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Abstract
We identify the operating system as one area where a
novel architecture could significantly improve on current
chip multi-processor designs, allowing increased perfor-
mance and improved power efficiency. We first show that
the operating system contributes a non-trivial overhead to
even the most computationally intense workloads and that
this OS contribution grows to a significant fraction of total
instructions when executing interactive applications. We
then show that architectural improvements have had little
to no effect on the performance of the operating system
over the last 15 years. Based on these observations we
propose the need for increased operating system support
in chip multiprocessors. Specifically we consider the po-
tential of a separate Operating System Processor (OSP)
operating concurrently with General Purpose Processors
(GPP) in a Chip Multi-Processor (CMP) organization.

1 Introduction
The performance of computer systems has scaled well due
to a synergistic combination of technological advance-
ment and architectural improvement. In the last 15 years,
high performance workstations have progressed from the
venerable single core 486/33, released in 1989, to the cur-
rent IBM Power 5 and Intel dual core Pentium 4 EE. Pro-
cess fabrication size has shrunk from 1 micron (486/33)
down to 90 nanometers (Pentium Prescott) and is ex-
pected to continue down to 65 nanometer and below. Dra-
matically decreased transistor sizes have helped enable
a 100-fold increase in clock frequency from 33MHz to
3.8GHz during this same period. Simultaneously, the
number of pipeline stages has increased from the classic
5 stage pipeline all the way up to 31 stages [1]. Tran-
sistor count and resultant die size has exploded from 1.2
million transistors on the 486/33 to more than 275 mil-
lion in the Power 5. At the same time, as technology
has improved, architectural improvements such as deep
pipelines, caching, and out of order execution have al-

lowed us to take advantage of increased transistor counts
to improve system performance at a breakneck pace.
What is striking about these performance improvements,
however, is that while general application performance
has improved approximately 200x in this time period, we
find that the performance of the operating system in the
same period has seen a significantly smaller improvement
on the order of 50x. For domains where the operating sys-
tem contributes a significant percentage of cycles, this can
have a serious impact on overall system performance.

One contributor to this effect is that the operating sys-
tem is not typically considered when architectural en-
hancements are proposed for general purpose processors.
Modern processors, especially in an academic setting,
are typically simulated using a cycle accurate architec-
tural model, such as Simplescalar [2], to evaluate perfor-
mance. Typically these cycle accurate simulators do not
execute the operating system because doing so requires
accurate I/O models and slows down simulation speed
substantially. Full system simulators are becoming more
prevalent [3, 4, 5, 6] but often require modification to the
operating system or do not provide cycle accurate num-
bers. While several studies suggest that the operating sys-
tem has a significant role in commercial workload per-
formance [7, 8, 9, 10], the effect of the operating system
on varying workloads is still largely unexplored. Our ap-
proach in this paper is twofold: we simulate a variety of
applications with a full system simulator to measure the
portion of system cycles spent in OS tasks, and we take
actual measurements on real machines to try to understand
how performance has scaled across different implementa-
tions of the same instruction set architecture.

While Redstone et al. [7], have shown the OS can account
for over 70% of the cycles in commercial workloads, we
contribute to this body of work by examining a variety of
workloads. We examine computationally intensive work-
loads to determine the minimum overhead the operating
system contributes to workloads. This provides a baseline
estimate of the potential inaccuracy of architectural mod-



Benchmark % Instructions
contributed by OS

Linux Kernel Compile 3.63%
SPECint Average 5.15%
SPECfp Average 5.24%

ByteMark 23.73%
Bonnie++ 86.41%

UnixBench 97.16%
NetPerf 99.48%

X Usage 38.04%
Average 44.85%

Table 1: Operating System Contribution In Various Work-
loads

els such as Simplescalar compared to Simics coupled with
University of Wisconsin’s Multifacet Gems Project [11].
We show that minimally, the operating system will con-
tribute 5% overhead to almost all workloads. Workloads
which utilize system calls or trigger device interrupts have
increased OS overhead, with the suite of interactive appli-
cations in our study requiring at least 38% OS overhead.
I/O intensive applications often even have operating sys-
tem overheads which overshadow their userspace compo-
nents.

With operating system overhead being a significant pro-
portion of instructions executed in many workloads, the
performance of the operating system is a critical factor in
determining total system throughput. It is currently hard
to measure operating system performance due to the lack
of cycle accurate simulator support. Instead we measure
the effects of architectural improvements by measuring
performance improvement on real machines for key com-
ponents such as context switch time, and system call la-
tency. We find that compared to user codes (which are typ-
ically the codes targeted by processor optimizations), op-
erating system performance improvement is consistently
lower by a factor of 4 or 5.

We also briefly examine the issue of operating system in-
terference when powering down processors on modern
machines. We show that offloading interrupt handling
to specialized hardware has the potential to allow more
aggressive power saving techniques for longer durations
than currently possible.

Having shown that operating systems significantly under-
utilize modern processors and can contribute a large por-
tion of executed instructions to workloads, we explore the
possibility of executing the operating system on a semi-
custom processor in a heterogeneous chip multi-processor
organization. First we identify three key criteria that make
the operating system a good candidate for hardware off-
load. We then discuss the performance implications of
such an organization, followed by situations in which sig-
nificant power savings could also be achieved.

2 OS Contribution in Workloads
Previous work [7, 9, 10] has shown that the operating sys-
tem can contribute a significant amount of overhead to
commercial workloads. To our knowledge no work has
been done to survey the amount of operating system over-
head that is present in a larger variety of workloads. De-
termining the minimal amount of operating system over-
head present in all workloads is useful in estimating the
amount of possible error in simulations that do not model
these effects. In workloads that have significant operating
system overhead, such as databases and web server work-
loads, performance can depend as much on the operating
system as on user code. For these applications, knowing
operating system overhead is critical for performance tun-
ing. Finally, very rarely are interactive applications exam-
ined when architecting performance improving features
because they typically under-utilize modern processors.
Because of their prevalence, it helps to explore this appli-
cation space to determine if architectural improvements
can reduce power consumption while maintaining current
performance levels.

2.1 Methodology

Most architectural simulators do not execute operating
system code because instrumenting external interrupts
and device I/O models is a non- trivial task in addition to
significantly slowing down the overall simulation speed.
Simics, a full system simulator from Virtutech [4], pro-
vides full system simulation by implementing such de-
vice models allowing it to execute an unmodified Linux
kernel. To maintain simulation speed Simics implements
functional models of these devices as well as the proces-
sor. The lack of an accurate timing model limits the per-
formance evaluation possible using this simulator. Func-
tional modeling is advantageous however because it pro-
vides execution fast enough to model not only the operat-
ing system but interactive applications using X-Windows.

Simics’ functional model of a Pentium processor allows
us to examine the processor state bit to determine if
the processor model was in privileged mode (supervi-
sor mode) or user mode when executing each instruction.
This privilege separation allows us to track which instruc-
tions were executed within the operating system. This
tracking method also allows us to track system calls which
execute within the user process’ address space but are con-
sidered operating system functionality.

For our simulated system we used the default Redhat 7.3
disk image provided by Virtutech and left all the default
system daemons running. Running with background dae-
mons disabled would not portray a typical system in most
cases which often require remote filesystem services, re-



SPECfp Instructions SPECint Instructions
Wupwise 5.96% Gzip 4.65%

Swim 19.42% Vpr 4.43%
Mgrid 0.59% Gcc 5.04%
Applu 4.29% Mcf 4.86%
Mesa 0.71% Crafty 4.54%

Galgel 0.51% Parser 4.82%
Eon 4.58%
Gap 5.91%

Vortex 6.62%
Bzip2 6.32%
Twolf 4.97%

Average 5.24% Average 5.15%

Table 2: SPECcpu2000 Instructions Executed in Supervi-
sor Mode

mote procedure calls invocation, as well as remote login.
We recognize that computing installations often heavily
optimize the set of system daemons running on their ma-
chines, but we do not attempt to model the vastly differ-
ent subsets of services utilized in enterprise deployments.
While system daemons typically do not contribute heav-
ily to overall instruction counts, they do cause sporadic
interrupts which can cause scheduling changes and I/O
activity.

Typically architectural level simulations are only run for
several million cycles due to the slowdown of simulation.
We found significant variation when looking at sample
sizes of only 10 million instructions due to the OS per-
forming periodic maintenance operations such as clear-
ing write buffers, even when the workload had reached
a steady state. To remedy this variation we allowed all
benchmarks to run for 10 billion instructions prior to tak-
ing measurements. All numbers cited are the average of
10 sequential runs of 100 million instructions which re-
duced statistical variation to negligible levels.

2.2 CPU Intensive Workloads

Computationally intense workloads are used to evaluate
micro-architectural improvements because they maximize
computation and minimize the effects of memory and I/O
performance as much possible. These benchmarks of-
ten represent scientific workloads which require minimal
user intervention. These benchmarks are ideal for deter-
mining the minimal amount of operating system overhead
that will be present on a machine because they make very
small use of operating system functionality. Thus over-
head is likely to be contributed from timer interrupts re-
sulting in context switching, interrupt handling, and sys-
tem daemon overhead.

We chose to use SPECint, SPECfp, and ByteMark [12] as

our computationally intense benchmarks. We also chose
to time a Linux kernel compile to provide a computation-
ally intense workload that also provides some file system
I/O. Table 1 shows the percentage of instructions executed
in supervisor mode by these benchmarks. Table 2 shows
the individual breakdown and variation between the SPEC
benchmarks. SPEC benchmarks, particularly those re-
quiring Fortran, for which simulation was unable to com-
plete due to unidentifiable internal Simics errors, are not
shown. The average operating system overhead when ex-
ecuting these four benchmarks is 9.43%. The ByteMark
benchmark skews these results strongly however and we
believe the average of 5.19% for the SPEC benchmarks is
a more realistic minimal overhead.

2.3 I/O Intensive Workloads

Computationally intense benchmarks are a good way to
test architectural improvements in the architecture but
rarely do they capture total system performance because
many applications involve a significant amount of file or
network traffic. We chose to use Bonnie++, an open
source file-system performance benchmark [13] and net-
perf, a TCP performance benchmark, to measure OS con-
tribution in what we expected to be OS dominated work-
loads. Table 1 shows that our expectations were in-
deed correct and that the OS contribution far outweighs
user code contribution for file-system and network op-
erations. We also used UnixBench as an I/O Inten-
sive workload. UnixBench consists of several bench-
marks including Whetstone, Drystone, system call perfor-
mance monitoring, and typical UNIX command line us-
age. UnixBench has a surprisingly high operating system
contribution of 97.16%. These benchmarks confirm that
I/O processing is almost entirely OS dominated and sup-
port the work of Redstone et al. [7] who have shown that
for workloads such as Apache the operating system can
contribute more than 70% of the total cycles.

2.4 Interactive Workload

While cpu-intensive benchmarks provide useful data
when measuring processor innovations these workloads
rarely represent the day to day usage of many computers
throughout the world. One key difference between these
workloads and typical workstation use is the lack of in-
teraction between the application and the user. X Win-
dows, keyboard, and mouse use generates a workload that
is very interrupt driven even when the user applications
require very little computation, a common case within
the consumer desktop domain. When a high performance
workstation is being utilized fully, either locally or as part
of a distributed cluster, the processor must still handle
these frequent interrupts from user interaction, thus slow-



ing down the application computation.

We modeled an interactive workload by simultaneously
decoding an MP3, browsing the web and composing email
in a text editor. While this type of benchmark is not re-
producible across multiple runs due to spurious interrupt
timing, we believe smoothing the operating system ef-
fects across billions of instructions accurately portrays the
operating system contribution. This interactive workload
typically only utilized about 32.91% of the processor’s cy-
cles and spent 38.04% of these instructions within the OS.

3 Decomposing Performance Im-
provements

The performance increase in microprocessors over the
past 15 years has come from both architectural improve-
ments as well as technological improvements. Faster tran-
sistors have helped drive architectural improvements such
as deep pipelining which in turn caused an enormous in-
crease in clock frequencies. Significant changes have oc-
curred in architecture as well, moving from the classic five
stage pipeline to a multiple issue, deeply pipelined archi-
tecture, where significant resources are utilized in branch
prediction and caching. Because we wish to distill the
architectural improvement in the last 15 years, and disre-
gard technological improvement as much as possible, we
chose to take measurements from real machines, a 486 @
33MHz and a Pentium 4 @ 3.0GHz, instead of relying on
architectural simulations which can introduce error due
to inaccurate modeling of the operating system. For this
purpose we define total performance improvement (P) as
technology improvement (T) times architectural improve-
ment (A), or P = T ×A.

A metric commonly used to compare raw circuit per-
formance in different technologies is the fan-out of four
(FO4) [14, 15]. This is defined to be the speed at which
a single inverter can drive four copies of itself. This met-
ric scales roughly linearly with process feature size. Thus
a processor scaled from a 1 micron process, our 486, to
90nm, our Pentium 4, would have approximately an 11
fold decrease in FO4 delay. We set T, our technological
improvement, to 11 for the remainder of our calculations.

To determine the architectural improvement, A, when
moving from the 486 to the Pentium 4 we must accurately
determine the total performance improvement P and then
factor out the technological improvement T. To achieve
accurate values for P we installed identical versions of the
Linux kernel and system libraries, kernel 2.6.9 and gcc
3.4.4, on both the machines. Each machine was individ-
ually tuned with compiler optimizations for best perfor-
mance. Using the same kernel and system libraries helps
minimize any possible performance variation due to oper-

Benchmark 486 Pentium 4 Speedup
crafty Real:27,705s Real: 115s 240.91

(SPECint) User:27,612s User: 110s 251.01
Sys: 14s Sys: 1s 14.00

twolf Real:35,792s Real: 249s 143.74
(SPECint) User:35,191s User: 234s 150.38

Sys: 49s Sys: 1s 49.00
mesa Real:51,447s Real: 272s 189.14

(SPECfp) User:50,801s User: 249s 204.02
Sys: 112s Sys: 2s 56

art Real:64,401s Real: 332s 193.97
(SPECfp) User:64,160s User: 306s 209.67

Sys: 34s Sys: 1s 34
Linux Kernel Real:57,427s Real: 292s 196.66

Compile User:54,545s User: 250s 218.18
Sys: 1,930s Sys: 25s 77.2

Table 3: Speedup from 486 33MHz to Pentium 4 3.0GHz

ating system changes even from minor revisions.

Attempting to discern the architectural improvements of
only the microprocessor required that we use benchmarks
that minimize the use of external hardware in a perfor-
mance critical manner. We also chose benchmarks with
working sets that fit in the limited main memory of our
486 test machine. This ensured that the machines would
not regularly access the swap partition which could pro-
vide misleading performance numbers. We chose the
Linux kernel compile because there is enough parallelism
present by creating multiple jobs that compilation can
fully utilize the processor while other jobs are waiting on
data from the I/O system. Care has to be taken to create
only the minimum number of jobs necessary to fully uti-
lize the processor or we can introduce significantly more
context switching than necessary. N + 1 jobs is typically
the ideal number of jobs, where N is the number of pro-
cessors available when compiling source code.

Table 3 shows the performance difference when execut-
ing the same workload on both machines using the UNIX
time command. The total performance improvement P is
taken by examining the Real time. We found the average
speedup, including both application and operating system
effects, when moving from the 486 to the Pentium 4 was
192.2. Using 192.2 and 11, for P and T respectively, we
can then calculate that our architectural improvement, A,
is 17.47 or roughly 60% more improvement than we have
obtained from technological improvements. This archi-
tectural improvement comes from increased ILP utiliza-
tion due to branch prediction, deeper pipelines, out of or-
der issue, and other features not present in a classic five
stage pipeline.

3.1 Operating System Performance

In section 2 we showed that the operating system con-
tributes non-trivial overhead to most workloads and that
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Figure 1: Context Switching Speed Normalized for Clock Frequency

some workloads, such as those which are interactive or
I/O intensive, can have significant portions of their to-
tal instruction counts occur within the operating system.
For these applications operating system performance is
critical to achieve good workload performance. Table 3
shows that while total application performance has in-
creased 192.2 times in the last 15 years, operating system
performance has only increased 46.04 times. Stated an-
other way, application codes that can take full advantage
of modern architectural improvements achieve four times
more performance than operating system codes that can
not.

Table 3 shows only a limited set of benchmarks because
our 486 was restricted to this set due to its limited mem-
ory. Additionally the UNIX time command does not pro-
vide the timing fidelity necessary to have good confidence
in the low number of seconds reported for the system time
on the Pentium 4. To validate the OS speedup results in
Table 3 we perform two other experiments in subsequent
sections which each independently support the conclusion
that architectural improvements have helped application
codes significantly, but are from 4 to 10 times less effec-
tive on operating system codes.

3.2 Context Switch Performance

As single threaded applications are redesigned with mul-
tiple threads to take advantage of SMT and CMP based
processors, the context switch, an already costly opera-
tion, will become even more critical. Operating system

designers have focused on reducing the cost of a con-
text switch for years, while much less attention has been
paid in the architecture community [16, 17]. To deter-
mine the improvement in context switch time over the last
15 years we measure context switch cost using a Posix
locking scheme similar to the one described in [18]. In
this method two threads are contending for a single Posix
lock, similar in style to traditional methods of passing a
token between threads. The Posix lock is used instead of
a traditional UNIX pipe because Posix locks are one of
the lowest overhead synchronization primitives currently
available in Linux.

Figure 1 provides the average context switch time, nor-
malized to 3.0 GHz, over five runs of our benchmark on
various machine configurations. All timings showed a
standard deviation of less than 3% within the five runs.
The absolute number for context switch time is much less
important than the relative time between cases. Disregard-
ing the overhead of the token passing method lets us focus
on the relative change in context switch cost between dif-
fering machine architectures. Context switching routines
in the Linux kernel are hand tuned sections of assembly
code that do not make use of the hardware context switch
provided by the x86 instruction set. It has been shown that
this software context switch has performance comparable
to the hardware switch but provides more flexibility.

Our first experiment sought to determine how context
switch time scaled with clock frequency for a given archi-
tecture. Our Pentium 4 running at 3.0GHz supports fre-



System Call 486 P4 Speedup Arch
Speedup

brk 87 2 43 3.90
close 439 29 15 1.36

execve 14,406 1,954 7 .63
fcntl64 62 1 62 5.63

fork 15,985 8,187 2 .18
fstat64 183 1 183 16.63

getdents64 501 10 50 4.54
getpid 49 1 49 4.45

getrlimit 59 1 59 5.36
ioctl 728 25 29 2.63

mprotect 324 4 81 7.36
munmap 365 11 33 3

newuname 88 2 44 4
open 860 899 0 0
pipe 559 7 79 7.18
poll 9,727,367 9,280 1,048 95.27
read 44,304 185 239 21.72

rt sigaction 206 1 206 18.72
rt sigprocmask 178 1 178 16.18

select 403,042 11,849 34 3.09
sigreturn 75 1 76 6.90

stat64 264 53 5 .45
time 72 5,585 0 0

waitpid 99,917 3 33305 3027.72
write 2,164 3,418 0 0

Table 4: System Call Speedup from 486 33MHz to Pen-
tium 4 3.0GHz - Time in microseconds

quency scaling allowing us to scale down the frequency of
the processor in hardware and run our context switching
benchmark at multiple frequencies on the same proces-
sor. The absolute context switch time for these frequency
scaled runs was then normalized back to 3.0Ghz. This
normalization allows us to clearly see that context switch
time scales proportionally with clock frequency. Scaling
proportionally with clock frequency indicates that context
switching is a fairly memory independent operation. Thus
we can draw the conclusion that the number of cycles re-
quired to context switch in a given microarchitecture is
independent of clock frequency.

To determine if architectural improvements have reduced
context switch time we run this benchmark on a 486 @
33MHz with the identical kernel and tool-chain versions.
Scaled for frequency, Figure 1 shows that context switch
performance has actually decreased in the last 15 years by
requiring an increased percentage of cycles. This is likely
due to the increased cost of flushing a modern Pentium’s
31 pipeline stages versus the classic five stages in a 486.
This decrease in context switch performance undoubtedly
contributes to the lackluster performance of the operating
system that we saw in Table 3.

3.3 System Call Performance

To further validate our results that the OS performs any-
where from 4-10 times worse than user codes on modern

architectures we used the Linux Trace Toolkit (LTT) [19]
to log system call timings over a duration of 10 seconds on
both the 486 and the Pentium 4. LTT is commonly used
to help profile both applications and the operating system
to determine critical sections that need optimization. LTT
can provide the cumulative time spent in each system call
as well as the number of invocations during a tracked pe-
riod of time. This allows us to average the execution of
system calls over thousands of calls to minimize variation
due to caching, memory, and disk performance. By aver-
aging these 10 second runs across the multiple workloads
found in Table 3 we also eliminate variation due to partic-
ular workload patterns. The Linux Trace Toolkit provides
microsecond timing fidelity, thus system calls which take
less than 1 microsecond can be reported as taking either 0
microseconds or 1 microsecond depending where the call
falls in a clock period. Averaging thousands of calls to
such routines should result in a random distribution across
a clock period but we currently have no way to measure if
this is true, and thus can not guarantee if this is, or is not,
occurring. All system call timings have been rounded to
the nearest microsecond.

Table 4 shows the absolute time for common system calls,
absolute speedup, and the speedup due to architectural im-
provement only, using our technology scaling factor T set
at 11. When examining these figures we must be careful
to examine the function of the system call before inter-
preting the results. System calls which are waiting on I/O
such as poll, or are waiting indefinitely for a signal such
as waitpid, should be disregarded because they depend on
factors outside of OS performance. System calls such as
execve, munmap, and newuname provide more accurate
reflections of operating system performance independent
of device speed. Because system calls can vary in exe-
cution so greatly we do not attempt to discern an average
number for system call speedup at this time, instead pro-
viding a large number of calls to examine. It is clear how-
ever that most system calls in the operating system are not
gaining the same benefit from architectural improvement,
17.47, that user codes have received in the past 15 years.

3.4 Interrupt Handling

Interrupt handling is a regular repetitive task that all op-
erating systems perform on behalf of the user threads for
which incoming or outgoing data is destined. Using the
Linux Trace toolkit we found that the number of inter-
rupts handled by the operating system during a 10 second
period on the Pentium 4 was within 3% of the number
handled on the 486 during the same 10 second period.
These timings were performed with both interactive and
computationally intense workloads. The average of these
two workloads is cited in Figure 2 which shows these ex-



ternal interrupts are regular in their arrival. In many cases
these interrupts are not maskable meaning they must be
dealt with immediately and often cause a context switch
on their arrival.

Under the Linux OS the external timer interval is by de-
fault 10ms, this provides the maximum possible idle time
for a processor running the operating system. Including
external device interrupts the interval between interrupts
dropped to 6.2ms on average for both the 486 and the
Pentium 4. Each interrupt causes on average 1.2 context
switches and requires 3 microseconds to be handled. The
irq handling cost is negligible compared to the context
switching cost and can be disregarded. Thus the average
cost of handling 193 context switches at approximately
18000 cycles per context switch, 6 millisecond context
switch time measured on a 3GHz P4, requires 3.5 million
cycles per second, or only about 0.1% of the machines
cycles.

While the total number of cycles spent handling inter-
rupts is very low the performance implications are actu-
ally quite high. The regular nature of interrupt handling
shown in Figure 2 generates regular context switching
which in turn causes destructive interference in microar-
chitectural structures such as caches and branch predic-
tion history tables. The required warm up of such struc-
tures on every context switch has been shown to have sig-
nificant impact on both operating system and application
performance [20].

4 Proposed Architectural Support
for Operating Systems

Hardware specialization via offloading of applications
from the general purpose processor has occurred many
times for applications such as graphics processing, net-
work processing, and I/O control. These specialized pro-
cessors have been successful whereas many others, such
as TCP off-load, have not. We identify three crucial re-
quirements that an offloaded application must meet to jus-
tify the use of specialized hardware. Failure to meet all
three of the criteria likely indicates that the potential per-
formance and power benefits gained from hardware spe-
cialization will not exceed the communication overhead
that is also introduced. Based on these criteria we believe
the operating system is a prime candidate for hardware
support in a chip multiprocessor configuration.

4.1 Criteria for Hardware Specialization
Constant Execution Applications that contribute a sig-
nificant portion of cycles to the total workload tend to
benefit from hardware specialization. Amdahl’s law tells

Figure 2: Distribution of Interrupt Handling Over 10 Sec-
onds

us that we should spend our resources speeding up ap-
plications that contribute the largest amount to total sys-
tem performance. Graphics processors, network handling,
and I/O controllers are all examples of applications that
are constantly running and consume a non-trivial fraction
of a time-shared processor’s cycles. In Section 2, we es-
tablished that the operating system minimally contributes
five percent overhead to any workload, and that many ap-
plications require at least 38% OS overhead to achieve
graphical interactivity. I/O intensive applications can have
more than half of their total instructions occur within the
operating system.
Inefficient Execution on General Purpose Processors
Offloaded applications must stand to gain a decisive per-
formance advantage by being offloaded to a more special-
ized processor. If no performance gain can be achieved
when offloading an application, the additional hardware
will typically consume more power to achieve the same
total system performance. Conversely, it may also be
worthwhile to off-load applications that can be executed
with acceptable performance while utilizing significantly
less power. In Section 3, we established that operating
system performance improvement is lagging behind user
code performance improvements on modern machines by
four-fold. In the last 15 years, technology improvements
have increased the absolute performance of the operating
system three times as much as architectural innovations.
Having established the inefficiency of operating system
execution on modern processors, we believe it will be pos-
sible to provide hardware support that will simultaneously
save power and increase performance through architec-
tural improvements.
Benefit To Remaining Codes Offloading a specific ap-
plication to specialized hardware must provide a signifi-



cant benefit to the codes that will remain on the general
purpose processor. We have shown that the operating sys-
tem executes frequently and regularly, with at most 6.2ms
between invocations when handling only interrupts. Ev-
ery invocation of the operating system introduces cache
and branch history entries into performance critical struc-
tures. Upon return to the user codes, these structures are
often no longer at their steady state and require a warm
up period before they can be fully utilized again. The in-
terference caused by the OS in these structures has been
shown to be worse than the interference caused by other
user-level threads [20]. As a result, we believe that elim-
inating intermittent operating system execution from the
main processing unit will result in improved performance
for the user portions of application execution even with
user applications now causing more direct interference be-
tween each other.

4.2 Proposed Architecture

We believe the operating system meets the key criteria
that help identify exceptionally good candidates for ad-
ditional hardware support. With the advent of chip multi-
processors, adding more cores on a single die is becom-
ing commonplace. Future cores will likely have signifi-
cantly more than two cores, the standard today, on a sin-
gle die. We propose a heterogeneous CMP such that one
core will be customized to handle operating system execu-
tion while the remaining cores are left to execute general
purpose codes. Other work [21, 22, 23], has explored the
possibility of heterogeneous chip multi-processors but to
our knowledge our work is the first to propose a heteroge-
neous CMP that targets a ubiquitous application (the OS)
with known poor performance.

Our results in Sections 2 and 3 have shown that, scaled for
technology, a classic 5 stage pipeline architecture such as
that found on a 486 is surprisingly close in performance
to a modern Pentium 4 when executing operating system
codes. More startling is that the 486 architecture uses only
1.2 million transistors while the Pentium 4 uses well over
200 million. We believe an architecture not significantly
more complex than the 486 could be customized to exe-
cute operating system codes as fast or faster than modern
general purpose processors at a cost of less than a few mil-
lion transistors, an insignificant fraction of today’s transis-
tor budgets. At similar performance we also believe this
semi-custom will do significantly better on metrics which
take energy expenditure into account, such as energy de-
lay product. The purpose of this work was to evaluate the
need and potential benefits of an architecture of this na-
ture; detailed evaluations of an architecture based on our
current observations will be part of future work.

4.3 Potential Performance Benefits

We believe a simple architecture will be able to execute
the operating system more efficiently and there are several
key architectural features that will improve overall sys-
tem throughput greatly. The operating system typically
executes code segments that are significantly smaller than
user codes. In Section 3, we showed that system calls
and interrupt handling typically require tens of microsec-
onds to execute upon invocation. These short bursts of in-
structions do not allow for caches and branch predictors to
warm up properly, reducing their effectiveness. Similarly,
deep pipelines excel at throughput oriented tasks at the ex-
pense of latency. They are also costly when branch mis-
predictions occur, events that currently happen frequently
in operating system codes [20].

Slight modifications to current chip multiprocessor archi-
tectures can potentially yield an even more significant per-
formance benefit. Currently, the operating system must
examine its run queues to determine which application
will be scheduled next. On uni-processors this is a sequen-
tial operation with the OS performing this calculation be-
tween every two user processes. Offloading the operating
system to dedicated hardware would not only allow this
function to be precomputed, but could allow the operating
system to prefetch context information into a high speed
context buffer causing reduced context switch times. Sim-
ilarly, with a priori knowledge of upcoming contexts, the
operating system is in a special position to warm up mi-
croarchitectural structures by prefetching instructions and
data into the L2 that are likely to be used by the incoming
application. We believe that the knowledge the operating
system has of contexts can be heavily utilized to reduce
these traditional context switching penalties in a variety
of ways.

4.4 Potential Power Savings

Dynamic power dissipation has traditionally dominated
the energy expended by a processor and techniques such
as clock gating and frequency scaling are being utilized
to help minimize the impact of this transistor switching.
As process sizes shrink, static power begins dominating
the total power consumption of microprocessors [24, 25].
Static power dissipation can be mitigated through power
gating and voltage scaling, but these techniques require
a significant number of cycles to switch between modes.
These methods often can not be utilized because the pro-
cessor is not idle for sufficient intervals of time.

The Pentium 4 processor at 3.8GHz has thermal pack-
aging to support a steady state power dissipation of 115
watts . As die temperature rises, the P4 can modulate
its clock on and off to reduce dynamic power consump-



tion by up to 82.5% [1]. Unfortunately, with static power
estimated to be nearing half of total power consumption,
using only the Pentium 4’s on-demand clock modulation,
the processor still consumes 68 watts. Eight of these watts
are due to dynamic power consumption, while 60 watts
are static power loss that cannot be addressed by clock
modulation.

In Section 3, we identified interrupt handling as a peri-
odic task with an average interval of 6.8 milliseconds be-
tween invocations. On a uni-processor, this period is the
longest possible time a processor can perform power gat-
ing and reduce static power dissipation. On idle machines,
this interval becomes the limiting factor for potential static
power savings because the machine must wake up on aver-
age every 6.8ms before returning to deep sleep mode. By
offloading this interrupt handling to an operating system
processor, which we expect to consume a trivial amount of
power relative to modern processors, these high wattage
cores can be powered down for much longer periods of
time resulting in significant total power savings. Note that
the power benefits above are in addition to the power ben-
efits of executing OS code on a simple shallow pipeline.

5 Conclusions
We have shown that the operating system minimally poses
a 3-5% overhead for all applications and much more for
some. Applications which require user interaction utiliz-
ing X Windows can incur a much larger operating system
overhead of 38%. Applications which have significant I/O
requirement can have even larger operating system com-
ponents. For applications in which the operating system
contributes a significant portion of its total instructions
the performance of operating system codes is critical for
achieving high application performance. The modeling of
operating systems in architectural simulation is now crit-
ical if we wish accurately predict performance gains in
future generations of microprocessors.

In the last 15 years total system performance has im-
proved by almost 200 times, 11 times from technology
improvements, based on FO4 delay, and 19.7 times from
architectural improvements. The operating system has re-
ceived the same 11 fold improvement from technology but
has seen only a 4 fold improvement from architectural im-
provements and executes nearly 5 times slower than appli-
cation codes on modern hardware.

Based on these studies we propose the concept of a hetero-
geneous chip multiprocessor consisting of a semi-custom
operating system processor (OSP) intelligently coupled
with one or more traditional general purpose proces-
sors (GPP). This OSP is likely to have a significantly
more shallow pipeline than current processors which will

maximize performance while also increasing energy effi-
ciency. Providing external interfaces to performance criti-
cal structures in the GPP such as branch history tables and
caches would allow the OSP to actively pre-warm these
structures for incoming contexts of which the OSP has a
priori knowledge. Recurring tasks, such as interrupt han-
dling, which significantly under-utilize the GPP can now
be offloaded to a power efficient OSP and allow more ag-
gressive power down of high wattage cores. We believe
these benefits will come at an increased transistor budget
of at most a few percent.
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