough to exploit

3Because each iteration in bt is very long, we used a smaller window than was representative of the whole

program. However, the results were selectively verified to be indicative of the performance over longer windows.

98

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

em3d mst peri art swim lucas sp bt go comp HM

No
rm

ali
ze

d
IP

Cs

8:32
16:24
24:16:00
28:12:00
32:08:00
interval-expl
positional-expl

Figure 5.4: Performance of the future thread for various fixed register allocations between the

primary and future thread. For example, ‘8::32’ represents an allocation where 8 rename regis-

ters are reserved for the primary thread and the remaining 32 are reserved for the future. The

second last bar shows performance with the interval and exploration based scheme that dy-

namically picks the best allocation. The last bar represents the performance with positional

adaptation and exploration. IPCs have been normalized with respect to a base case that has no

future thread and uses all 40 rename registers for the primary.

99

em3d mst peri art swim lucas sp bt go comp

Num timeouts 0.29 1.12 0.56 0.31 0.42 0.59 0.37 0.16 0.00 0.03

Num eager reg 0.45 0.03 0.65 0.30 0.11 0.06 0.13 0.28 0.01 0.06

release

Num natural 0.14 0.13 0.20 0.23 0.37 0.25 0.22 0.26 0.10 0.16

reuse

Avg dist 71,136 25,115 51,114 63,131 67,123 31,183 75,128 47,75 19,19 39,49

between oldest

and youngest

instrs

(base, future)

Num loads 0.12, 0.02, 0.11, 0.02, 0.04, 0.05, 0.03, 0.05, 0, 0,

issued by 0.05 0.02 0.05 0.01 0.04 0 0.02 0.04 0 0

primary thread

that take more

than 40 cycles

(base, future)

Num future 0.7 0.2 1.4 0.8 0.8 0.6 0.6 0.9 0.2 0.4

instrs issued

Branch 95% 97% 94% 98% 99% 98% 89% 98% 80% 93%

prediction rate

(rounded off)

% of mispreds 88% 0% 59% 42% 74% 99% 73% 68% 4% 3%

detected by

future instrs

IRB hit rate 20% 5% 10% 35% 8% 0% 5% 14% 22% 16%

for primary

thread

Table 5.3: Various statistics pertaining to the future thread (with a dynamic interval-based allo-

cation of registers) and the base case with no future thread (most numbers are normalized to the

number of committed instructions, for example, Num timeouts is the number of timeouts per

committed instruction).

100

Benchmark Number of phase changes Most commonly selected allocations

em3d 1 28:12

mst 11 24:16

perimeter 1 16:24, 28:12

art 17 28:12

swim 0 28:12

lucas 0 8:32

sp 9 28:12, 36:4

bt 4 20:20, 36:4

go 27 40:0, 32:8

compress 11 36:4, 32:8

Table 5.4: Number of phase changes encountered for each program.

this distant ILP. The highest speedups for lucas and mst are seen by reserving only eight regis-

ters for the primary thread, but this is the worst allocation for a number of programs that also

have nearby ILP. This motivates the need for a dynamic scheme that picks the right allocation

on the fly, depending on program requirements. The second last bar in Figure 5.4 shows that

the overall speedup of 1.17 with the interval-based dynamic scheme far exceeds the speedup

of 1.11 possible with the best static organization. The most impressive speedups are seen for

em3d, perimeter, lucas, and bt, all of which have a high degree of distant ILP. We see almost

no improvements for non-memory-intensive programs like go and compress4 as they rarely run

out of registers, thereby not triggering the future thread. Table 5.4 details the number of phase

changes seen for each program in the benchmark set. The last bar shows performance results

when attempting positional adaptation with exploration. We find that significant speedups can

be had in many cases, but this is often less than that possible with the interval-based mechanism.

The in-flight windows considered by the future thread are on the order of a few hundred instruc-

tions. Hence, attempting reconfiguration at finer granularities can lead to noisy measurements

4Compress has a high L1 miss rate, but a small L2 miss rate, and the instruction window in the base processor is

large enough to hide L2 latencies.

101

and incorrect decisions. We observed best performance while attempting reconfigurations at

every 100th branch and while recording five samples for each event. Because of this, the ini-

tial overhead of computing the predictions is fairly high. Swim was the only program where

positional adaptation outperformed the interval-based scheme. This is caused by the unpre-

dictable performance observed because of lost register values following a branch mispredict.

This phenomenon is further discussed in the next sections.

All subsequent discussions and results assume the use of the dynamic interval-based allo-

cation of registers between the primary and future threads.

Effects of Prefetch, Natural Reuse, Branch Resolution, and Instruction Reuse

Table 5.3 shows various statistics that help us explain the behavior of the future thread.

Figure 5.5 helps isolate the contributions of the various components to the performance of the

future thread. In Figure 5.5, the first bar (only prefetch) shows a future thread implementation

that runs ahead along predicted paths to warm up the data and instruction caches, while ignoring

the outcome of all branch instructions. In this scenario, branch mispredicts are discovered only

when the primary thread re-executes the branch instruction. Register values produced by the

future thread are thrown away and never used by the primary thread. There is no IRB in the

processor. The second bar includes the effect of natural reuse. Register values produced by the

future thread can be integrated into the primary thread if the future thread has not recycled that

register. The third bar shows an implementation where the future thread also resolves branch

mispredicts early and initiates recovery. The fourth bar represents a model that adds an IRB.

We see that the prefetch effect results in big improvements in some of the programs (perime-

ter, lucas, bt), but because this prefetch effect comes at the expense of throwing away nearby

results, noticeable slowdowns are seen for many of the programs. As a result, the overall benefit

from prefetching is reduced to a marginal 3%. The use of natural reuse helps alleviate this prob-

lem to some extent. A smaller number of instructions are now executed twice and the primary

thread does not suffer as much from the use of a smaller window. The overall performance im-

provement from prefetch and natural reuse is 12%. Natural reuse serves as a kind of prefetch

for register values. The advantage of initiating long latency ALU operations well before the

102

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

em3d mst peri art swim lucas sp bt go comp HM

No
rm
ali
ze
d�
IP
Cs

only�prefetch

prefetch+natural_reuse

prefetch+nat_reuse+branch_recovery

prefetch+nat_reuse+br_rec+IRB

Figure 5.5: Future thread performance broken down as prefetch, natural reuse, early branch

recovery, and instruction reuse.

primary thread encounters them is quite significant.

Table 5.3 shows that there is a sharp drop in the number of long latency loads seen by the

primary thread. The number of loads per committed instruction that see a latency of more

than 40 cycles falls by almost a factor of two and is even reduced to zero in the case of lucas.

For lucas, the dynamic scheme allocates most rename registers to the future thread and this

enables it to advance as far as the next loop iteration, thereby fetching the data and initiating the

operations long before the primary thread starts that iteration.

When the future thread is allowed to initiate early branch recovery, we see significant im-

provements for the programs with low branch prediction accuracies. This results in an additional

improvement of 5%, 24%, and 13% in em3d, perimeter, and sp, respectively. On the other hand,

we see a big drop in performance for swim. When the future thread initiates early branch re-

covery, it tries to restore a valid register state. Because of the eager release of registers, some

values remain lost, disallowing progress along those dependence chains. This sets off a chain

reaction, where the future thread runs much further ahead but is unable to execute any of the

instructions. It can be productive again only when the primary thread catches up, which occurs

103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

em3d mst peri art swim lucas sp bt go comp HM

No
rm
ali
ze
d�
IP
Cs

Early�branch�recovery�always�used

Early�branch�recovery�never�used

Selective�use�of�early�branch�recovery

Figure 5.6: Selective use of early branch recovery.

when the primary discovers a branch mispredict (for a branch not executed by the future) and

squashes all subsequent instructions. Swim is a loop-based floating-point code and has a low

branch mispredict rate. As a result, the future thread may have to wait a very long time before

it has valid register mappings. This effect is also somewhat seen for bt. This negative effect

of early branch recovery can be easily eliminated by not attempting it for programs with high

branch prediction accuracies.

Finally, by adding the IRB we see an additional overall improvement of 5%. A number of

instructions that have been dispatched by the future thread need not be re-executed when seen

by the primary thread. The last row in Table 5.3 shows that up to 35% of these instructions can

obtain their result from the IRB. This IRB hit rate improves slightly when we use larger IRBs.

Using a 128-entry IRB, we see additional improvements of 8% and 7% in mst and bt, resulting

in an additional 1% overall improvement.

The above breakdown indicates that prefetch and natural reuse account for most of the

benefit, with the IRB also contributing to some extent. The early recovery from branch mispre-

dicts did not result in any overall speedup because of its negative effect on programs with high

branch prediction accuracies. To exploit this feature, we also incorporated the use of selective

104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

em3d mst peri art swim lucas sp bt go comp HM

No
rm
ali
ze
d�
IP
Cs

dynamic

no�eager�reg-release

no�timeout

Figure 5.7: The contributions of the various features of the future thread. The leftmost bar

represents the dynamic scheme with all features turned on. The next two bars show the effect

of not using the eager release of registers and the effect of not using the timeout mechanism.

early branch recovery. If the branch prediction accuracy exceeded 98% (art, swim, lucas, bt),

we did not employ early recovery. In Figure 5.6, we show the effect when early branch recovery

is always used and when it is never used. We then show the effect of selectively using one of

these two options based on the program. As a result, the overall speedup increases from 1.17 to

1.21. The maximum speedup observed was 1.64 and the maximum slowdown was 0.99.

All our subsequent results assume the use of selective early branch recovery.

Breakdown of Contributions

Two major design components enable the future thread to advance ahead of the primary.

From Table 5.3, it can be seen that the average distance between the oldest and youngest instruc-

tion within the processor increases greatly because of the future thread. This number represents

the size of the in-flight instruction window. The largest window seen by the base architecture is

only 75 instructions (in the case of sp), but the future thread can look in a much larger window

(as large as 183 in the case of lucas) because of the eager release of registers and the timeout

105

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

em3d mst peri art swim lucas sp bt go comp HM

No
rm
ali
ze
d�
IP
Cs

issueq-20,15�(int,fp)
issueq�-�30�(each)

Figure 5.8: The effect of a larger issue queue. The left bar shows speedups with the future

thread for the Alpha-like processor, while the right bar shows speedups for a processor model

that has the same parameters except for a larger issue queue.

mechanism. Both of these often come into play as evidenced by the statistics in the first two

rows of Table 5.3.

Figure 5.7 quantifies the contributions of each of these components by disabling them one

at a time. It can be seen that eager register release accounts for most of the speedup in em3d,

perimeter, and bt, while timeout helps greatly in perimeter, swim, and lucas. For lucas, the

primary bottleneck is the issue queue. The use of the timeout mechanism not only helps free

up registers, it also reduces contention for the issue queue, thereby not stalling dispatch. This

allows the future thread to advance far enough to do an effective job prefetching. Eliminat-

ing either feature results in overall speedups of only 1.06 and 1.10. Note that including both

features results in more than additive speedups. As we examine a larger in-flight window, the

opportunities for timeout and register reuse also increase, allowing the combination of the two

to be synergistic.

106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

em3d mst peri art swim lucas sp bt go comp HM

No
rm
ali
ze
d�I
PC
s

56�regs
64�regs
72�regs
80�regs
160�regs

Figure 5.9: Speedups with the future thread for processor models that have different register file

sizes.

Effect of various processor parameters

Mst is a memory-intensive program that does not show much improvement as it has little

nearby ILP, causing instructions to wait in the issue queue, thus stalling dispatch. For the other

programs, by using the future thread, the register file is removed as the bottleneck to dispatch.

Hence, stalls are usually caused by the small size of the issue queue. We next evaluate the future

thread for a processor model that has larger int and fp issue queues of 30 entries each. The larger

issue queues resulted in very little improvements for the base case, but they enabled the future

thread to advance even further, resulting in an overall speedup of 1.25 (see Figure 5.8). The

greatest improvement was seen for swim, where the size of the in-flight instruction window

with the future thread went from 119 for the smaller issue queues to 169 for the larger queues.

We next study the effect of different register file sizes. Figure 5.9 shows speedups with the

future thread for processor models that have physical register file sizes ranging from 56 to 80

registers (int and fp, each). We also show a processor model that is much more aggressive, hav-

ing 160 registers and 64 issue queue entries (int and fp, each). Each bar uses the corresponding

107

base case to compute speedups. Two effects come into play here. Using a smaller register file

makes it more of a bottleneck, increasing the potential benefit of the future thread. However,

with a smaller register file, the future thread will also be limited in its ability to look ahead, re-

ducing the prefetch effect. Depending on which effect dominates, we see different behaviors for

the different programs. Hence, a clear trend is not seen in the overall speedup numbers. It must

be pointed out that the raw IPC for a 56-register base case augmented with the future thread

(0.72 IPC) is better than the raw IPC for a 72-register base case without the future thread (0.71

IPC). While the IPCs are comparable, the former processor model can support a faster clock

speed if the register file is on the cycle time critical path. However, if the processor can support

large register files and issue queues (as shown by the last bar), the benefit of the future thread

is very marginal – only em3d and lucas show appreciable speedups. Hence, the future thread

is only useful in a scenario where implementation constraints limit the sizes of the register file

and issue queue, thereby rendering them as bottlenecks.

The processor model that has been described and simulated assumes that both the primary

and future threads can rename and dispatch up to four instructions each in every cycle. This

would require as many as eight write ports in the issue queue. Further, we have assumed that

additional paths exist in the issue queue so that tags of timed out instructions can be broadcast.

We also simulated a processor model that takes into account these constraints. Only up to a total

of four instructions from either the primary or future thread were allowed to dispatch. Only up

to a total of four instructions were allowed to either issue or timeout every cycle. These two

constraints ensure that we do not introduce additional complexity, as compared to the base case.

Only swim and sp showed modest performance loss because of this, but they still outperformed

the base case.

Finally, we evaluate two other projected future processor models. We use the approaches

outlined by Agarwal et al [Agarwal et al., 2000] to define a pipeline-scaled model that keeps

structure sizes the same but uses deeper pipelines and a capacity-scaled model that shrinks

structure sizes so as to not have deep pipelines. The pipeline-scaled model increases the L1,

L2, memory, and mispredict latencies to 3, 20, 105, and 15 cycles, respectively. The capacity-

scaled model uses 64 physical registers, issue queue sizes of 15 (int) and 12 (fp), 32KB 2-cycle

L1s, 1MB 15-cycle L2, memory latency of 105 cycles, and a mispredict penalty of 10 cycles. If

108

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

em3d mst peri art swim lucas sp bt go comp HM

No
rm
ali
ze
d�
IP
Cs

Alpha-like
Pipeline�scaled�model
Capacity�scaled�model

Figure 5.10: Speedups for two future processor models.

the future thread is able to hide the longer memory access times completely, its relative impact

from the prefetch effect is also greater. Figure 5.10 shows that the speedups go up slightly for

most programs with the pipeline-scaled model. No overall benefit is seen because there is a

performance degradation for swim. For the alpha-like model, the use of the future thread causes

the percentage of long latency loads (more than 40 cycles) in swim to go down from 19% to

2%, while causing the average load latency to go from 22 to 6. With the longer load latencies in

the pipeline-scaled model, however, the future thread is unable to completely hide the memory

latency. While the future thread does a similar prefetch job, reducing the average load latency

from 31 to 19, the percentage of long latency loads is reduced only marginally from 20% to

18%. As a result, the relative impact of the future thread is a lot less for the pipeline-scaled

model in the case of swim.

The speedups for the capacity-scaled model are less impressive. This is partly because the

issue queue becomes a greater bottleneck and partly because the smaller register file does not

allow the future thread to run much further ahead.

109

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2

em3d mst peri art swim lucas sp bt go comp HM

Ra
w�
IP
Cs

base
base+stride
base+future+stride-IRB
base+future+stride+IRB

Figure 5.11: Raw IPCs for the base case, for the base case with a stride prefetcher, and for the

combination of the future thread and the stride prefetcher (without and with an IRB).

Combination with Hardware Prefetch

The future thread has the ability to prefetch data in codes with unpredictable control and data

flow. A number of the programs in this study also have regular accesses and can be effectively

handled by the use of a hardware stride predictor [Chen and Baer, 1995]. We next evaluate the

effect of such a hardware prefetch mechanism on the behavior of the base processor model and

the future thread.

Figure 5.11 shows raw IPC numbers for four models. The first bar shows the IPC of the base

case and the second bar shows the IPC for a base case augmented with a stride prefetcher. In our

simulations, we use a 512-entry direct-mapped stride prefetcher (indexed by program counter)

that maintains a finite state machine for each of the most recently issued load instructions. The

finite state machine determines if the data accesses are regular. When a load is encountered, it

issues a prefetch for the next load if the last two or more loads had the same stride. Prefetches

are issued only if the stride exceeds 16 bytes in order to avoid unnecessary prefetches due to

the spatial locality within a cache line. Prefetches contend for cache ports just like any other

110

load operation and bring data into the various levels of cache, i.e., no separate prefetch buffer is

used.

We see big improvements for a number of programs, resulting in an overall speedup of 1.17.

We also see significant improvements for pointer-chasing applications like em3d and perimeter.

The data access patterns in these applications do not change over time, and hence, following

the pointers results in accesses to regularly strided addresses. Such speedups would probably

not be seen for other pointer-intensive codes with dynamic data structures. We then employ the

future thread in addition to having the stride prefetcher5 (shown by the third bar in the figure).

We do not use the IRB in this case so as to isolate only the effects of prefetch, natural reuse,

and early branch recovery. We notice reasonable improvements in a number of cases. Because

the future thread jumps ahead and issues loads early, it also ends up issuing the prefetches early.

This helps to hide the memory latency even beyond that which is possible with just the stride

prefetcher. In the case of lucas, the stride prefetcher does a nearly perfect job, resulting in no

additional speedups from the future thread. The overall speedup compared to the base case is

1.29. The last bar also includes an IRB, thus showing the full benefit of the future thread. The

overall speedup is now 1.33.

These results indicate that the future thread can be combined with other forms of cache

prefetching to yield even greater speedups. Because of natural reuse and the IRB, it also

‘prefetches’ ALU computations. It also initiates early branch recovery if the program is limited

by a poor branch predictor.

Summary

Our results show that for an Alpha-like processor model, an impressive overall speedup of

1.21 is seen when using the future thread. The most important contributions to this improvement

come from (i) a dynamic interval and exploration-based scheme that allocates registers between

the primary and future threads, (ii) data prefetch and natural reuse, (iii) selectively employing

early recovery from branch mispredicts, and (iv) instruction reuse because of the IRB. The eager

5When triggered, only the future thread can update the finite state machine of the stride predictor. Both threads

issue prefetches.

111

release of registers and the timeout mechanism, both contribute synergistically to the ability of

the future thread to jump ahead. We have explored a variety of processor models to study the

sensitivity of our results to various parameters. Good performance was seen for different issue

queue and register file sizes, and for future processor models. The combination with hardware

stride prefetching resulted in further improved performance.

5.4 Additional Hardware Requirements

In this section, we qualitatively discuss the extra hardware required to implement the future

thread.

Future Rename Table

The rename table for the future thread constitutes the biggest overhead in terms of transistors.

In addition to the register mapping, it also stores the sequence number. While a conventional

rename table checkpoints the mapping in the branch stack, the future rename table checkpoints

the sequence number. Each cell in a rename table contains a shift register to checkpoint values.

Since this constitutes most of the cell, the size of the value being checkpointed plays a large part

in determining the table’s access time [Palacharla et al., 1997]. A conventional rename table

checkpoints 7-bit values (the physical register tag), while the future rename table checkpoints

the sequence number (a 9-10 bit value). While this implies a longer access time for the rename

table, the results in Palacharla et al [Palacharla et al., 1997] indicate that the rename table is not

on the critical path for the technology parameters examined.

In addition, while looking up the primary rename table, an access has to be made to the Preg

Status Table to detect if a mapping for that instruction exists in the future thread. This lookup

can be done in parallel with the lookup of the primary rename table and should not affect the

critical path.

The operations to be performed by the future rename table on a branch mispredict are an-

other source of complexity. The checkpointed sequence number has to be examined and based

on this, the mapping has to be copied from either the Preg Status Table or from the primary

rename table. Since all these structures have a limited number of read and write ports, copying

as many as 64 mappings could take a number of cycles. One possible optimization would be to

112

checkpoint the actual mapping instead of the sequence number when it is known that the map-

ping cannot change. For example, if the sequence number indicates that the instruction that set

this mapping has been dispatched in the primary thread, then it is known that this mapping will

still be true when the branch mispredict is discovered. Hence, in this case, by checkpointing

the mapping, a copy need not be made at the time of mispredict recovery. Even with these opti-

mizations, it is still possible that the recovery could add a few cycles to the mispredict penalty

for the future thread. We simulated the effect of an extra four cycle mispredict penalty and no-

ticed only a 1% performance degradation in two of the programs with high misprediction rates.

Given the opportunistic nature of the future thread, its mispredict penalty does not play a very

major role in affecting performance.

Preg Status Table

The Preg Status Table stores the sequence number, the physical register tag, the users counter,

the overwrite bit, the written bit, and the timeout counter. The overwrite bit will have to be

checkpointed at every branch, and would hence include a shift register in its cell. This amounts

to a total overhead of not more than 25 bits per entry. While it has been logically described

as one structure, it can be broken up into a number of small CAM structures, as each field can

be independently accessed. The most complex of these would be the users field which would

need as many as 16 ports (corresponding to two operands for each of four instructions being

renamed and four instructions being issued). This structure would still be a lot smaller than a

rename table that has as many ports, much larger fields per entry, and many more entries. Also,

the counters could be approximated by a simpler structure that used fewer ports as it is unlikely

that all possible 16 ports would be used in a cycle.

In addition to these two structures, some negligible overhead is imposed by the branch

FIFO (a simple array of bits, typically not exceeding 50 bits), and the future IFQ that buffers

instructions before they are dispatched into the issue queue. A counter and associated logic

would be required for the sequence number. The dynamic scheme requires a few additional

counters to monitor the frequency of branches and cache accesses (hardware profiling counters

are already present in most modern processors). The IRB, as implemented in our simulations, is

a fairly simple structure. The) * implementation scheme does not affect other processor critical

paths. An IRB with only 16 entries can eliminate much of the redundancy that results from the

113

execution of the future thread.

5.5 Other Approaches to Improving Register File Complexity

The primary focus of this chapter has been to improve performance by increasing the ef-

ficiency of the register file. By cleverly managing the register resources, a few registers can

be used to support a large window of in-flight instructions. In our approach, register values

are discarded to allow the mapping of distant instructions, thereby introducing the trade-off be-

tween nearby and distant ILP and necessitating its management. We have also explored other

alternatives to improving the efficiency of the register file and describe that next.

The key observation in our study is that many register values have no active consumers and

need not occupy valuable storage space in the register file that feeds the functional units. Hence,

one approach to to improving register file efficiency is to move such register values into a back-

up storage [Balasubramonian et al., 2001a; Balasubramonian et al., 2001d]. In the event that

we encounter a branch mispredict or an exception, these values are reinstated into the register

file. This makes it possible to support an in-flight window as large as the combined size of the

L1 and L2. The L2 is not frequently accessed and has small porting requirements, allowing it

to have many entries with very low power, area, and cycle-time overheads. Such a mechanism

introduces overhead to maintain sufficient state to allow recovery after a branch mispredict, but

many of these introduced structures do not lie on cycle-time critical paths. Our results show

that the use of a two-level structure helps reduce the access time of the first-level register file in

comparison to a single-level register file for roughly the same IPC. When using the instructions

per second metric, the two-level organization performs 17% better than the best single-level

organization.

In [Balasubramonian et al., 2001d], we explore a second mechanism to reduce register

file complexity. Conventional register files are multi-ported structures, with each cell having

as many ports as the maximum allowed bandwidth in any cycle. In [Balasubramonian et al.,

2001d], we propose a design where the register file is broken up into multiple banks, each with

a single port. Thus, as many accesses can be made in a cycle as the number of banks, so long

as no two accesses are made to the same bank. By enforcing this constraint and reducing the

114

number of ports per cell in the register file, its area, access time, and power consumption are

dramatically reduced. We show that such an organization has a minimal impact on IPC and

entails a modest amount of complexity in the scheduling of instructions.

5.6 Related Work

Dundas and Mudge [Dundas and Mudge, 1997] introduced a scheme for halting the main

instruction stream on a cache miss, and running ahead to prefetch data. However, this scheme

was only applicable to an in-order machine with no instruction-level parallelism support. In our

method, because the base processor is a dynamic superscalar architecture, the main instruction

stream is never halted - once it runs out of registers, we use spare registers as a scratch-pad to

make forward opportunistic progress. Thus, the implementation is vastly different, the perfor-

mance benefits are far greater, and we are targeting cases where we run out of physical registers.

The idea of forming multiple threads that execute distant instructions has been exploited in

a number of approaches, such as Multiscalar [Sohi et al., 1995], Trace processors [Rotenberg

et al., 1997], DMT [Akkary and Driscoll, 1998], and TLDS [Steffan and Mowry, 1998], that

use hardware or compiler generated threads to fork off computation that might be far ahead of

the current commit stage of the processor. These are all hardware intensive solutions as they as-

sume that there would effectively be a separate processing unit or a Simultaneous Multithreaded

(SMT [Tullsen et al., 1995]) base to execute these threads. They require significant hardware

to store results and to transfer register values between threads to free up dependences. They are

also highly speculative in nature, as these threads might lie much further ahead in the program

control flow. The future thread is a lot less speculative as it starts off from where the main thread

left off. Dependences are resolved just as in the baseline processor, without any added hardware

(although we do complicate the dispatch stage). The future thread makes forward progress by

relaxing the constraints on register release and by having the timeout mechanism, which are

both unique to this approach.

Zilles and Sohi [Zilles and Sohi, 2000] characterize problem instructions (cache misses,

branches) and the instructions that lead to them. They point out that a smaller subset of the

program code can be pre-executed so that the main instruction stream does not encounter cache

115

misses or branch mispredicts. They assume an underlying implementation that can pre-execute

these slices. Roth and Sohi [Roth and Sohi, 2001] talk about such an implementation that can

pre-execute certain dependence chains (hence, referred to as data-driven multithreading). They

use profiling to generate these slices and annotate the code to trigger them at appropriate points.

These threads use physical registers to store their results and they are integrated into the main

program thread when it catches up. Our approach is less concerned with the ability to fork off

a previously created thread early. It is a brute-force method that tries to make forward progress

even when the registers run out, and does not rely on compiler or profiling help. We also show

how an IRB can be used to integrate results back into the main thread instead of keeping results

around in registers.

Other recent approaches to pre-execution include Speculative Precomputation [Collins et al.,

2001], where idle thread contexts in an SMT processor are used to spawn speculative threads

that do data prefetch. These threads are identified with profiling help and are included as part of

the binary. Another recent proposal by Annavaram et al [Annavaram et al., 2001] also targets

problem instructions when they are unable to execute because of a stalled dispatch stage. These

instructions are flagged when they enter the instruction fetch queue (IFQ) and the dependence

graph within the IFQ is computed in hardware to identify instructions leading up to the problem

instruction. These instructions are executed in a separate engine so that data is appropriately

brought in to the data caches.

There have also been a couple of attempts at improving branch resolution by pre-execution

[Farcy et al., 1998; Roth et al., 1999], where the slice determining the branch is duplicated

and made to run in a separate window (sharing the same physical registers). Farcy et al [Farcy

et al., 1998] notice regularity in the branch condition computations and use value prediction to

accelerate the second thread.

Simultaneous Subordinate Microthreading (SSMT) [Chappell et al., 1999] and Assisted

Execution [Dubois and Song, 1998] are similar schemes where custom-generated threads are

invoked within the hardware by certain events. These threads do very simple specific things and

cannot be automatically generated. There has been recent work in the area of pre-execution.

Most notably, Mutlu et al. [Mutlu et al., 2003] propose a mechanism where the architectural

registers are check-pointed before spawning the pre-execution instructions.

116

A related concept is AR-SMT [Rotenberg, 1999] and SRT [Reinhardt and Mukherjee,

2000], which run two copies of the same program on an SMT processor and compare results

from both threads. Their goal is to detect transient faults in a chip, rather than to enhance perfor-

mance. An extension of this is the Slipstream processor [Sundaramoorthy et al., 2000], where

the thread running ahead is a shortened version of the original program (dynamically created by

detecting and eliminating ineffectual pieces of the program), and the trailing thread is the full

program that verifies the correct working of the leading thread. The two programs together can

run faster than the single original program because the leading thread communicates values and

branch outcomes to the trailing thread as (often correct) predictions.

The primary advantage of the future thread is its prefetching effect. A number of hard-

ware [Chen and Baer, 1995; Jouppi, 1990; Roth et al., 1998] and software prefetching [Luk

and Mowry, 1996; Callahan and Porterfield, 1990; Mowry et al., 1992] schemes have been

proposed. Most of these schemes can do a better job of prefetching as they exploit some higher-

level program information (regularity of accesses). This regularity can be determined at compile

time or as strides or load-value dependences in hardware. This lack of high-level information

prevents us from doing a very effective job of prefetching. We, however, do a more exact job

as we respect dependences and actually compute load addresses (rather than use heuristics like

most hardware prefetch schemes). We also use dynamic branch prediction to follow the proba-

ble control-flow path, instead of greedily prefetching [Luk and Mowry, 1996] along all possible

paths. This prevents us from fetching useless lines into the cache (unless we are on the wrong

branch path). Hence, our techniques are also applicable to irregular codes with unpredictable

control flow and unpredictable data accesses. Luk [Luk, 2001] addresses a similar problem in

the context of an SMT processor by using the compiler to help pre-execute these codes. We

do not add instruction overhead, unlike software prefetching schemes. Some of the prefetch

schemes can also be combined with the future thread to yield greater speedups, as demonstrated

in Section 5.3.

There has also been a software approach to tackling the problem of a single cache miss

holding up the ROB. Pai and Adve [Pai and Adve, 1999] describe a compiler algorithm that

restructures code so that cache misses are clustered, thereby increasing the memory parallelism

while the ROB is stalled. Compiler based methods can only be targeted at regular codes. The

117

future thread can jump ahead and issue future memory operations while the main instruction

window is stalled, thus achieving the same effect of improved memory parallelism.

To our knowledge, an Instruction Reuse Buffer [Sodani and Sohi, 1997] has only been ap-

plied to exploit value locality and squash reuse (reuse of instructions that get squashed because

of a mispredict, but lie on both paths out of the branch). Our proposal is a novel application of

the IRB.

5.7 Summary

In this chapter, we have designed and evaluated a microarchitecture that dynamically allo-

cates a portion of the processor’s physical resources to a future thread in order to exploit distant

ILP in addition to nearby ILP. Long latency instructions tend to stall the commit phase of a

traditional superscalar architecture on reaching the head of the re-order buffer. Subsequent in-

structions use up the available physical registers, after which the dispatch stage stalls. In our

proposed microarchitecture, part of the physical registers are allocated for the main program

and once they are consumed, the future thread gets triggered and makes forward progress. It ea-

gerly releases registers and times out instructions that wait too long in order to opportunistically

advance far beyond what the primary thread is capable of. It thus improves performance by re-

solving branch mispredicts early, by warming up the data cache, the instruction cache, and the

instruction reuse buffer, and by reusing register mappings and values. Since resources are taken

away from the primary thread to allow the future thread to advance, we are trading off nearby

ILP in order to mine distant ILP. Depending on the ILP characteristics of the program, there

exists an optimal allocation of resources between the two threads. We found that an interval and

exploration-based mechanism is very effective at computing this optimal allocation at run-time.

A mechanism based on fine-grained positional adaptation did not work as well because of the

difficulty in estimating the effect of the future thread over short intervals of time. We did not

evaluate metrics to predict the behavior of the future thread because of the sheer complexity

involved in reliably computing such a metric.

Our evaluation on some of the more memory-intensive benchmarks shows very promising

speedups of up to 1.64. The overall improvement on our benchmark suite is 21%. The contribu-

118

tions come mainly from prefetching and computation reuse, with significant contributions from

early branch recovery in the programs limited by poor branch prediction accuracies. The use of

a small 16-entry IRB accounts for 5% of this improvement. The dynamic allocation of regis-

ters plays a major role in tuning the hardware to the ILP requirements of each program phase.

The dynamic choice of whether to use early branch resolution based on the branch predictor

accuracy also improves performance. The use of a larger issue queue allows the future thread

to achieve an overall speedup of 1.25. We also observed impressive speedups for a variety of

processor models and even in combination with a hardware stride prefetcher.

119

6 Conclusions

This dissertation studies technology trends and their impact on the design of modern micropro-

cessors. The increasing dominance of wire delays presents an important challenge for architects

– the management of long on and off-chip latencies. These long latencies introduce trade-offs

in the design of different microprocessor structures. Chapter 3 highlights the trade-off between

capacity and access times within the L1 and L2 data caches. In Chapter 4, we observe the

trade-off between communication and parallelism in a highly clustered processor. Chapter 5

demonstrates the importance of supporting a large window of in-flight instructions with few

resources, making it necessary to allocate the limited processor resources for either nearby or

distant parallelism. Thus, we have observed a number of trade-offs emerging in modern pro-

cessors, caused either by long wire delays in storage structures or by the need to tolerate long

DRAM latencies.

Adaptation Algorithms

In order to manage trade-offs at run-time without programmer or compiler intervention, we

propose a number of algorithms that detect the program’s characteristics and accordingly match

the hardware to the program’s needs. These mechanisms attempt reconfiguration at regular time

intervals or at specific positions in the code, i.e., branches or subroutine call/returns. They select

the best organization either by profiling the candidate hardware organizations or by relying

on program metrics that can predict the optimal organization. The interval-based algorithms

require only a few hardware counters for bookkeeping and entail negligible execution-time

120

overhead. We found that for most programs, we were able to determine an interval length such

that program behavior was captured and this behavior was very consistent over a large number

of intervals. The algorithms based on positional adaptation require a hardware table that stores

state for each encountered branch or subroutine. Since positional adaptation allows a quick

reaction to a phase change, it is very effective at targeting small phases. The algorithms that

predict the optimal organization need additional logic to compute various program metrics.

The Reconfigurable Cache

In Chapter 3, we proposed an adaptive cache layout that varied the boundary between the

L1 and L2. The layout exploits the presence of repeaters in cache wordlines to allow for re-

configuration options in a low-intrusive manner. Each program phase was allocated exactly the

amount of L1 cache space that balanced the L1 miss rate and the L1 access time. This amount

was usually equal to the working set size of the program phase. This not only improves perfor-

mance, it also reduces the number of transfers between the different levels of the cache, thereby

reducing total power consumption. The dynamic control algorithms are very effective at han-

dling different program behaviors: we observed overall performance improvements of as much

as 15% and energy savings of as much as 42% across different processor organizations.

Clustered Processors

In order to exploit available chip real-estate, processors are increasingly supporting a large

number of threads, resulting in large resource sizes. A clustered organization helps reduce the

complexity in designing such a large processor. In Chapter 4, we examine the scalability of

single-thread performance on a highly clustered and communication-bound processor. A large

number of clusters imply high communication costs, but most programs do not have sufficient

parallelism in them to exploit all the clusters. A subset of clusters yields optimal performance

for each program phase. Note that the clustered organization is necessitated by current technol-

ogy trends; our approach facilitates the easy management of cluster resources. Once the optimal

number of clusters has been determined, instructions and data are restricted to this subset. This

not only improves overall single-thread performance by 15%, it also frees up more than half the

121

clusters so they can be used for other purposes (for use by other threads or to reduce leakage

energy).

Pre-Execution

The proposal in Chapter 5 also attempts to mine a high degree of parallelism, but with a

limited number of resources. We employ a pre-execution thread to use resources efficiently

and jump further ahead to warm up various processor structures. The allocation of resources

between the main program thread and the pre-execution thread determines the priority between

nearby and distant parallelism. For example, a program with limited distant parallelism per-

forms better when all the resources are allocated for the main thread. On the other hand, a

program that is limited by memory accesses performs better when resources are allocated to the

pre-execution thread, allowing it to make forward progress and prefetch data into the caches.

The overall improvement over a base case without a pre-execution thread was as much as 21%,

with half the improvement coming from algorithms to dynamically allocate resources and tune

processor policies. We have also evaluated a two-level register file organization that allows

the dispatch of a large in-flight instruction window without increasing the complexity of the

first-level register file [Balasubramonian et al., 2001d].

Comparing the Adaptation Algorithms

We found that the interval-based mechanism with exploration worked well in every con-

text. It reliably captures program behavior in most cases and accurately selects the optimal

organization. The exploration process was especially effective because the number of candidate

organizations was limited in each of our studies. The hardware overhead of this mechanism is

minimal and it achieves most of the potential speed-ups from dynamic adaptation. Replacing

the exploration process with predictive techniques was effective for the reconfigurable cache

and for the clustered organization. In each of these settings, there were metrics (the working set

size and the degree of distant parallelism) that were relatively easy to compute and that were

excellent indicators of the optimal organization. It was harder to devise metrics to estimate the

optimal allocation of resources while employing the pre-execution thread. The interval-based

122

mechanism can entail heavy overheads if the program exhibits a high degree of variability and

if the number of candidate organizations is very large. We also found that positional adaptation

was very effective while determining the optimal number of clusters. The primary advantage of

this mechanism is its ability to target small phases and this is beneficial only if the hardware can

react equally quickly to any reconfiguration. With the cache and with the pre-execution thread,

we found that the hardware was generally slower to adapt, causing an interval-based mechanism

to be more effective. Positional adaptation can result in inaccurate configuration selections if

the behavior of a code section changes over time.

Future Work

As future work, we intend to verify the effective behavior of our control algorithms over

a wider range of trade-off settings. With the growing emphasis on power consumption, ar-

chitects are being forced to make a number of choices that trade off some performance for

better power efficiency. In order to control the performance loss, adaptive hardware can be

employed that goes into low-power mode only when the performance penalty is guaranteed to

be negligible. Such an approach can also help control thermal emergencies. There exist other

performance-centric trade-offs that might also benefit from adaptation, for example, choice of

branch predictors, use of control speculation, use of value speculation, etc.

If adaptation algorithms are employed for a number of structures on the chip, the interac-

tion of these mechanisms with each other is yet unclear. It is unlikely that the different adaptive

hardware units can monitor their behavior independently of each other, necessitating that the

algorithms be modified. As the number of hardware units increases, the number of candidate

hardware organizations increases dramatically. The overhead from exploring all of these orga-

nizations might be significant enough that other metrics might be required to predict the optimal

hardware structures.

We would like to extend our cluster allocation algorithms to multi-threaded workloads to

study how total processor throughput could be maximized. Since a subset of all clusters can

yield optimal performance for each thread, partitioning the clusters among the threads can help

maximize single-thread response time as well as total throughput. Such algorithms will have to

123

consider the allocation of cache banks and coherence among them when using a decentralized

cache.

The study of the clustered processors has exposed us to many challenging problems in their

design. The comparison between a centralized and a decentralized cache deserves more atten-

tion. A decentralized cache can dramatically reduce inter-cluster communication if accurate

bank predictors can be built. The inter-cluster interconnect has a significant effect on perfor-

mance. A grid interconnect allows much higher ILP than a ring interconnect because of its

higher connectivity, but its implementation complexity is also higher. We plan a more detailed

evaluation of the effect of these choices on performance, latencies, layouts, wiring complex-

ity, power, etc. Further, a multi-threaded workload might benefit from an interconnect that has

high connectivity within certain subsets of clusters. These research efforts would continue to

reduce the negative impact of long wire delays and memory latencies in future generations of

processors.

124

Bibliography

[Agarwal et al., 2002] A. Agarwal, H. Li, and K.Roy, “DRG-Cache: A Data Retention Gated-

Ground Cache for Low Power,” In Proceedings of the 39th Conference on Design Automa-

tion, June 2002.

[Agarwal et al., 2000] V. Agarwal, M.S. Hrishikesh, S. Keckler, and D. Burger, “Clock Rate

versus IPC: The End of the Road for Conventional Microarchitectures,” In Proceedings of

ISCA-27, pages 248–259, June 2000.

[Aggarwal and Franklin, 2001] A. Aggarwal and M. Franklin, “An Empirical Study of the

Scalability Aspects of Instruction Distribution Algorithms for Clustered Processors,” In

Proceedings of ISPASS, 2001.

[Akkary and Driscoll, 1998] H. Akkary and M. Driscoll, “A Dynamic Multithreading Proces-

sor,” In Proceedings of MICRO-31, pages 226–236, November 1998.

[Albonesi, 1998] D.H. Albonesi, “Dynamic IPC/Clock Rate Optimization,” Proceedings of

ISCA-25, pages 282–292, June 1998.

[Albonesi, 1999] D.H. Albonesi, “Selective Cache Ways: On-Demand Cache Resource Allo-

cation,” Proceedings of MICRO-32, pages 248–259, November 1999.

[Annavaram et al., 2001] M. Annavaram, J. Patel, and E. Davidson, “Data Prefetching by De-

pendence Graph Precomputation,” In Proceedings of ISCA-28, pages 52–61, July 2001.

[Association, 1999] Semiconductor Industry Association, “The National Technology Roadmap

for Engineers,” Technical report, 1999.

125

[Bahar and Manne, 2001] R. I. Bahar and S. Manne, “Power and Energy Reduction Via

Pipeline Balancing,” In Proceedings of ISCA-28, pages 218–229, July 2001.

[Bailey et al., 1991] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter,

D. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga, “The NAS Parallel Benchmarks,” International

Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[Bakoglu and Meindl, 1985] H.B. Bakoglu and J.D. Meindl, “Optimal Interconnect Circuits

for VLSI,” IEEE Transactions on Computers, 32(5):903–909, May 1985.

[Balasubramonian et al., 2000a] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas, “Dynamic Memory Hierarchy Performance Optimization,” Workshop on

Solving the Memory Wall Problem, June 2000.

[Balasubramonian et al., 2000b] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas, “Memory Hierarchy Reconfiguration for Energy and Performance in General-

Purpose Processor Architectures,” In Proceedings of MICRO-33, pages 245–257, December

2000.

[Balasubramonian et al., 2003a] R. Balasubramonian, D.H. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas, “A Dynamically Tunable Memory Hierarchy,” IEEE Transactions on Com-

puters (to appear), 2003.

[Balasubramonian et al., 2001a] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “A

High-Performance Two-Level Register File Organization,” Technical Report 745, University

of Rochester, April 2001.

[Balasubramonian et al., 2001b] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dy-

namically Allocating Processor Resources between Nearby and Distant ILP,” Technical Re-

port 743, University of Rochester, April 2001.

[Balasubramonian et al., 2001c] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dy-

namically Allocating Processor Resources between Nearby and Distant ILP,” In Proceedings

of ISCA-28, pages 26–37, July 2001.

126

[Balasubramonian et al., 2001d] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Re-

ducing the Complexity of the Register File in Dynamic Superscalar Processors,” In Proceed-

ings of MICRO-34, pages 237–248, December 2001.

[Balasubramonian et al., 2002] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Mi-

croarchitectural Trade-Offs in the Design of a Scalable Clustered Microprocessor,” Technical

Report 771, University of Rochester, January 2002.

[Balasubramonian et al., 2003b] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi, “Dy-

namically Managing the Communication-Parallelism Trade-Off in Future Clustered Proces-

sors,” In Proceedings of ISCA-30, pages 275–286, June 2003.

[Baniasadi and Moshovos, 2000] A. Baniasadi and A. Moshovos, “Instruction Distribution

Heuristics for Quad-Cluster, Dynamically-Scheduled, Superscalar Processors,” In Proceed-

ings of MICRO-33, pages 337–347, December 2000.

[Bannon, 1998] P. Bannon, “Alpha 21364: A Scalable Single-Chip SMP,” Microprocessor

Forum, October 1998.

[Burger and Austin, 1997] D. Burger and T. Austin, “The Simplescalar Toolset, Version 2.0,”

Technical Report TR-97-1342, University of Wisconsin-Madison, June 1997.

[Buyuktosunoglu et al., 2000] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook,

and D.H. Albonesi, “An Adaptive Issue Queue for Reduced Power at High Performance,”

In Workshop on Power-Aware Computer Systems (PACS2000, held in conjunction with

ASPLOS-IX), November 2000.

[Buyuktosunoglu et al., 2001] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook,

and D.H. Albonesi, “A Circuit Level Implementation of an Adaptive Issue Queue for Power-

Aware Microprocessors,” In Proceedings of the 11th Great Lakes Symposium on VLSI, pages

73–78, March 2001.

[Callahan and Porterfield, 1990] D. Callahan and A. Porterfield, “Data Cache Performance of

Supercomputer Applications,” In Proceedings of ICS, pages 564–572, January 1990.

127

[Canal et al., 2000] R. Canal, J. M. Parcerisa, and A. Gonzalez, “Dynamic Cluster Assignment

Mechanisms,” In Proceedings of HPCA-6, pages 132–142, January 2000.

[Canal et al., 2001] R. Canal, J. M. Parcerisa, and A. Gonzalez, “Dynamic Code Partitioning

for Clustered Architectures,” International Journal of Parallel Programming, 29(1):59–79,

2001.

[Capitanio et al., 1992] A. Capitanio, N. Dutt, and A. Nicolau, “Partitioned Register Files for

VLIWs: A Preliminary Analysis of Trade-offs,” In Proceedings of MICRO-25, pages 292–

300, December 1992.

[Chappell et al., 1999] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt, “Simultaneous

Subordinate Microthreading (SSMT),” In Proceedings of ISCA-26, pages 186–195, May

1999.

[Chen and Baer, 1995] T. Chen and J. Baer, “Effective Hardware Based Data Prefetching for

High Performance Processors,” IEEE Transactions on Computers, 44(5):609–623, May

1995.

[Cho et al., 1999a] S. Cho, P-C. Yew, and G. Lee, “Access Region Locality for High-

Bandwidth Processor Memory System Design,” In Proceedings of MICRO-32, pages 136–

146, November 1999.

[Cho et al., 1999b] S. Cho, P-C. Yew, and G. Lee, “Decoupling Local Variable Accesses in a

Wide-Issue Superscalar Processor,” In Proceedings of ISCA-26, pages 100–110, May 1999.

[Collins et al., 2001] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y-F. Lee, D. Lavery, and

J. Shen, “Speculative Precomputation: Long-Range Prefetching of Delinquent Loads,” In

Proceedings of ISCA-28, pages 14–25, July 2001.

[Cruz et al., 2000] J-L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham, “Multiple-Banked

Register File Architectures,” In Proceedings of ISCA-27, pages 316–325, June 2000.

[Dahlgren and Stenstrom, 1991] F. Dahlgren and P. Stenstrom, “On Reconfigurable On-Chip

Data Caches,” In Proceedings of MICRO-24, pages 189–198, 1991.

128

[Dally and Poulton, 1998] W.J. Dally and J.W. Poulton, Digital System Engineering, Cam-

bridge University Press, Cambridge, UK, 1998.

[Dhodapkar and Smith, 2002] A. Dhodapkar and J. E. Smith, “Managing Multi-Configurable

Hardware via Dynamic Working Set Analysis,” In Proceedings of ISCA-29, pages 233–244,

May 2002.

[Dropsho et al., 2002] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi,

S. Dwarkadas, G. Semeraro, G. Magklis, and M. L. Scott, “Integrating Adaptive On-Chip

Storage Structures for Reduced Dynamic Power,” In Proceedings of the 11th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 141–152,

September 2002.

[Dubois and Song, 1998] M. Dubois and Y. H. Song, “Assisted Execution,” Technical Report

CENG 98-25, EE-Systems, University of Southern California, October 1998.

[Dundas and Mudge, 1997] J. Dundas and T. Mudge, “Improving Data Cache Performance by

Pre-executing Instructions Under a Cache Miss,” In Proceedings of ICS, pages 68–75, 1997.

[Farcy et al., 1998] A. Farcy, O. Temam, R. Espasa, and T. Juan, “Dataflow Analysis of Branch

Mispredictions and Its Application to Early Resolution of Branch Outcomes,” In Proceedings

of MICRO-31, pages 59–68, November 1998.

[Farkas et al., 1997] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The Multicluster Archi-

tecture: Reducing Cycle Time through Partitioning,” In Proceedings of MICRO-30, pages

149–159, December 1997.

[Farkas et al., 1996] K. Farkas, N. Jouppi, and P. Chow, “Register File Considerations in Dy-

namically Scheduled Processors,” In Proceedings of HPCA-2, pages 40–51, February 1996.

[Farkas and Jouppi, 1994] K.I. Farkas and N.P. Jouppi, “Complexity/Performance Tradeoffs

with Non-Blocking Loads,” Proceedings of ISCA-21, pages 211–222, April 1994.

[Fields et al., 2001] B. Fields, S. Rubin, and R. Bodik, “Focusing Processor Policies via

Critical-Path Prediction,” In Proceedings of ISCA-28, pages 74–85, July 2001.

129

[Fisk and Bahar, 1999] B. Fisk and I. Bahar, “The Non-Critical Buffer: Using Load Latency

Tolerance to Improve Data Cache Efficiency,” In IEEE International Conference on Com-

puter Design, pages 538–545, October 1999.

[Flautner et al., 2002] K. Flautner, N.S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy

Caches: Simple Techniques for Reducing Leakage Power,” In Proceedings of ISCA-29, May

2002.

[Fleischman, 1999] J. Fleischman, “Private Communication,” October 1999.

[Folegnani and Gonzalez, 2000] D. Folegnani and A. Gonzalez, “Reducing Power Consump-

tion of the Issue Logic,” In Workshop on Complexity-Effective Design (WCED2000, held in

conjunction with ISCA-27), June 2000.

[Ghiasi et al., 2000] S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC Variations in Work-

loads with Externally Specified Rates to Reduce Power Consumption,” In Workshop on

Complexity Effective Design (WCED2000, held in conjunction with ISCA-27), June 2000.

[Gowan et al., 1998] M. Gowan, L. Biro, and D. Jackson, “Power Considerations in the De-

sign of the Alpha 21264 Microprocessor,” In Proceedings of the 35th Design Automation

Conference, 1998.

[Gwennap, 1997] L. Gwennap, “PA-8500’s 1.5M Cache Aids Performance,” Microprocessor

Report, 11(15), November 17, 1997.

[Hennessy and Patterson, 1996] J. L. Hennessy and D. A. Patterson, Computer Architecture:

A Quantitative Approach, Morgan Kaufmann, 2nd edition, 1996.

[Heo et al., 2002] S. Heo, K. Barr, M. Hampton, and K. Asanovic, “Dynamic Fine-Grain Leak-

age Reduction Using Leakage-Biased Bitlines,” In Proceedings of ISCA-29, May 2002.

[Huang et al., 2003] M. Huang, J. Renau, and J. Torrellas, “Positional Adaptation of Proces-

sors: Applications to Energy Reduction,” In Proceedings of ISCA-30, pages 157–168, June

2003.

130

[Huang et al., 2000] M. Huang, J. Reneau, S.M. Yoo, and J. Torrellas, “A Framework for

Dynamic Energy Efficiency and Temperature Management,” In Proceedings of MICRO-33,

pages 202–213, December 2000.

[Jouppi, 1990] N. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of

a Small Fully-Associative Cache and Prefetch Buffers,” In Proceedings of ISCA-17, pages

364–373, May 1990.

[Kamble and Ghose, 1997] M.B. Kamble and K. Ghose, “Analytical Energy Dissipation Mod-

els for Low Power Caches,” Proceedings of the International Symposium on Low Power

Electronics and Design, pages 143–148, August 1997.

[Kaxiras et al., 2001] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting Gener-

ational Behavior to Reduce Cache Leakage Power,” In Proceedings of ISCA-28, July 2001.

[Keckler and Dally, 1992] S.W. Keckler and W.J. Dally, “Processor Coupling: Integrating

Compile Time and Runtime Scheduling for Parallelism,” In Proceedings of ISCA-19, pages

202–213, May 1992.

[Kessler, 1999] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 19(2):24–36,

March/April 1999.

[Kessler et al., 1998] R.E. Kessler, E.J McLellan, and D.A. Webb, “The Alpha 21264 Micro-

processor Architecture,” In Proceedings of ICCD, 1998.

[Kumar, 1997] A. Kumar, “The HP PA-8000 RISC CPU,” IEEE Computer, 17(2):27–32,

March 1997.

[Lee et al., 1997] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Mediabench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems,” In Proceedings of

MICRO-30, pages 330–335, December 1997.

[Lesartre and Hunt, 1997] G. Lesartre and D. Hunt, “PA-8500: The Continuing Evolution of

the PA-8000 Family,” Proceedings of Compcon, 1997.

131

[Lowney et al., 1993] P.G. Lowney, S. Freudenberger, T. Karzes, W.D. Lichtenstein, R.P. Nix,

J.S. O’Donnell, and J.C. Ruttenberg, “The Multiflow Trace Scheduling Compiler,” Journal

of Supercomputing, 7(1-2):51–142, May 1993.

[Luk, 2001] C-K. Luk, “Tolerating Memory Latency through Software-Controlled Pre-

Execution in Simultaneous Multithreading Processors,” In Proceedings of ISCA-28, pages

40–51, July 2001.

[Luk and Mowry, 1996] C-K. Luk and T. Mowry, “Compiler-based Prefetching for Recursive

Data Structures,” In Proceedings of ASPLOS VII, pages 222–233, 1996.

[Magklis et al., 2003] G. Magklis, M.L. Scott, G. Semeraro, D.H. Albonesi, and S. Dropsho,

“Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock Domain Mi-

croprocessor,” In Proceedings of ISCA-30, June 2003.

[Matzke, 1997] D. Matzke, “Will Physical Scalability Sabotage Performance Gains?,” IEEE

Computer, 30(9):37–39, September 1997.

[McFarland, 1997] G.W. McFarland, CMOS Technology Scaling and Its Impact on Cache De-

lay, PhD thesis, Stanford University, June 1997.

[McFarland and Flynn, 1995] G.W. McFarland and M. Flynn, “Limits of Scaling MOSFETS,”

Technical Report CSL-TR-95-62, Stanford University, November 1995.

[Mowry et al., 1992] T. Mowry, M. Lam, and A. Gupta, “Design and Evaluation of a Compiler

Algorithm for Prefetching,” In Proceedings of ASPLOS-V, pages 62–73, 1992.

[Mutlu et al., 2003] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt, “Runahead Execution: An

Alternative to Very Large Instruction Windows for Out-of-order Processors,” In Proceedings

of HPCA-9, February 2003.

[Nagarajan et al., 2001] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler, “A De-

sign Space Evaluation of Grid Processor Architectures,” In Proceedings of MICRO-34, pages

40–51, December 2001.

132

[Nii et al., 1998] K. Nii, H. Makino, Y. Tujihashi, C. Morishima, Y. Hayakawa, H. Nunogami,

T. Arakawa, and H. Hamano, “A Low Power SRAM Using Auto-Backgate-Controlled MT-

CMOS,” In Proceedings of ISLPED, 1998.

[Pai and Adve, 1999] V. Pai and S. Adve, “Code Transformations to Improve Memory Paral-

lelism,” In Proceedings of MICRO-32, pages 147–155, November 1999.

[Palacharla et al., 1997] S. Palacharla, N. Jouppi, and J.E. Smith, “Complexity-Effective Su-

perscalar Processors,” In Proceedings of ISCA-24, pages 206–218, June 1997.

[Parcerisa et al., 2002] J-M. Parcerisa, J. Sahuquillo, A. Gonzalez, and J. Duato, “Efficient

Interconnects for Clustered Microarchitectures,” In Proceedings of PACT, September 2002.

[Ponomarev et al., 2001] D.V. Ponomarev, G. Kucuk, and K. Ghose, “Reducing Power Re-

quirements of Instruction Scheduling Through Dynamic Allocation of Multiple Datapath

Resources,” In Proceedings of MICRO-34, pages 90–101, December 2001.

[Powell et al., 2001] M. Powell, A. Agrawal, T.N. Vijaykumar, B. Falsafi, and K. Roy, “Re-

ducing Set-Associative Cache Energy via Selective Direct-Mapping and Way Prediction,” In

Proceedings of MICRO-34, December 2001.

[Ranganathan and Franklin, 1998] N. Ranganathan and M. Franklin, “An Empirical Study of

Decentralized ILP Execution Models,” In Proceedings of ASPLOS-VIII, pages 272–281,

October 1998.

[Ranganathan et al., 2000] P. Ranganathan, S. Adve, and N.P. Jouppi, “Reconfigurable Caches

and Their Application to Media Processing,” Proceedings of ISCA-27, pages 214–224, June

2000.

[Reinhardt and Mukherjee, 2000] S. Reinhardt and S. Mukherjee, “Transient Fault Detection

via Simultaneous Multithreading,” In Proceedings of ISCA-27, pages 25–36, June 2000.

[Rivers et al., 1997] J. Rivers, G. Tyson, E. Davidson, and T. Austin, “On High-Bandwidth

Data Cache Design for Multi-Issue Processors,” In Proceedings of MICRO-30, pages 46–56,

December 1997.

133

[Rogers et al., 1995] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, “Supporting Dynamic

Data Structures on Distributed Memory Machines,” ACM TOPLAS, March 1995.

[Rotenberg, 1999] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance

in Microprocessors,” In Proceedings of 29th International Symposium on Fault-Tolerant

Computing, June 1999.

[Rotenberg et al., 1997] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith, “Trace Pro-

cessors,” In Proceedings of MICRO-30, pages 138–148, December 1997.

[Roth et al., 1998] A. Roth, A. Moshovos, and G. Sohi, “Dependence Based Prefetching for

Linked Data Structures,” In Proceedings of ASPLOS VIII, pages 115–126, October 1998.

[Roth et al., 1999] A. Roth, A. Moshovos, and G. Sohi, “Improving Virtual Function Call

Target Prediction via Dependence-based Pre-computation,” In Proceedings of ICS, pages

356–364, June 1999.

[Roth and Sohi, 2001] A. Roth and G. Sohi, “Speculative Data-Driven Multithreading,” In

Proceedings of HPCA-7, January 2001.

[Sherwood et al., 2003] T. Sherwood, S. Sair, and B. Calder, “Phase Tracking and Prediction,”

In Proceedings of ISCA-30, June 2003.

[Shivakumar and Jouppi, 2001] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated

Cache Timing, Power, and Area Model,” Technical Report TN-2001/2, Compaq Western

Research Laboratory, August 2001.

[Smith and Sohi, 1995] J.E. Smith and G.S. Sohi, “The Microarchitecture of Superscalar Pro-

cessors,” Proceedings of the IEEE, 83:1609–1624, December 1995.

[Sodani and Sohi, 1997] A. Sodani and G. Sohi, “Dynamic Instruction Reuse,” In Proceedings

of ISCA-24, pages 194–205, June 1997.

[Sohi et al., 1995] G. Sohi, S. Breach, and T.N. Vijaykumar, “Multiscalar Processors,” In

Proceedings of ISCA-22, pages 414–425, June 1995.

134

[Srinivasan et al., 2001] S. Srinivasan, R. Ju, A. Lebeck, and C. Wilkerson, “Locality vs. Crit-

icality,” In Proceedings of ISCA-28, pages 132–143, July 2001.

[Srinivasan and Lebeck, 1999] S. T. Srinivasan and A. R. Lebeck, “Load Latency Tolerance in

Dynamically Scheduled Processors,” Journal of Instruction-Level Parallelism, 1, October

1999.

[Steffan and Mowry, 1998] J. Steffan and T. Mowry, “The Potential for Using Thread Level

Data-Speculation to Facilitate Automatic Parallelization,” In Proceedings of HPCA-4, pages

2–13, February 1998.

[Sundaramoorthy et al., 2000] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream

Processors: Improving both Performance and Fault Tolerance,” In Proceedings of ASPLOS-

IX, pages 257–268, November 2000.

[Tiwari et al., 1998] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Re-

ducing Power in High-Performance Microprocessors,” In Proceedings of the 35th Design

Automation Conference, 1998.

[Tullsen et al., 1995] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Multithreading: Max-

imizing On-Chip Parallelism,” In Proceedings of ISCA-22, pages 392–403, June 1995.

[Tune et al., 2001] E. Tune, D. Liang, D. Tullsen, and B. Calder, “Dynamic Prediction of

Critical Path Instructions,” In Proceedings of HPCA-7, pages 185–196, January 2001.

[Veidenbaum et al., 1999] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapt-

ing Cache Line Size to Application Behavior,” In Proceedings of ICS, pages 145–154, June

1999.

[Wulf and McKee, 1995] Wm. A. Wulf and S.A. McKee, “Hitting the Memory Wall: Implica-

tions of the Obvious,” Computer Architecture News, 23(1):20–24, March 1995.

[Yang et al., 2001] S.H. Yang, M. Powell, B. Falsafi, K. Roy, and T.N. Vijaykumar, “An

Integrated Circuit/Architecture Approach to Reducing Leakage in Deep Submicron High-

Performance I-Caches,” In Proceedings of HPCA-7, pages 147–158, January 2001.

135

[Yeager, 1996] K. Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro,

16(2):28–41, April 1996.

[Yoaz et al., 1999] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, “Speculation Techniques for

Improving Load Related Instruction Scheduling,” In Proceedings of ISCA-26, pages 42–53,

May 1999.

[Zilles and Sohi, 2000] C. Zilles and G. Sohi, “Understanding the Backward Slices of Perfor-

mance Degrading Instructions,” In Proceedings of ISCA-27, pages 172–181, June 2000.

[Zyuban and Kogge, 2001] V. Zyuban and P. Kogge, “Inherently Lower-Power High-

Performance Superscalar Architectures,” IEEE Transactions on Computers, March 2001.

