
QUANTIFYING THE IMPACT OF INTERBLOCK

WIRE-DELAYS ON PROCESSOR

PERFORMANCE

by

Vivek Venkatesan

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

May 2008

Copyright c©Vivek Venkatesan 2008

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Vivek Venkatesan

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair: Rajeev Balasubramonian

John B Carter

Ganesh Gopalakrishnan

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Vivek Venkatesan in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Rajeev Balasubramonian
Chair, Supervisory Committee

Approved for the Major Department

Martin Berzins
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

As logic delays continue to decrease with smaller process technology, on-chip

wire delays are growing exponentially and are expected to increase cross-chip com-

munication latencies to tens of cycles. In this work, we quantify the performance

impact of wire-delays in three important contexts: (i) within an aggressive out-

of-order (OoO) processor pipeline on a two-dimensional (2D) plane, (ii) within a

three-dimensional (3D) die-stacked processor and (iii) within coherence communi-

cation paths of a chip multiprocessor.

We perform a detailed characterization of the loops in a super-scalar pipeline

and show that previous attempts to characterize the impact of wire-delays on

performance over-estimate the IPC degradation for some loops. We observe that

most loops tend to become less critical as more speculation and simple optimizations

are introduced. three-dimensional stacking allows dies to be bonded with each other

in the vertical dimension enabling further reduction in wire-length. We incorporate

the data from the criticality study into a floor-planner that leverages 3D to reduce

the lengths of the most critical interblock wires. The overall results argue against

leveraging 3D to improve single-core performance and shows that IPC-aware 2D

floor-plans perform within an acceptable range of 3D.

Coherence operations on multicore architectures necessitate frequent communi-

cation over global on-chip wires. Different coherence messages may have varying

delay-tolerance levels. We quantify the sensitivity to wire delays for each type

of coherence message in an OoO multiprocessor model employing directory-based

cache coherence. We observe that OoO processors are able to hide latency in

coherence operations adequately and hence there is potential to save considerable

power over the interconnect by employing efficient power-optimization strategies.

CONTENTS

ABSTRACT . iv

LIST OF FIGURES . vii

LIST OF TABLES . viii

ACKNOWLEDGEMENTS . ix

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 2
1.2 Thesis Statement . 5
1.3 Contributions . 5
1.4 Outline . 6

2. WIRE DELAYS . 7

2.1 Critical Microarchitecture Loops . 8
2.1.1 Instruction Fetch Loop . 9
2.1.2 Rename Loops . 10
2.1.3 Wakeup and Bypass Loops . 10
2.1.4 Bypassing Loops Between Groups of Functional Units 12
2.1.5 Cache Hierarchy Loops . 13

2.2 IPC Impact of Wire Delays . 13
2.2.1 Methodology . 13
2.2.2 Behavior of Single Threaded Workloads 14
2.2.3 Comparison with Multithreaded Workloads 16
2.2.4 Dependence of Criticality on Processor Configuration 17

3. CRITICALITY AWARE FLOORPLANNING 20

3.1 IPC-aware 2D Floorplanning . 20
3.2 Optimizing 3D Floorplans . 23
3.3 Floorplanning Results . 25

3.3.1 Methodology . 25
3.3.2 Comparison of Optimal 2D and 3D Floorplans 27
3.3.3 IPC-optimal Floorplanning for In-order

and SMT Cores . 30
3.3.4 Comparison with Pentium4 Study . 32

4. COHERENCE MESSAGE CRITICALITY 35

4.1 Coherence Message Taxonomy . 35
4.2 Motivation . 37
4.3 Making Use of Criticality . 38

4.3.1 Resource Utilization . 38
4.3.2 Power Efficiency . 39
4.3.3 Misspeculation Reduction . 40

4.4 Coherence Message Analysis . 40
4.4.1 Methodology . 40
4.4.2 Workload Description . 42
4.4.3 Performance Impact of Wire Delays

on Coherence Protocols . 44
4.4.4 Impact of Write-set Size and Available ILP 45
4.4.5 Memory Consistency Model . 48
4.4.6 Case Study: SPLASH-2 . 48

5. RELATED WORK . 51

6. CONCLUSION AND FUTURE WORK . 53

APPENDIX: SYNTHETIC BENCHMARK PSEUDOCODE 55

REFERENCES . 57

vi

LIST OF FIGURES

2.1 Critical microarchitectural loops in an O-o-O superscalar pipeline . . . 8

2.2 IPC slowdown curves for single threaded workloads 15

2.3 IPC slowdown curves for multithreaded workloads 16

2.4 IPC slowdown curves for an in-order processor configuration 18

2.5 IPC slowdowns for various processor configurations 19

3.1 Additive nature of IPC degradation . 22

3.2 Optimal 2D floorplan . 28

3.3 Optimal 3D floorplan . 28

3.4 Comparison of basic, optimal 2D and optimal 3D floorplans 29

3.5 Normalized CPI of basic and criticality aware floorplans for in-order
processors . 31

3.6 Normalized CPI of basic and wire delay aware floorplans for SMT
processors . 32

4.1 Execution time impact of wire delay on the synthetic benchmark 44

4.2 Variation with different write-set sizes . 46

4.3 Difference in slowdown between 0% and 100% write-set size 46

4.4 Performance impact under different levels of available ILP 47

4.5 Slowdown percentage for sequential and relaxed consistency models . . 49

4.6 Percentage slowdown for SPLASH-2 benchmarks 49

LIST OF TABLES

2.1 Effect of wire delays on critical loops . 13

2.2 SimpleScalar simulator parameters . 14

2.3 Benchmark pairs for the multithreaded workload 14

2.4 Parameters for five different processor configurations 19

3.1 Critical path latencies for 10 random configurations 22

3.2 3D floorplanner cost function parameters . 24

3.3 Weights for the different pairs of blocks and the corresponding wire
delays for the least constrained and most constrained models 26

3.4 Thermal model parameters . 27

3.5 Optimal floorplan temperatures in ◦C . 30

4.1 Coherence message groupings . 41

4.2 Opal parameters . 42

4.3 Ruby parameters . 42

4.4 Synthetic benchmark input parameters . 43

4.5 Breakdown of instructions and memory operations per CPU 43

4.6 Bandwidth consumption of different message types 45

ACKNOWLEDGEMENTS

I am grateful to my advisor Prof. Rajeev Balasubramonian for being my mentor

and inspiration throughout my graduate school life. All credit for opening me up

to the world of computer architecture, a place where I never thought I would be,

falls squarely on his shoulders. I thank my committee members Prof. John Carter

and Prof. Ganesh Gopalakrishnan for their valuable guidance and comments on

my work. I thank Abhishek Ranjan, Manu Awasthi and Devyani Ghosh for their

collaboration in parts of this work. I also thank Niti Madan and Liqun Cheng for

their valuable help with the SMT Model for SimpleScalar and the Wisconsin GEMS

memory model respectively. I thank all fellow Impulse lab mates and architecture

reading club members for making my years in graduate school thoroughly enjoyable.

Finally I would like to thank my parents, brother and friends for their unconditional

love and support through all my endeavours.

CHAPTER 1

INTRODUCTION

Advancements in silicon fabrication technology have driven improvements in

processor performance because of smaller transistor sizes. The reasons for im-

provement are twofold: smaller sizes allow greater transistor densities and hence

more complex functionality, and secondly the logic delay of a transistor also re-

duces because of smaller gate lengths. However, with smaller transistor sizes, wire

width and height also decrease, resulting in larger wire resistances. The increased

resistance coupled with faster clock rates and increasing die area will cause wire

delay between micro-architectural blocks to extend beyond tens of cycles. Hence

wire delay is becoming a critical component of overall performance, limiting the

effectiveness of architectural features that require global communication or unduly

increasing the distance between portions of a processor. This work illustrates the

importance of studying the impact of these wire delays on the overall performance

of a processor.

In recent years, power density and chip temperature have emerged as primary

constraints in microprocessor design. They become more critical with every new

process generation because of increased transistor and power densities. The move

to a 3D die stacked chip [1, 2, 3] further accelerates the climb on the power

density curve. An effective technique to overcome the temperature bottleneck

is micro-architectural floorplanning. By placing relatively cool blocks around hot

blocks, the rate of lateral heat spreading is improved, thereby reducing the operating

temperature of hotspots. Floorplanning algorithms typically employ a simulated

annealing process where a large number of arbitrary arrangements of blocks (such

as the register file, rename unit, branch predictor, etc.) are evaluated based on

2

an objective function. The objective function attempts to find a floorplan that

minimizes temperature, metal or silicon area and wire density with little regard to

the performance impact of varying interblock wirelengths.

1.1 Motivation

To date, no architectural study has provided a detailed characterization of how

wire delays between micro-architectural blocks impact performance. Most papers

on floorplanning [4, 5, 6] employ performance models that are not very detailed

or even have some flaws. For example, these studies [5, 6] indicate that certain

wire delays can degrade performance by as much as 65%, but do not consider

simple pipeline optimizations that can dramatically cut down these effects. We

present results that can serve as an authoritative guideline that VLSI researchers

can directly adopt in their floorplanning or routing/placement tools.

The performance data from this work can also be useful in another impor-

tant context. The vertical stacking of dies allows microprocessor circuits to be

implemented across three dimensions. This allows a reduction in distances that

signals must travel. By reducing overall wire lengths, 3D implementations can help

alleviate the performance and power overheads of on-chip wiring. The primary dis-

advantage of 3D chips is that they cause an increase in power densities and on-chip

temperatures. The true potential of 3D can be estimated only with knowledge of

the criticality of different interblock wires.

Many recent advances have been made in fabricating 3D chips ([7] presents a

good overview). This technology can incur a nontrivial cost because of increased

design effort, reduced manufacturing yield, and higher cooling capacities. Even

though the technology is not yet mature, early stage architecture results are required

to understand its potential. There are likely three primary avenues where 3D can

provide benefits:

• 3D stacking of DRAM chips upon large scale Chip Multi Processors (CMP):

Interdie vias can take advantage of the entire die surface area to implement a

3

high bandwidth link to DRAM, thereby addressing a key bottleneck in CMPs

that incorporate over hundred cores [8, 2].

• “Snap-on” analysis engines: Chips employed by application developers can

be fitted with additional stacked dies that contain units to monitor hardware

activity and aid in debugging [9]. Chips employed by application users will not

incorporate such functionality, thereby lowering the cost for these systems.

• Improvement in CPU performance/power: The components of a CPU (cores,

cache banks, pipeline stages, individual circuits) can be implemented across

multiple dies. By lowering the penalties imposed by long wires, performance

and power improvements are possible.

The third approach above can itself be classified in two ways: folding partitions

a single structure (e.g., register file) across multiple dies in order to reduce its access

time; stacking preserves the structure of individual circuit blocks but leverages 3D to

reduce interblock distances. Most recent work has focused on the folding approach

[10, 11, 12, 13, 14, 15]. Results have shown that this can typically help reduce

the delays within a pipeline stage by about 10%, which in turn can contribute

to either clock speed improvements or ILP improvements (by supporting larger

structures at a target cycle time). The disadvantage with the folding approach is

that potential hotspots (e.g., the register file) are partitioned and placed vertically,

further exacerbating the temperature problem. Much design effort will also be

invested in translating well established 2D circuits into 3D.

The primary advantage of the stacking approach is the ability to reduce oper-

ating temperature by surrounding hotspots with relatively cool structures. It also

entails less design complexity as traditional 2D circuits can be re-used. A third

advantage is a reduction in wire delay/power for interconnects between various

micro-architectural structures. It has, however, received relatively little attention.

We intend to focus on this approach by integrating many varied aspects (loop

analysis, pipeline optimizations, SMT, automated floorplanning) in determining the

impact of 3D on single core performance. To understand the potential benefit of the

4

stacking approach, however, it is necessary that we first quantify the performance

impact of wire delays between micro-architectural structures.

A study of wire delays can also be useful when applied to coherence protocols.

In future microprocessors, as the number of cores scales beyond tens and hundreds,

more scalable coherence protocols are needed, and directory based designs have

been most popular so far [16, 17]. Several studies [18, 19, 20, 21, 22] have

characterized the high frequency of cache misses in parallel workloads, and how

these misses significantly hurt the total execution time. On a cache miss, a variety

of protocol actions are initiated, such as request messages, invalidation messages,

intervention messages, data block write backs, data block transfers, etc. Every

coherence message involves on-chip communication with latencies that are projected

to grow to tens of cycles in future billion transistor architectures [23]. Some of

these can tolerate long latencies, whereas others are on the program critical path.

Further, speculation within the core can hide the cost of some of these wire delays.

For example, on a cache write miss, the requesting processor may have to wait for

data from the home node (a two hop transaction), and for acknowledgments from

other sharers of the block (a three hop transaction). Since acknowledgments are on

critical path, every cycle of delay in acknowledgments has higher chances to hurt

performance than a data block transfer delayed by a cycle. However, an in-depth

analysis of the delay sensitivities of coherence messages is required to comprehend

the bigger picture.

Cheng et al. [24, 25] have shown that different coherence protocol messages

in a directory based protocol have varying bandwidth and latency needs. This

is done by identifying message flows within the context of individual coherence

operations. However, such an analysis is incognizant of the frequency of the

different coherence operations and the interactions among them. For example,

the study reports invalidate messages as being critical to performance. However,

that may not always be the case; invalidates may not be so frequent as to make a

difference in overall performance. A more detailed analysis of the delay sensitivities

of coherence messages for an application as a whole will be more beneficial. Our

5

analysis considers the effect of wire delays in directory based coherence protocols

for out-of-order execution engines.

1.2 Thesis Statement

We believe that the criticality analysis of wire delays in the context of uniproces-

sors or shared memory multiprocessors will prove as an effective tool to selectively

optimize a system for performance or power. This thesis corroborates this statement

by applying such an analysis in two contexts, for micro-architectural loops within a

pipeline and for coherence communication paths in a shared memory multiprocessor

system.

The thesis incorporates the results of the loop analysis into a floorplanning

algorithm to produce performance optimized floorplans. The criticality data are

also used to identify the effectiveness of the 3D stacking approach. The data from

the wire delay study within coherence protocols will be used to isolate coherence

messages that can be optimized for latency and for power. Other intuitive tech-

niques, not within the scope of this thesis, to utilize the criticality information are

discussed.

1.3 Contributions

In this thesis, we expose the impact of wire delays on processor performance

and highlight the significance of criticality awareness on processor designs. The

primary contributions of this thesis are:

• Carries out the most comprehensive analysis of the impact of wire delays

on critical micro-architectural loops of a traditional out-of-order processor

pipeline that takes into consideration several common pipeline optimizations.

The analysis also identifies and addresses areas where past work is inaccurate.

• Designs and implements a criticality aware floorplanner based on input from

the wire delay study. The detailed models of the wire delay analysis help in

accurately characterizing the IPC penalty of each critical loop. Our floorplan-

6

ners are able to automate the process of identifying layouts that minimize the

lengths of these critical wires.

• Extends the methodology stated above to generate wire delay optimal 3D

floorplans that utilize the extra dimension to minimize critical wire lengths

between different units. This enables researchers to draw a conclusion about

the effectiveness of the 3D stacking approach.

• Identifies the delay tolerance levels exhibited by coherence messages in a

shared memory multiprocessor environment where coherence is maintained

with the help of a directory based protocol. We explore variations in sen-

sitivity to wire delay for different consistency models. We propose a list

of hardware techniques that incorporate criticality awareness in coherence

protocols for improved performance or power efficiency.

1.4 Outline

Before we begin with the criticality analysis of micro-architectural loops, it

is essential to identify the factors affecting performance for each of these loops.

Chapter 2 qualitatively describes the relationships between wire delays and critical

micro-architectural loops, and quantifies these relationships for single and multi-

threaded superscalar cores. In Chapter 3, these data are then fed into floorplanning

algorithms to derive layouts for 2D and 3D chips that optimize a combination of

metrics. We show that 2D layouts are able to minimize the impact of critical wire

delays effectively. This result is more optimistic about 2D layouts than some prior

work in the area and there is little room for improvement with a 3D implemen-

tation for traditional simple superscalar cores. The motivation for performing a

criticality analysis on coherence protocols and a few possible techniques to utilize

the information are discussed in Chapter 4. We also present the methodology for

our evaluation and detail the results of the coherence message analysis. We discuss

related work in Chapter 5 and summarize our conclusions and possible future work

in Chapter 6.

CHAPTER 2

WIRE DELAYS

An out-of-order superscalar processor has a number of communication paths

between microarchitectural structures. For a large enough processor operating

at a high frequency, some of these paths may incur multicycle delays. For ex-

ample, the Pentium4 has a few pipeline stages dedicated for wire delay [26]. A

state-of-the-art floorplanning algorithm must attempt to place microarchitectural

blocks in a manner that minimizes delays for interblock communication paths,

but even the best algorithms cannot completely avoid these delays. As examples,

consider the following wire delays that are encountered between pipeline stages

in the Pentium4. The floating point, integer, and load/store units cannot all be

colocated: this causes the load-to-use latency for floating point operands to be

higher than that for integer operands. A recent paper by Black et al. [27] indicates

that multicycle wire delays are encountered between the extreme ends of the L1

data cache and integer execution units. Similarly, the paper mentions that wire

delays are introduced between the FP register file and FP execution units because

the SIMD unit is placed closest to the FP register file (SIMD access to the register

file is considered more critical). By introducing a third dimension, we can help

reduce on-chip distances and the overall performance penalty of interblock wire

delays.

To understand this benefit of 3D, we must first quantify the impact of interblock

wire delays on performance and evaluate if 2D floorplanning algorithms yield pro-

cessors that incur significant IPC penalties from wire delays. In addition to serving

as the foundation for our 3D layout study, the data produced here can serve as

useful inputs for groups researching state-of-the-art floorplanning tools. It should

8

be noted that while similar analyses exist in the literature, a few papers report

inaccurate results because of simplified models for the pipeline.

2.1 Critical Microarchitecture Loops

Consider the superscalar out-of-order pipeline shown in Figure 2.1. The pipeline

is decomposed into the standard microarchitectural blocks and key data transfers

between blocks are indicated with solid lines. Borch et al. [28] define a microar-

chitectural loop as the communication of a pipeline stage’s result to the input of

that same pipeline stage or an earlier stage. Loops typically indicate control, data,

or structural dependences. The length of the loop is the number of pipeline stages

between the destination and origin of the feedback signal. If the length of the

loop is increased, it takes longer to resolve the corresponding dependence, thereby

increasing the gap between dependent instructions and lowering performance. If a

floorplanning tool places two microarchitectural structures far apart and introduces

wire delays between them (in the form of additional pipeline stages for signal

transmission), the lengths of multiple loops may be increased. Hence, to understand

the IPC impact of wire delays, we must understand how the length of a loop impacts

IPC. Similar, but less detailed evaluations have also been carried out in prior work

(such as [28, 29, 6, 30]). The dashed lines in Figure 2.1 represent important loops

Branch
Predictor

PHT
BTB
RAS

I-Cache Decode Rename ROB

I
QRegister

File

ALUs
L
S
Q

D-Cache

L2-Cache

2a
2b

1

3

4
5

7

6

Figure 2.1. Critical microarchitectural loops in an O-o-O superscalar pipeline

9

within an out-of-order superscalar processor and each loop is discussed next.

2.1.1 Instruction Fetch Loop

In a simple pipeline, the process of instruction fetch involves the following steps:

the PC indexes into the branch predictor system to produce the next-PC, the

corresponding line is fetched from the Instruction cache (I-cache), instructions are

decoded, and when the next control instruction is encountered, it is fed back to

the branch predictor system. This represents a rather large loop with a few stall

cycles in fetch every time a control instruction is encountered. Introducing wire

delays between the branch predictor, I-cache, and decode can severely degrade

performance and this pessimistic model was assumed in HotFloorplan [6]. However,

it is fairly straightforward to decouple the branch predictor and I-cache so that we

instead have two short loops (labeled 2a and 2b in Figure 2.1). Such decoupled

pipelines have been proposed by academic [31] and industrial groups [32].

In one possible implementation, the output of the branch predictor (the start of

the next basic block) is fed as input back to the branch predictor. As a result, the

branch predictor system is now indexed with the PC that starts the basic block, not

the PC that terminates the basic block. Updates to the branch predictor system

must correspondingly also use the basic block start PC. This allows the branch

predictor to produce basic block start PCs independent of the rest of the front end.

Our results show that this change in the branch predictor algorithm has a minimal

impact on its accuracy. The outputs of the branch predictor can be buffered at

the I-cache. Every cycle, the I-cache reads out either the line corresponding to the

next queued basic block or the next sequential line if a control instruction is not

encountered. Since the presence of a control instruction in the fetched line is not

known until the end of decode, a bit is maintained for every I-cache line to indicate

if the line contains a control instruction. This bit is set after the line is decoded

the first time. Thus, the I-cache can produce a new line every cycle. I-cache fetch

cycles are wasted only if the line is being decoded the first time and the default

prediction is incorrect.

The front end pipeline now consists of two major tight loops: the branch

10

predictor loop (2a) and the I-cache loop (2b). The front end is also part of the

branch mispredict resolution loop (1), which feeds from the ALU stage all the way

back to the front end. Thus, the primary impact of introducing a wire delay between

front end pipeline stages is an increase in branch mispredict penalty. Our relative

results will hold true even if a different front end pipeline implementation (such

as the next-line-and-set predictor in the Alpha 21264 I-cache [32]) is adopted, as

long as the critical loops are short. Prior studies [5, 33, 6] have overstated the IPC

impact of this wire delay because the branch predictor and I-cache were assumed

to not be decoupled.

2.1.2 Rename Loops

The introduction of wire delays either between the decode and rename stages

or between the rename and issue queue stages lengthens the penalty for a branch

mispredict (loop 1). Since registers are allocated during rename, wire delays be-

tween the rename stage and the issue queue increase the duration that a register

entry remains allocated (loop 3). This increases the pressure on the register file

and leads to smaller in-flight instruction windows.

2.1.3 Wakeup and Bypass Loops

There is a common misconception that wire delays between the issue queue

and ALUs lead to stall cycles between dependent instructions [5, 6]. This is not

true because the pipeline can be easily decomposed into two tight loops: one for

wakeup (loop 4) and one for bypass (loop 5). When an instruction is selected for

issue in cycle N , it first fetches operands from the register file, potentially traverses

long wires, and then reaches the ALU. Because of these delays, the instruction

may not begin execution at the ALU until the start of cycle N + D. If the ALU

operation takes a single cycle, the result is bypassed to the inputs of the ALU so

that a dependent instruction can execute on that ALU as early as the start of cycle

N +D+1. For this to happen, the dependent instruction must leave the issue queue

in cycle N + 1. Therefore, as soon as the first instruction leaves the issue queue,

its output register tag is broadcast to the issue queue so that dependents can leave

11

the issue queue in the next cycle. Thus, operations within the issue queue must

only be aware of the ALU latency, and not the time it takes for the instruction

to reach the ALU (delay D). The gap between dependent instructions is therefore

not determined by delay D, but by the time taken for the wakeup loop and by the

time taken for the bypass loop (both of these loops were assumed to be 1 cycle in

the above example). The introduction of wire delays between the issue queue and

ALU because of floorplanning will not impact either of these loops.

However, wire delays between the issue queue and ALU will impact another

critical loop that (has been disregarded by every floorplanning tool to date. This

is the load hit speculation loop (loop 7 in Figure 2.1). The issue queue schedules

dependent instructions based on the expected latency of the producing instruction.

While most instructions have fixed latencies, a load instruction’s latency depends

on the location of data in the cache hierarchy. In modern processors, such as the

Pentium4 [26], the issue queue optimistically assumes that the load will hit in the

L1 data cache and accordingly schedules dependents. If the load latency is any more

than this minimum latency, dependent instructions that have already left the issue

queue are squashed and subsequently replayed. To facilitate this replay, instructions

can be kept in the issue queue until the load latency is known. Thus, load-hit

speculation negatively impacts performance in two ways: (i) replayed instructions

contend twice for resources, (ii) issue queue occupancy increases, thereby supporting

a smaller instruction window, on average. The first factor comes into play on a

load-hit misspeculation, whereas the second factor impacts performance even for

correct speculations.

If any wire delays are introduced in the pipeline between the issue queue and

ALU, or between the ALU and data cache, it takes longer to determine if a load

is a hit or a miss. Correspondingly, the penalties for correct and incorrect load-hit

speculations increase. We also model the Tornado effect [34], where an entire chain

of instructions dependent on the load are issued, squashed, and replayed on a load

miss. Delays between the issue queue and ALUs also impact branch mispredict

penalty and register occupancy. They also increase the L1 miss penalty as it takes

12

longer to restart the pipeline after an L1 miss.

2.1.4 Bypassing Loops Between Groups of Functional Units

For this discussion, we assume that the functional units are organized as three

clusters: integer ALUs, floating-point ALUs, and memory unit. The memory

unit is composed of the load-store queue (LSQ) and L1 data cache. The ALUs

that compute the effective addresses for loads and stores are part of the integer

cluster. Bypassing within a cluster does not cost additional cycles. If wire delays

are introduced between the integer and floating-point clusters, performance will be

impacted for those integer operations that are data dependent on a floating-point

result, and vice versa. The introduction of wire delays between the integer cluster

and memory unit impacts the load-to-use latency (loop 6 in Figure 2.1) and the

penalties for load-hit speculation.

If a single cycle delay is introduced between the memory and integer units, the

load-to-use latency increases by two cycles. Similarly, wire delays between levels of

the cache hierarchy will increase the cache miss penalties. If a single cycle delay

is introduced, it takes one more cycle to communicate the effective address to the

cache and an additional cycle to forward the value back to dependent instructions

in the integer cluster. Even if the ALU that generates the effective address is part

of the memory unit, the penalty is similar because a register value produced in

the integer cluster will likely have to be forwarded as input to the ALU. As a

result, the gap between a load and a dependent integer operation increases by two

cycles. Similarly, if a single cycle wire delay is introduced between the memory unit

and floating-point cluster, the gap between a load and a dependent floating-point

operation increases by one cycle.

Now consider the case where the integer ALUs are themselves distributed across

multiple clusters, similar to the Alpha 21264 [32] micro-architecture. Bypassing an

operand within a cluster imposes little wire delay penalty, but bypassing an operand

between clusters is more expensive. An instruction steering heuristic attempts to

balance load across clusters and steer dependent instructions to the same cluster.

However, it is impossible to localize all dependent instructions and typically, there

13

exist numerous critical intercluster data transfers. An increase in intercluster wire

delays will therefore increase the gap between every pair of dependent instructions

that are assigned to different clusters.

2.1.5 Cache Hierarchy Loops

The wire delay between the L1 data cache controller and the L2 cache controller

directly impacts the latency for an L1 data cache miss. Similarly, the delay between

the L1 instruction cache controller and the L2 cache controller impacts the latency

for an L1 instruction cache miss. Table 2.1 summarizes the different ways that wire

delays can impact performance.

2.2 IPC Impact of Wire Delays

2.2.1 Methodology

The simulator used in this study is based on SimpleScalar-3.0 [35], a cycle-

accurate simulator for the Alpha AXP architecture. It is extended to not only model

multiple threads and separate issue queues, register files, and reorder buffer, but also

the microarchitectural loops and features discussed in Section 2.1. For each of the

critical sets of pipeline stages listed in Table 2.1, we introduce additional wire delays

of 2, 4, 6, and 8 cycles. The single thread benchmark suite includes 23 SPEC-2k

programs, executed for 100 million instruction windows identified by the Simpoint

tool [36]. Table 2.2 lists the processor parameters for the base configuration.

Table 2.1. Effect of wire delays on critical loops
Pipeline stages Critical loops affected

Branch predictor and L1I-Cache Branch mispredict penalty
I-Cache and Decode Branch mispredict penalty, penalty to detect con-

trol instruction
Decode and Rename Branch mispredict penalty
Rename and Issue queue Branch mispredict penalty and register occupancy
Issue queue and ALUs Branch mispredict penalty, register occupancy,

L1 miss penalty, load-hit speculation penalty
Integer ALU and L1D-Cache Load-to-use latency, L1 miss penalty, load-hit

speculation penalty
FP ALU and L1D-Cache Load-to-use latency for floating-point operations
Integer ALU and FP ALU Dependences between integer and FP operations
L1 caches and L2 cache L1 miss penalty

14

Table 2.2. SimpleScalar simulator parameters
Fetch queue size 16 Branch predictor comb. of bimodal and 2-level

Bimodal predictor size 16K Level 1 predictor 16K entries, history 12
Level 2 predictor 16K entries BTB size 16K sets, 2-way

Branch mispredict penalty at least 10 cycles Fetch width 4
Dispatch width 4 Commit width 4
Issue queue size 20 Int, 20 FP Register file size 80 (Int and FP, each)

Integer ALUs/mult-div 4/2 FP ALUs/mult-div 2/1
L1 I-cache 32KB 2-way Memory latency 300 cycles for the first block
L1 D-cache 32KB 2-way 2-cycle L2 unified cache 2MB 8-way, 30 cycles

ROB/LSQ size 80/40 I and D TLB 128 entries, 8KB page size

We also repeat our experiments for a core that supports the execution of two

threads in SMT fashion and a traditional in-order core. For the multithreaded

workload, we form a benchmark set that consists of 10 different pairs of programs.

Programs are paired to generate a good mix of high IPC, low IPC, FP, and Integer

workloads. Table 2.3 shows our benchmark pairs. Each of the multithreaded

workloads are executed until the first thread commits 100 million instructions.

Our SMT model employs the ICOUNT [37] fetch policy and all resources (except

the ROB) are dynamically shared by the two threads.

2.2.2 Behavior of Single Threaded Workloads

The resulting IPC degradation curves (averaged across the benchmark suite),

relative to the baseline processor (that imposes zero interblock wire delay penalties),

are charted in Figure 2.2 for single threaded workloads. For the single threaded

workloads, it is evident that wire delays between the ALU and data cache have the

greatest impact on performance, causing an average slowdown of 20% for a four

cycle delay. Integer programs are impacted more than FP programs, with some

benchmarks exhibiting slowdowns of greater than 40%. As shown in Table 2.1,

delays between the ALU and data cache affect multiple critical loops. The load-to-

Table 2.3. Benchmark pairs for the multithreaded workload
Benchmark Set Set # IPC Pairing Benchmark Set Set # IPC Pairing

swim-applu 1 FP/FP/Low/High bzip-fma3d 2 Int/FP/Low/High
bzip-vortex 3 Int/Int/Low/Low eon-art 4 Int/FP/High/Low

eon-vpr 5 Int/Int/High/High gzip-mgrid 6 Int/FP/Low/Low
mesa-equake 7 FP/FP/High/High swim-lucas 8 FP/FP/Low/Low
twolf-equake 9 Int/FP/High/High vpr-gzip 10 Int/Int/High/Low

15

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

%
 S

L
O

W
D

O
W

N
-S

IN
G

L
E

-T
H

R
E

A
D

EXTRA DELAY

DCACHE-INTALU
IQ-INTALU

RENAME-IQ
DCACHE-L2

BPRED-ICACHE
ICACHE-DECODE

DECODE-RENAME
DCACHE-FPALU

FP-INTALU

Figure 2.2. IPC slowdown curves for single threaded workloads

use loop contributes nearly three-fourth of the 20% observed slowdown, with the

remaining attributed to the load-hit speculation loop (1.7%), and L1 miss penalty

loop (2.6%).

The load-hit speculation loop also contributes to the second most critical wire

delay, that between the issue queue and ALUs. Since the wakeup and bypass loops

are decoupled, a four cycle wire delay between the issue queue and ALU only causes

a performance degradation of 8%, much lower than the pessimistic 65% degradation

reported in [6]. Similarly, because of the decoupled front end, a four cycle wire

delay between the branch predictor and I-cache only causes a 2.3% performance

loss (instead of the 50% performance loss reported in [6]).

To establish confidence in our simulation infrastructure, we modeled the coupled

IQ-ALU and front-end in an attempt to reproduce the results in [48]: we observed

slowdowns of 68% and 41%, respectively, quite similar to the numbers reported in

[48]. The new branch predictor algorithm (indexing with basic block start address

16

instead of basic block end address) affects accuracy by 0.55%. Only 1.14% of all

fetched branches introduce stalls in fetch because the line is new in the I-cache and

the bit indicating the presence of a control instruction is not set. All other wire

delays are noncritical and cause slowdowns of less than 5% (for a four cycle delay).

2.2.3 Comparison with Multithreaded Workloads

Figure 2.3 shows results for multithreaded workloads. Since the multithreaded

workloads only include a subset of all programs, we normalize the multithread

slowdowns against the single thread slowdowns observed for those programs. Hence,

it is a reasonable approximation to directly compare the data in the two graphs

of Figure 2.2 and Figure 2.3. For almost all loops, the multithreaded processor is

slightly less sensitive to wire delays because it can find useful work in other threads

during stall cycles. The only exception is the IQ-ALU loop. Wire delays in the

IQ-ALU loop increase the load-hit speculation penalty. An increase in this delay

causes the thread to issue more speculative instructions: hence wire delays are an

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

%
 S

L
O

W
D

O
W

N
-M

U
L

T
I-

T
H

R
E

A
D

EXTRA DELAY

DCACHE-INTALU
IQ-INTALU

RENAME-IQ
DCACHE-L2

BPRED-ICACHE
ICACHE-DECODE

DECODE-RENAME
DCACHE-FPALU

FP-INTALU

Figure 2.3. IPC slowdown curves for multithreaded workloads

17

impediment to the execution of the co-scheduled thread, not an opportunity to steal

idle slots. Further, as this wire delay increases, issue queue occupancy increases

and since this is a shared resource, it further inhibits the co-scheduled thread.

There are two reasons that could be attributed to this phenomenon. (i) The

IQ-ALU loop is slightly different from the other loops. An increase in other delays

causes a thread to sit idle allowing another thread to fill in the slack. For load-

hit-speculation, increasing the loop length causes the thread to continue issueing

dependents, so regardless of the presence of another thread, some penalty is being

imposed. (ii) The IQ-ALU loop increases the Issue queue occupancy, which in turn

could inhibit instructions from other threads from being issued.

2.2.4 Dependence of Criticality on Processor Configuration

Next, we examine various processor design points to verify if the criticality of

wire delays is a function of the processor model and configuration.

We first consider a processor with strict in-order execution and also plot its

slowdown. Figure 2.4 shows the corresponding curves. The parameters of the

simulated processor are similar to the base out-of-order parameters of Table 2.2.

We observe that the DCACHE-ALU loop stands out as the only critical loop with

an average slowdown of 77% for all benchmarks for an eight cycle delay. Wire

delay between the DCACHE and the ALUs adversely affects performance because

not only do they affect instructions in the load’s dependence chain, as in the case of

the out-of-order pipeline, but they could possibly stall all instructions following the

first consumer as they wait for it to proceed to the next pipe stage. Also, the ALU

to IQ loop is not as critical relative to the out-of-order processor configuration. It

experiences a slowdown of only 3.4% compared to 8% slowdown in performance for

the OoO core. This is because, at any point in time the number of uncommitted

in-flight instructions in the window is few compared to an out-of-order model.

Hence, there is little pressure on the register file and causes no stalls related to

register unavailability. All other loops experience an insignificant slowdown due to

wire delays.

The properties for four out-of-order processors (ranging from “Poor” to “Su-

18

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10

%
 S

L
O

W
D

O
W

N
-S

IN
G

L
E

-T
H

R
E

A
D

-I
N

O
R

D
E

R

EXTRA DELAY

DCACHE-INTALU
IQ-INTALU

RENAME-IQ
DCACHE-L2

BPRED-ICACHE
ICACHE-DECODE

DECODE-RENAME
DCACHE-FPALU

FP-INTALU

Figure 2.4. IPC slowdown curves for an in-order processor configuration

per”) and the in-order configuration are summarized in Table 2.4. Figure 2.5

demonstrates the IPC degradation when eight cycles of wire delay are introduced

between each set of pipeline stages for all five processor configurations. For all

the out-of-order configurations, our broad conclusions hold true: the ALU-Dcache

delay is most critical, followed by the IQ-ALU delay. However, we can see that the

magnitude of the slowdown due to the ALU-Dcache delay increases as we go from

a poor configuration to a good configuration. The rationale behind this is that in

a high-IPC model, any available ILP is quickly mined. Long latency operations

tend to be on the critical path and any additional delays to these instructions will

almost certainly increase overall execution time. And as we saw, for the in-order

model the ALU-Dcache delay stands out, yielding a 157% performance slowdown.

Note that a single cycle wire delay between the ALU and Dcache increases load

latency by two cycles, effectively stalling all subsequent instructions in the in-order

processor by two additional cycles.

19

Table 2.4. Parameters for five different processor configurations
Poor Base Good Super Inorder

Issue o-o-o o-o-o o-o-o o-o-o in-order
Dec/Iss/Comm width 4 4 8 8 4

ROB size 56 80 128 256 80
L1-Dcache 16K 32K 64K 128K 32K
L1-Icache 16K 32K 64K 128K 32K
L2-cache 1MB 2MB 4MB 4MB 2MB

Mem. Ports 2 2 2 4 2
IntALU/IntMul 2/1 4/2 6/2 8/4 4/2
FPALU/FPMul 2/1 2/1 4/1 8/2 2/1

POOR
BASE
GOOD
SUPER
INORDER

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

INT−FPD$−FPDEC−RENDEC−I$BP−ID−L2REN−IQIQ−ALUD$−ALU

PE
R

C
E

N
T

 S
L

O
W

D
O

W
N

158%

Figure 2.5. IPC slowdowns for various processor configurations

For our study in Chapter 3 and results in Section 3.3, we assume single threaded

workloads and only consider the single threaded slow-down curves of Figure 2.2.

However, a sensitivity analysis of our floorplanning algorithms to in-order and

multithreaded workloads is presented in Section 3.3.3

CHAPTER 3

CRITICALITY AWARE

FLOORPLANNING

A chip’s operating temperature is emerging as a major design constraint. Floor-

planning is an effective technique that helps spread heat and minimize the occur-

rence of localized hotspots. The floorplanning process may place two communicat-

ing microarchitectural blocks (for example, the issue queue and ALU) far apart in

an attempt to surround hot blocks with relatively cooler blocks. As we move to

future wire bound technologies, multiple pipeline stages may be required for the

communication of signals between blocks that are placed far apart. An intelligent

floorplanning algorithm should also strive to place blocks communicating over a

critical path close to each other. The slowdown curves in Chapter 2 are indicative

of the criticality of each interblock wire. In this section, we will discuss how a

floorplanning algorithm can efficiently incorporate this data to produce floorplans

tuned for performance.

3.1 IPC-aware 2D Floorplanning

Floorplanning algorithms [29, 38, 39, 6] typically employ a simulated annealing

process to evaluate a wide range of candidate floorplans. The objective functions for

these algorithms attempt to minimize some combination of silicon/metal area, wire

power, and chip temperature. In modern microprocessors, since delays across global

wires can exceed a single cycle, a floorplanning tool must also consider the perfor-

mance impact of introducing multicycle wire delays between two communicating

microarchitectural blocks. The objective function in a state-of-the-art floorplanner

can be represented as follows [29, 38, 39, 6]:

21

λA × Area metric + λT × Temperature

+
∑

ij

λW × Wij × Activityij +
∑

ij

λI × dij × IPC penaltyij

In the equation above, λA, λT , λW , and λI represent constants that tune the

relative importance of each metric (area, temperature, wire power, and IPC), Wij

represents the metal area (length × number of wires) between microarchitectural

blocks i and j, Activityij captures the switching activity for the wires between

blocks i and j, the metric dij represents the distance between blocks i and j in

terms of cycles, while IPC penaltyij is the performance penalty when a single cycle

delay is introduced between blocks i and j. The metrics Wij, dij, Temperature,

and Area metric are computed for every floorplan being considered, while metrics

Activityij and IPC penaltyij are computed once with an architectural simulator

and fed as inputs to the floorplanner. The design of efficient floorplanners remains

an open problem and many variations to the above objective function can be found

in the literature.

When a floorplanning algorithm evaluates a floorplan with various wire delays

between pipeline stages, it must predict the expected overall IPC. If the effects of

different wire delays are roughly additive, it is fairly straightforward to predict the

IPC of a configuration with arbitrary wire delays between pipeline stages. The

predicted theoretical IPC slowdown (relative to the baseline processor with zero

interblock wire delays) for such a processor equals
∑

i di.µi, where di represents

each wire delay and µi represents the slope of the corresponding slowdown curve

in Figure 2.2. If this hypothesis is true, detailed architectural simulations can

be avoided for every floorplan that is considered. To verify this hypothesis, we

simulated 10 processor configurations with random wire delays (between 0 and 4

cycles) between every pair of pipeline stages. The wire delays for these configura-

tions are shown in Table 3.1. Figure 3.1 compares the experimental IPC slowdowns

against the theoretical slowdown computed according to the slopes of the curves

in Figure 2.2. The maximum and average errors were 4% and 2.1%, respectively.

This minor discrepancy is partially because the slowdown curve is being represented

22

Table 3.1. Critical path latencies for 10 random configurations
cfg1 cfg2 cfg3 cfg4 cfg5 cfg6 cfg7 cfg8 cfg9 cfg10

Dcache-IntALU 3 2 1 4 0 2 3 0 1 0
Dcache-DFPALU 3 0 4 3 1 3 2 3 4 0

FP-IntALU 1 1 3 4 4 3 1 3 0 0
Bpred-Icache 0 2 0 0 1 4 2 1 0 0

Decode-Rename 2 2 1 1 4 0 1 4 2 4
Rename-IQ 3 4 0 3 0 2 0 0 4 2
Dcache-L2 4 1 2 2 3 3 1 0 3 2

Decode-Icache 3 4 2 2 1 0 1 1 1 1
IQ-IntALU 1 2 3 1 3 4 1 4 4 4

THEORETICAL SLOWDOWN
 OBSERVED SLOWDOWN

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

CFG10CFG9CFG8CFG7CFG6CFG5CFG4CFG3CFG2CFG1

PE
R

C
E

N
T

 S
L

O
W

D
O

W
N

Figure 3.1. Additive nature of IPC degradation

as a straight line by a single slope value. We also repeated our experiments for

out-of-order processor models with a range of resources and found little difference

in the relative slopes of each slowdown curve.

By applying the floorplanning algorithm described, we are able to generate

floorplans that reduce delays due to on-chip wires. Comparing such an IPC opti-

mized floorplan with an unrealistic perfect floorplan with zero wire delays gives an

estimate of the penalty due to wire delays in a processor. In the next section, we

will see how much 3D layouts help in eliminating this penalty.

23

3.2 Optimizing 3D Floorplans

Three dimensional integrated circuits (3D ICs) [40, 41] offer an attractive op-

portunity to overcome the barriers of interconnect scaling. In a 3D circuit, sev-

eral device layers are stacked together either in a face-to-face, face-to-back or

back-to-back bonding. Vertical interconnects called as interdie vias or d2d vias

are tunneled through silicon to provide direct communication paths between the

various dies. An important benefit of 3D chips over a conventional 2D design is

reduction of interconnect lengths. Other advantages are higher package density,

smaller footprint, higher performance and lower interconnect power due to shorter

overall wire lengths, and support for mixed technology chips.

The HotFloorplan [6] tool from Virginia is used to generate 2D floorplans. For

each floorplan, the tool is allowed to move/rotate blocks and vary their aspect

ratios, while attempting to minimize the objective function. We also extended the

tool to generate 3D floorplans with a two phase approach similar to that described

in [42]. The floorplan is represented as a series of units/operands (blocks in the

floorplan) and cuts/operators (relative arrangement of blocks), referred to as a

Normalized Polish Expression (NPE) [43]. Wong et al. [43] prove that a floorplan

with n basic blocks can be represented as a unique NPE of size 2n − 1. The

balloting property of an NPE ensures that any point in the NPE there are at least

as many units as the number of cuts and therefore allows for the reconstruction of

a valid floorplan. The design space can be explored by applying the following three

operations. As long as the balloting property holds, these operations will result in

a valid floorplan: (i) swap adjacent operands, (ii) change the relative arrangement

of blocks (i.e., complement the operators in NPE), and (iii) swap adjacent operator

and operand. This is repeatedly performed as part of a simulated annealing process

until a satisfactory value for the cost function is obtained.

For the 3D floorplan, the above basic algorithm is extended with additional

moves proposed by Hung et al. [42] and is implemented as a two phase algorithm.

In the first phase, two move functions are introduced in addition to the three

described in [43] – interlayer move (move a block from one die to another) and

24

interlayer swap (swap two blocks between dies) – while still maintaining NPEs and

satisfying the balloting property. The purpose of the first phase is two fold: (i)

minimize the area footprint (areatot) of both the layers and the difference in the

areas of each layer (areadiff), and (ii) move the delay sensitive blocks between

layers to reduce wire delays between them. The cost function used for this phase

is (the equation parameters are clarified in Table 3.2):

costphaseI = αA × areatot + αwl ×
∑

i li.wi + αd × areadiff

The first phase results in two die floorplans having similar dimensions that serve

as inputs to the second phase. In the second phase, no interdie moves or swaps are

allowed. This phase tries to minimize (i) lateral heat dissipation among units, (ii)

total power density of all pairs of overlapping units, (iii) wire delays among units,

and (iv) total area of each die using the three basic within-die moves as described

in [43]. The cost function used for this stage is:

costphaseII = αA × areatot + αwl ×
∑

i li.wi + αd × areadiff+

αvh ×
∑

i,j Aolap(i, j) × (pdi + pdj) + αlh ×
∑

i1,i2
sharedlen(i1, i2) × (pdi1 + pdi2)

At the end of the second phase, we obtain floorplans for two layers with favorable

thermal and wire delay properties. Finally, the L2 is wrapped around the two dies

in a proportion that equalizes their area.

Table 3.2. 3D floorplanner cost function parameters
Parameter Description Associated Value of

Weight Weight

areatot Total area of both dies αtot 0.05
areadiff Area difference between dies αdiff 4e5

Total Wire length/delay∑
i li.wi li - length of wire i αwl 0.4

wi - number of bits being
transferred on wire i

Power density of overlapping units∑
i,j Aolap(i, j)× Aolap(i, j) - overlapping area αvh 0.5

(pdi + pdj) between units i and j,
pdi - power density of unit i

Lateral heat dissipation factor∑
i1,i2

sharedlen(i1, i2) sharedlen(i1, i2) - shared length αlh 5e − 5

×(pdi1 + pdi2) between units i1 and i2

25

3.3 Floorplanning Results

In this section we will discuss the methodology of our floorplanning algorithms

and present detailed results for the optimal 2D and 3D floorplans obtained. Through-

out this section we only deal with optimal single core floorplans and estimate the

impact of wire delays within an uniprocessor core.

3.3.1 Methodology

HotSpot-3.0’s grid model is used to determine the transient temperatures of

the 2D and 3D layouts. The power traces to HotSpot are obtained using the

Wattch power model for 90nm technology. Heat dissipation on interconnects is also

modeled by attributing interconnect power to its connected units in the ratio of their

areas, As discussed earlier, we also extend HotFloorplan [6] to evaluate 3D layouts

and to include the IPC penalty factor while generating optimal floorplans. The

microprocessor model fed to HotFloorplan is very similar to the Alpha 21264 [32]

– the same microarchitectural blocks and relative sizes are assumed. The slopes of

the slowdown curves in Figure 2.2 are used to compute the IPC penalty weights for

each set of wires. These weights are listed in Table 3.3 along with the corresponding

cycles required for each communication (for two different processor models).

To estimate the performance of each floorplan, we determine the distances be-

tween the centers of interacting blocks and compute wire latencies for two different

types of wires – fast global wires on the 8X metal plane and semiglobal wires on

the 4X plane. The processor is assumed to have four types of metal layers, 1X,

2X, 4X, and 8X, with the notation denoting the relative dimensions of minimum

width wires [44]. 1X and 2X planes are used for local wiring within circuit blocks.

These latencies are converted to cycles for two clock speed assumptions – 2 GHz

and 4 GHz. The data in Table 3.3 show the corresponding cycles required for each

communication in the most wire constrained model (wires are implemented on the

slower 4X metal plane and a fast clock speed of 4 GHz is assumed) and the least

wire constrained model (wires are implemented on the faster 8X plane and a clock

speed of 2 GHz is assumed) for the optimal 2D floorplan. If the wire delay between

blocks is less than 1 FO4, we assume that the delay can be somehow absorbed in

26

Table 3.3. Weights for the different pairs of blocks and the corresponding wire
delays for the least constrained and most constrained models

Critical loop Weight Delay for optimal Delay for optimal
2D floorplan 3D floorplan

4X wires (4 GHz)/ 4X wires (4 GHz) /
8X wires (2 GHz) 8X wires (2 GHz)

DCACHE-INTALU 18 1/1 0/0
DCACHE-FPALU 1 3/1 1/1
BPRED-ICACHE 2 1/1 1/1

IQ-INTALU 6 1/1 1/1
FP-INTALU 1 2/1 1/1

DECODE-RENAME 2 1/1 1/1
RENAME-IQ 4 1/1 1/1
DCACHE-L2 2 1/1 1/1

DECODE - ICACHE 2 2/1 1/1

the previous pipeline stage and no additional cycles of wire delay are introduced.

The L2 latency is determined by adding the wire delay between the L1 cache and

the nearest L2 bank to the 30 cycle L2 access time. This way, we are able to obtain

optimal floorplans for both the 2D and 3D case and evaluate their performance

relative to a baseline that has no wire delays.

The average power values for each microarchitectural block are derived from

the Wattch power model [45] for 90 nm technology and this is used by HotFloor-

plan to estimate temperatures within each candidate floorplan. Wattch’s default

leakage model is employed, where a certain fraction of a structure’s peak power is

dissipated in every idle cycle. The leakage value is not a function of the operating

temperature, thus under underestimating the power consumed by hot units. As

we later show, even with this advantage, the hotter 3D architectures are unable

to significantly outperform the cooler 2D architectures. Since we are preserving

the 2D implementation for each circuit block and not folding them across multiple

dies, Wattch’s default power models for each block can be employed. HotFloorplan

uses Hotspot-3.0’s [46] grid model with a 50×50 grid resolution. Hotspot’s default

heat sink model and a starting ambient temperature of 45◦C is assumed for all

temperature experiments throughout the paper.

For 3D floorplans, each die is modeled as two layers – the active silicon and the

bulk silicon. The dies are bonded face-to-face (F2F) and the heat sink is placed

27

below the bottom die. A layer of thermal interface material (TIM) is modeled

between the bulk silicon of the bottom die and the heat spreader [47]. The thermal

parameters for the various layers of the 3D chip are listed in Table 3.4. The

power consumed by data wires between pipeline stages at 90 nm is also considered

[48]. Hotspot does not consider interconnect power for thermal modeling. Hence,

consistent with other recent evaluations [49], interconnect power is attributed to

the units that they connect in proportion to their respective areas. Similar to the

methodology in [27], the reduction in area footprint from 3D is assumed to cause a

proportional reduction in clock distribution power.

3.3.2 Comparison of Optimal 2D and 3D Floorplans

Figure 3.2 and Figure 3.3 illustrate the optimal 2D and 3D floorplans derived

from our methodology respectively. The 2D floorplan obtained is based only on

weights derived from the single thread (OoO) slowdown curve. The performance

of these floorplans along with that of a floorplan generated by a basic wire delay

incognizant floorplanner is shown in Figure 3.4. The figure plots the average slow-

down of SPEC-INT and SPEC-FP benchmarks with respect to a perfect floorplan

with no wire delays for the most and least wire constrained models.

Table 3.4. Thermal model parameters
Bulk Si Thickness die1(next to heatsink) 750µm

Bulk Si Thickness die2 (stacked die) 20µm
Active Layer Thickness 1µm

Cu Metal Layer Thickness 12µm
D2D via Thickness 5µm

Si Resistivity 0.01 (mK)/W
Cu Resistivity 0.0833(mK)/W

D2D via Resistivity (accounts for air 0.0166 (mK)/W
cavities and die to die interconnect density)

HotSpot Grid Resolution 50x50
Ambient temperature 45◦C

28

B
P
R
E
D

L
S
Q

FAdd Dcache

IntExec

L2

L2_rightL2_left

Icache

Decode DTB

IntQ
IMap

FPMul

IntReg

FPQ

FREG

ITB

FPMap

Figure 3.2. Optimal 2D floorplan

Q
S

B
P
R
E
D

IcacheL2_left1 L2_right1

ITB

Dcache

IntMap

FPMul
FRegL

L2_top1

L2_left0 L2_right0

FPAdd

IntExec

DTB

FPMap

IntQ

FPQ

Decode

IntReg

L2_top0

Figure 3.3. Optimal 3D floorplan

29

SPEC−INT
SPEC−FP

 0%
 5%

 10%
 15%
 20%
 25%
 30%
 35%
 40%
 45%

O
pt

im
al

_3
D

(4
G

hz
)

O
pt

im
al

_2
D

(4
G

hz
)

B
as

ic
_2

D
(4

G
hz

)

O
pt

im
al

_3
D

(2
G

hz
)

O
pt

im
al

_2
D

(2
G

hz
)

B
as

ic
_2

D
(2

G
hz

)

IP
C

 S
lo

w
do

w
n

re
la

tiv
e

to
 p

er
fe

ct
 F

LP

Figure 3.4. Comparison of basic, optimal 2D and optimal 3D floorplans

Based on these floorplans, it was observed that the optimal 2D floorplan enabled

a performance improvement of 16.5% over the basic 2D floorplan. The IPC-aware

3D floorplan further achieves a performance improvement of 4%. Hence 3D stacking

does not dramatically reduce critical latencies for an aggressive OoO processor.

We observe that the optimal 2D floorplan (shown in Figure 3.2) co-locates

the units that are involved in the most critical wire delays (DCache-IntALU, IQ-

IntALU). Because the critical wire delays are minimized, the IPC slowdown incurred

by all the introduced wire delays is only 12% in the most wire constrained model

and 10% in the least wire constrained model. It must be noted that this optimal

2D floorplan has a peak temperature that is only 5.5◦C higher than a floorplan

that is optimized for low temperature (produced by increasing the weight for the

temperature term in the objective function). So it is not the case that wire delays

are being reduced at the cost of high temperature. This result indicates that it is

fairly easy to minimize wire delays between critical units even in two dimensions.

30

For the optimal 2D floorplan above, wire delays impose a performance penalty of

12% at most and this represents an upper bound on the performance improvement

that 3D can provide. Figure 3.3 and Table 3.3 also show the optimal 3D floorplan

and its corresponding communication latencies. The wire delays impose a perfor-

mance penalty of 8% at most. Hence, for a traditional out-of-order superscalar

processor, the stacking of microarchitectural structures in three dimensions enables

a performance improvement of at most 4%.

According to our floorplan models, the peak temperatures for the 3D floorplan

are on an average 12.7◦C and 6.1◦C higher than the 2D floorplan for the most and

least wire constrained models, respectively (Table 3.5). We estimated the power

dissipated by interblock wires in 2D and 3D based on the number of maximum bits

being transferred between blocks, the distance traveled, power per unit length for

4X and 8X wires at 90 nm technology, and an activity factor of 0.5. In addition

to the 50% reduction in clock distribution power, we observed a 39% reduction in

power for interblock communication. We acknowledge that it is difficult to capture

interblock control signals in such a quantification, so this is a rough estimate at

best.

3.3.3 IPC-optimal Floorplanning for In-order
and SMT Cores

In Sections 2.2.3 and 2.2.4 respectively, we saw that workloads for Simultaneous

Multithreading cores and In-order cores have varied magnitudes of slowdown to wire

delay. In this section, we perform sensitivity analysis of our floorplanning algorithm

for In-order and SMT processors. Similar to our analysis for single threaded

Out-of-order cores, we use the slowdown curves of Figure 2.4 and Figure 2.3 to

Table 3.5. Optimal floorplan temperatures in ◦C
Model 2D 3D Difference

Most-constrained (Peak) 81.4 94.1 12.7

Least-constrained (Peak) 69.2 75.3 6.1

Most-constrained (Avg) 75.7 83.5 7.8

Least-constrained (Avg) 66.7 70.5 3.8

31

calculate the weights of each loop for In-order and SMT cores respectively. However,

we restrict our analysis here to 2D floorplans alone. For a 100nm target process

technology, we evaluate the performance of the benchmarks for a wire constrained

model (Intermediate Wires/4Ghz Frequency) as well as a wire unconstrained model

(Global Wires/2Ghz Frequency). For the In-order floorplan, we account for its

simple structure by halving the areas of all units from the default Alpha 21264

floorplan.

Figure 3.5 shows the CPI of a basic floorplan and the IPC-optimal floorplan

for an In-order core running the chosen benchmarks, normalized with respect to

a perfect floorplan with no wire delays. For the least wire constrained model,

the area of the in-order floorplan is small enough such that all interblock wires

are within a cycle’s reach for both the basic and the optimized floorplans. Both

experience a slowdown of 20% with respect to the perfect floorplan. Our criticality

aware floorplan experiences a slowdown of 23% on average compared to the perfect

floorplan for the most wire constrained model. For the same cycle length and metal

layer constraints, it outperforms the basic floorplan by 13%. This indicates that

INORDER−BASIC(4Ghz)
INORDER−BASIC(2Ghz)
INORDER−OPTIMAL(4Ghz)
INORDER−OPTIMAL(2Ghz)

 0

 0.5

 1

 1.5

 2

m
ea

n

vp
r

vo
rte

x

tw
ol

f

pa
rs

er

m
cf

gz
ip

gc
c

ga
p

eo
n

cr
af

ty

bz
ip

2

w
up

w
is

e

sw
im

m
gr

id

m
es

a

lu
ca

s

ga
lg

el

fm
a3

d

eq
ua

kear
t

ap
si

ap
pl

u

am
m

p

N
O

R
M

A
LI

ZE
D

 C
P

I

Figure 3.5. Normalized CPI of basic and criticality aware floorplans for in-order
processors

32

even though the area of In-order cores are small, any delay in the DCACHE-ALU

loop would hinder performance.

The normalized CPIs for an SMT processor simultaneously executing two SPEC

benchmarks are shown in Figure 3.6. Once again our IPC-aware floorplanner

outperforms a basic floorplanner by 6% and 17% respectively for the least and

most wire constrained models. For the most wire constrained model, the average

slowdown due to wire delays for the optimal floorplan is 14%.

3.3.4 Comparison with Pentium4 Study

Our conclusions differ from those drawn in the study by Black et al. [27]. The

study characterizes the performance and power effect of 3D on an Intel Pentium4

implementation. In that work too, 3D is primarily exploited to reduce delays

between microarchitectural structures (pipeline stages). Wire delay reduction in

two parts of the pipeline contribute 3% and 4% IPC improvements and many other

SMT−Basic(4Ghz)
SMT−Basic(2Ghz)
SMT−Optimal(4Ghz)
SMT−Optimal(2Ghz)

 0

 0.5

 1

 1.5

 2

m
ea

n

vp
r.g

zi
p

tw
ol

f.e
qu

ak
e

sw
im

.lu
ca

s

sw
im

.a
pp

lu

m
es

a.
eq

ua
ke

gz
ip

.m
gr

id

eo
n.

vp
r

eo
n.

ar
t

bz
ip

.v
or

te
x

bz
ip

.fm
a3

d

N
or

m
al

iz
ed

 C
P

I f
or

 a
n

S
M

T
co

re

Figure 3.6. Normalized CPI of basic and wire delay aware floorplans for SMT
processors

33

stages contribute improvements of about 1%. The combined effect is a 15% increase

in IPC in moving to 3D. While that data serve as an excellent reference point, they

are specific to the Pentium4 pipeline and the cause for performance improvement

in each stage is not identified. We performed experiments to help fill gaps and

provide more insight on the performance improvements possible by eliminating

intracore wire delays.

That study reports a 15% performance improvement by implementing a Pen-

tium4 core in 3D. This difference can be attributed to two sources:

1. FP instruction latency: The Pentium4 2D layout places the SIMD unit

between the FP register file and FP ALUs. This introduces a 1-cycle delay

between the FP register file and FP ALUs, modeled as a two cycle increase

in the latency of all FP instructions. The move to 3D eliminates this wire

delay and improves performance by 4%. If the latency of all FP instructions

is reduced by two cycles in our simulation infrastructure, we too observe

a similar 3% performance improvement (for the SPEC2k FP benchmarks).

However, this aspect is left out of the results shown above. Firstly, as

explained in Section 2.1, a delay between the register file and ALU should

not introduce stall cycles between dependent instructions if full bypassing is

provided. Secondly, the FP ALUs and FP register file are in proximity in

our 2D layout. These observations do highlight the point that a 2D industrial

implementation may have some inefficiencies (for example, inability to provide

full bypassing or inability to co-locate certain structures) that can be elided

with a 3D layout.

2. Store life time: The Pentium4 has a small store queue and is sensitive to

postretirement pipeline stages involving the store instruction. By eliminating

postretirement wire delay and releasing the store queue entry sooner, a 3%

performance improvement is reported in [6]. In our simulation environment,

if we implement a 14-entry store queue and release an entry 30 cycles after

the store retires, we observe a 3% improvement if the postretirement delay

34

is reduced by 30%. This phenomenon disappears if the store queue size is

eliminated as a bottleneck (by increasing its size to at least 24). We assume

that the store queue size will not be a bottleneck and exclude this aspect from

our simulation results.

Hence, we believe that these specific features of the Pentium4 may have con-

tributed to greater improvements from 3D. These improvements are perhaps not

indicative of what we can expect from other processors as we have shown. Overall,

our study is more pessimistic about the potential of 3D because our pipeline model

has balanced resources, is simpler and shorter (perhaps more indicative of future

cores), and takes a rosy view of the efficiency of a 2D layout.

CHAPTER 4

COHERENCE MESSAGE CRITICALITY

The coherence operations on multicore architectures necessitate frequent com-

munication over global on-chip wires. A closer look at the coherence messages can

yield strategies to tolerate network delays and reduce significant power dissipation

over the interconnects. Different coherence protocol messages have different delay

tolerance levels, and result in varying impacts on overall processor performance.

Our goal is to quantify the impact on performance when a coherence message gets

delayed by an arbitrary number of cycles. A key benefit of such a study can be

to determine if power optimization can be applied to parts of the network, or to

specific messages.

4.1 Coherence Message Taxonomy

Directory based protocols were introduced to address the lack of scalability in

snoopy bus based protocols. A cache miss at any node produces a coherence request

which is sent to the home directory of the cache line. The home node consults its

corresponding directory entry and replies with one of several coherence response

messages. The different types of coherence messages in a MOESI based directory

protocol are identified below.

• On a read/write cache miss, the requesting node sends either a GETS or

GETX message to the home directory depending on its intention to modify

the block. The home directory consults the entry for the block and either

responds with DATA or DATA EXCLUSIVE if there is no exclusive copy of

the block elsewhere. In case there exists an exclusive copy elsewhere, the

36

GET request is forwarded to that owner. In our base protocol, the directory

does not send a speculative reply back to the requester.

• The directory on receiving a read exclusive (GETX) request consults its list of

sharers and advances INV (invalidate) requests to all the sharers. The sharers

invalidate their cache lines and send ACK messages back to the requester.

• When an L2 replacement is encountered, the L2 cache sends a writeback

request (PUT) message to the directory. There are two variations of the

PUT message: PUTX and PUTO depending on whether an exclusive copy

or a (shared) owner copy is being written. In case of an L1 replacement, in

addition to the above messages the L1 can also send a PUTS message to the

L2 on eviction of a shared block.

• When a PUT is received at the directory (or the L2), either a WB ACK

request or WB NACK response is sent back. If a WB ACK is received the

requester responds with either a Clean Writeback message (no data) or a

Dirty Writeback message (with data).

• The last set of control messages are the Unblock messages, which are used to

inform either the L2 or a directory that it can commit its state transition.

For example, on receiving a exclusive read request for a block in shared state,

the directory sends invalidations and transitions to an intermediate state (say

MM indicating “Blocked, going to modified”). The requester on receiving all

the ACKs sends an Unblock message to the directory forcing it to commit its

transition.

Given such a classification of coherence messages, we compare their latency

needs, and estimate their sensitivity to link delays. Several factors, such as network

load, topology, etc., may contribute to message latencies, but the physical delay in

global wires, is most challenging to computer architects today. Hence, it is worth

understanding how wire delays on an interconnection network can impact the overall

performance of applications.

37

4.2 Motivation

Each of the coherence messages introduced in section 2.1 can have varying delay

sensitivities. On an exclusive read request (GETX), the request for invalidations

by the directory and the transmission of acknowledgments back to the requester

necessitates a three hop transaction while the actual data is transmitted with just

two hops. For such a scenario, the data are not in the critical path but the

invalidations and acknowledgments are. However, such a scenario is specific to

the MESI protocol, an assigned “Owner” node is responsible for providing the data

block in the MOESI protocol. Moreover, bandwidth limitations may delay the

propagation of data flits while smaller control messages are likely to be transmitted

without much delay. There are other scenarios where DATA messages can become

more critical, such as a node waiting on a read request(GETS) for a block in a shared

state. In this case an extra delay in the delivery of the data might cause the load

instruction that issued the GETS to stall for a prolonged period of time. Whether

this is harmful or not to overall processor performance depends on whether the

processor adopts a blocking in-order pipeline or an aggressive out-of-order engine

which is perhaps more indicative of current and future generation of processors.

As another example, unblock control messages are critical for a directory to

commit the state transition of a particular cache line so that it becomes available

to service other requests. In order to avoid delaying the service of other requests to

the same cache line, it is important that the unblock messages do not get delayed

unduly. Moreover, the home directory often NACKs requests when it is busy mak-

ing a transition. This could lead to more retries and introduce additional network

traffic. Although, it should be noted that this would depend on the frequency of

concurrent requests to the directory. If there are not many simultaneous requests

for the same line, then perhaps “unblock” would represent a potentially noncritical

message occupying a nontrivial portion of network bandwidth and power.

It is also possible that certain delays can instead be benign. Although we saw

that invalidates are critical for a particular write request, it may reduce the lifetime

of several other shared blocks resulting in more cache misses at their end. Hence,

38

deferred invalidates might increase reuse of shared blocks thereby increasing their

utility. A performance improvement is also possible if a NACK sent by a busy

directory gets delayed. If this happens often, delayed NACKs reduce the number

of unsuccessful retries and wasted coherence traffic.

These are only a few examples where certain coherence messages appear more

critical than others. However, their actual impact on performance can depend

on several factors, such as the processor model, sharing pattern of applications,

frequency of the coherence message, its interaction with other coherence opera-

tions, etc. Thus, detailed simulations are required to truly understand the overall

performance and latency dependencies. Our work attempts to address this need by

quantifying the tolerance levels that can be obtained by selectively changing the

latency of specific coherence messages. For each cache coherence protocol, there

exists a variety of coherence operations with different latency needs. Because of this

diversity, there are many opportunities where results of such criticality analysis can

play an important role. Rather than searching for specific optimizations as in [24],

we only concern ourselves with automating the process of identifying critical and

noncritical paths within the coherence network.

4.3 Making Use of Criticality

Criticality based control policies proposed in the past [50, 51, 52] require that

the hardware evaluate criticality on a per instruction basis or aggregated over

intervals during program execution. We propose to apply optimizations at a finer

granularity by looking at criticality at a per coherence message basis. Provided that

such capabilities are available, the following sections show some potential advan-

tages of criticality based policies in a multiprocessor system. However, evaluating

these techniques is beyond the scope of this thesis.

4.3.1 Resource Utilization

Resources (e.g., buffers, network bandwidth) can be better utilized by prior-

itizing allocations and accesses based on coherence message criticality. On-chip

networks [53, 54] are replacing shared buses and dedicated wires as the de facto

39

interconnection fabric for chip multiprocessors. Packets compete for resources on a

hop-by-hop basis while going through a complex router pipeline before traversing

the output link at each intermediate node along their path. At each hop flits

compete for buffer space, virtual channels and for switch allocation. For a head flit

to proceed, at each stage the router has to take several decisions to allocate these

resources. While allocating buffer space or virtual channel at the next router,

the decision can be made to take into account the criticality of the messages

to make sure the more critical messages do not get unduly starved. Kumar et

al. [55] also propose a priority-based flow control mechanism called Express Vir-

tual Channels that gives preference over resources to flits traveling long-distances.

Message-criticality can also be extended to make EVC allocation-decisions at the

EVC source/sink nodes.

4.3.2 Power Efficiency

Resources consuming power on less critical coherence traffic can often be made

more power-efficient at the cost of performance. Cheng et al. [24] propose the

use of heterogenous interconnects having varying latency, band-width and power-

consumption properties by trading-off wire parameters such as wire-width and

spacing, and repeater size and spacing. For instance, they observe that power-

efficient wires can be implemented by reducing the repeater size and increasing

its spacing on long global wires. However, the latency of such a wire is affected

negatively. Banerjee et al. [48] show that a fivefold reduction in power can be

achieved by trading-off a twofold increase in latency. Similarly, low-latency wires

can also be implemented by increasing wire-width and spacing at the expense

of decreased bandwidth. Hence, an intelligent router can be made to compute

wire-mapping decisions that optimize for power and latency based on the criticality

of the coherence message. Dally [56] first proposed the Express Cube topology

which tries to reduce the average hop count that a coherence message takes to

its destination. The idea is to use special express-nodes that have extra channels

between nonadjacent nodes for long-distance traversals. Express nodes consume

40

more power than a local node as they have twice the number of ports, buffer space

and a larger crossbar. Clock-gating is often applied to power-hungry components

in order to save leakage power. Message criticality information can help decide if a

particular express router needs to be woken up from its sleep state.

4.3.3 Misspeculation Reduction

Selectively applying speculation techniques based on coherence message critical-

ity can reduce the effect and number of misspeculations. Using coherence prediction

to accelerate less critical messages does not help improve overall performance even

if the prediction is correct. There exists past work that uses prediction mechanisms

to accelerate coherence protocols for example by guessing where the message will

be sent or where the data will be used next. Kaxiras et al. [57] produce a taxonomy

of past shared-memory coherence prediction schemes. The Cosmos [58] coherence

message predictor predicts the source and type of the next coherence message to

a cache block. Chang et al. [59] speculatively initiate coherence messages (e.g.

invalidates or upgrades) in order to accelerate shared accesses. Lebeck et al. propose

Dynamic Self-invalidation [60] in which processors speculatively invalidate their

own blocks to speed-up future invalidations. With such speculation on coherence

protocols, a misspeculation might cause unnecessary re-tries, invalidations and

wasted coherence traffic. Avoiding speculation for noncritical messages would help

avoid these undesirable consequences.

4.4 Coherence Message Analysis

4.4.1 Methodology

Virtutech Simics [61] is a full system functional simulator that accurately

models the SPARC architecture. In conjunction with Simics we use the Wisconsin

GEMS-1.4 [62] timing-infrastructure to model a four core chip multiprocessor

with out-of-order issue and directory-based cache coherence. Each processor has

a private L1 and all cores share a multi-bank noninclusive L2. The L1 caches, L2

banks and their corresponding directories are inter-connected with a hierarchical

switch topology.

41

The Ruby module in GEMS provides a detailed memory timing-model that

implements the MOESI directory-based cache coherence protocol with block mi-

gration. It is configured to model the timing of user-mode data only and ignore

supervisor-mode instructions in order to filter out the effect of long-latency page

table misses and page faults. In order to realize our goal of quantifying cache-

coherence message criticality, we modify Ruby to allow network switches to identify

coherence messages based on their type. We map each type of message, as classified

by Section 4.1, onto links with some specified extra cycles of latency. Switches

are also modified to allow out-of-order delivery of coherence messages in order to

accommodate the nonuniform latency of links. We also model a directory cache in

order to minimize directory response time. Table 4.1 lists the different coherence

message groupings along with the constituent messages evaluated for this analysis.

Opal is an out-of-order timing-first processor simulator module that drives Ruby.

It runs ahead of Simics’ in-order functional simulation and determines when and

what instructions should be fetched, decoded and executed. Opal consults Simics

during its instruction retirement stage and advances Simics by one instruction

should they agree on the correctness of the execution. This checking for correctness

is necessary as Opal employs a relaxed consistency model and does not guarantee

sequentially consistent execution by itself. On the event that Opal and Simics

disagree, Opal replays the offending instructions. The Opal and Ruby simulation

parameters used for the analysis are shown in Table 4.2 and Table 4.3, respectively.

Table 4.1. Coherence message groupings
Message Group Constituent Messages

GETS Shared Read Requests
GETX Exclusive Read Requests
PUT Writeback Requests (PUTS, PUTX, PUTO)
INV Invalidate Requests
ACK Acknowledge Replies
DATA Shared DATA Replies
DATAX Exclusive DATA Replies
WBDATA Clean/Dirty Writeback Data Replies

42

Table 4.2. Opal parameters
Parameter Value

System configuration 1 chip, 4 cores per chip
Clock frequency 2GHz
Fetch/decode/execute width 4/4/4
Pipeline stages 11
ROB/IWin size 80/64
BPred 1KB YAGS,128-entry cascaded indirect,64-entry RAS

Table 4.3. Ruby parameters
Parameter Value

Cache block size 32 Bytes
Split L1 I & D cache 32KB each, 2-way
Shared L2 size 2MB/8-way
L2 configuration 4-banks/noninclusive NUCA
N/w topology Hierarchical switch, 4 VCs per switch
Link bandwidth 10 bytes/cycle
Baseline link latency 1 cycle (one-way)
Mem controller/dir-cache latency 40/6 cycles

4.4.2 Workload Description

For our evaluation, we use a workload consisting of a self-built kernel-like

synthetic macro-benchmark that accepts configurable parameters. The benchmark

is compiled on Solaris with optimizations turned off. In essence, the benchmark

simulates simultaneous random accesses by multiple threads to a shared global

data structure without using any locking primitives. By not employing any locking

primitives there will be increased contention for shared blocks and higher coherence

traffic. Evaluating the performance impact for such a workload for an 8x increase

in base link latency will reflect the most pessimistic effect of wire delays within

coherence paths.

We provide the ability to tune the characteristics of the synthetic benchmark

by having it accept input parameters similar to the SPLASH2 kernel workloads.

The size of the global data structure, the number of threads, the total number of

accesses in the primary random access stage, the percentage of writes among those

memory accesses and the level of ILP available in the main loop are all configurable.

Table 4.4 describes the input parameters to the program along with their default

43

Table 4.4. Synthetic benchmark input parameters
Parameter Description

N [Default = 1024] Even integer that determines the total number of data pts (N*N)
P [Default = 4] Number of processors/threads
I [Default = 256K] Number of iterations of the main loop
W [Default = 50%] Percentage of writes in the main loop
L [Default = 0] Level of ILP available per iteration. Each level corresponds to

2-3 additional FLOPs per iteration

values. A FLOP is a complex FP computation (in C code) that breaks down to

multiple FP operations at the machine level. For each level of ILP, one dummy

FLOP is added to the main loop. The benchmark characteristics for the default

input parameters are listed in Table 4.5. The main loop refers to the compute loop

within the macro-benchmark for which statistics are tracked. Total loads/stores

also includes memory operations that occur outside the main loop, such as memory

initialization and cache warm-up. The Appendix contains the pseudo-code for the

synthetic benchmark.

In order to avoid cold start misses and to randomly distribute ownership of cache

blocks, each thread touches an equal share of the global memory after initialization.

Profiling of execution statistics begins after this warm-up stage. In every iteration

of the main loop, each thread also reads a local per-thread data structure that is

initialized with indices for the shared random access. This engenders competition

for cache space between local and shared data. We choose to perform most of our

evaluations with such a benchmark in order to circumvent the prohibitively long

simulation periods encountered with Opal, without losing credibility of the results.

Moreover, we are better able to understand the interaction between wire-delays in

coherence paths and factors such as write set size and available ILP.

Table 4.5. Breakdown of instructions and memory operations per CPU
Total Instructions 884 M Instructions within main loop 122 M
Total Loads 100 M Loads within main loop 38 M
Total Stores 41 M Stores within main loop 7 M

44

4.4.3 Performance Impact of Wire Delays
on Coherence Protocols

To obtain an insight into the delay sensitivity of coherence messages we quantify

the slowdown in performance of the benchmark when a specified number of cycles

are added to coherence messages of each target group. This helps us clearly

distinguish their criticality, and determine the level of tolerance each message can

provide to network delays. Figure 4.1 shows the normalized execution time relative

to a baseline of the macro-benchmark when 4, 8 and 16 cycles of additional link

latency are added to each target message group.

In general we observe that, with the exception of GETS, most control messages

are tolerant to network delay. Read requests are affected the most causing an

average slowdown of 36% for eight cycles of extra delay. This is primarily because

each L1 miss for a read request will trigger the delay and since the probability of

an instruction waiting on a load instruction is near 100%, delays on GETS mes-

sages critically impact performance. Table 4.6 shows the percentage of bandwidth

consumed by each type of coherence message. Given that GETS messages only

occupy 5% of the consumed bandwidth, an efficient strategy might be to map

them on to very low-latency wires perhaps at the cost of increased area and power

No Extra Delay
4ns Extra Delay
8ns Extra Delay
16ns Extra Delay

 0.000

 0.500

 1.000

 1.500

 2.000

ACKINVPUTGETXWBDATADATADATAXGETS

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Coherence Message Type

Figure 4.1. Execution time impact of wire delay on the synthetic benchmark

45

Table 4.6. Bandwidth consumption of different message types
ACK :0.12% DATA :10.45% DATAX :36.88% GETS :4.97% WBDATA :28.54%
INV :0.01% PUT :7.61% WBACK :6.04% GETX :0.37% OTHER :4.99%

dissipation. The second most critical kind of messages are Exclusive Data messages

that encounter a degradation of 29% for an eight cycle overhead in link latency.

They also consume the most bandwidth, this is perhaps indicative of the fact that

only a minority of the read requests are made for blocks that exist in shared state

in other caches at the time of request. The only other message types that offer any

kind of hindrance to performance are DATA and WBDATA which cause 7% and

8% slowdown, respectively. All other messages are noncritical and at most cause a

2% reduction in performance.

4.4.4 Impact of Write-set Size and Available ILP

We evaluate different workloads by varying the write-set size of the macro-

benchmark in order to see whether it alters the relative order of criticality of the

coherence messages. Figure 4.2 shows the impact of the write set size on the

execution time of the main loop. We observe that an increased write-set size has

almost a linear effect on execution time even with no additional delays. On the

baseline interconnect network which has no additional delays, the workload with a

100% write-set size takes 26% more time to execute compared to a write-set size of

0%. This is because fetching the permissions for writes in general consumes more

time compared to reads, as there is a compulsory overhead of both internal and

external acknowledgments for each access. Also since Opal by default employs a

relaxed memory consistency model that relies on the use of locks, an increase in

the write-set size will cause more sequential consistency violations on average. The

resulting instruction replays could also have contributed to the increased execution

time. However, the relative impact of coherence messages does not change by

much, GETS and DATAX remain the most critical message groups regardless of

the write-set size.

Figure 4.3 shows the deviation in slowdowns corresponding to two workloads

46

~0% WRITES
~50% WRITES
~100% WRITES

 120

 140

 160

 180

 200

 220

 240

 260

 280

BASEACKINVPUTGETXWBDATADATADATAXGETS

E
xe

cu
tio

n
tim

e
(in

 m
s)

Figure 4.2. Variation with different write-set sizes

 −4%

 −3%

 −2%

 −1%

 0%

 1%

 2%

 3%

 4%

ACKINVPUTGETXWBDATADATADATAXGETS

D
iff

er
en

ce
 in

 S
lo

w
do

w
n

P
er

ce
nt

ag
e

Figure 4.3. Difference in slowdown between 0% and 100% write-set size

with 0% (workload-w0) and 100% (workload-w100) write-set sizes, respectively.

There is only a 1.7% average deviation in slowdowns of all coherence messages

corresponding to a 100% increase in write-set size. The maximum deviation is for

PUT for which workload-w0 incurs 3.4% additional performance penalty compared

to workload-w100. In general, write-backs become more critical as the percentage

of loads increases. WBDATA, and PUT messages are issued during a write-back

transaction and together contribute to an aggregate slowdown that is 6.1% more

47

for workload-w0 than workload-w100. DATAX and GETX only become marginally

more critical with increased write-set size. This perhaps can be attributed to

the fact that for the synthetic workload writes rarely occur on the critical path.

Since the benchmark represents a random access pattern, it lacks both spatial and

temporal locality.

The synthetic benchmark is tailored to be memory-intensive with minimum

available ILP. However, slightly more computation-intensive workloads can better

hide latency in coherence paths with other coherence independent instructions.

Figure 4.4 illustrates the effect of available ILP on coherence protocol performance.

The performance of workloads with a specified ILP level of 0 (workload-l0), 4

(workload-l4) and 8 (workload-l8) additional floating point computations are plotted

in the figure for a link overhead of eight cycles for each target message group. Our

baseline workload with no additional computations has an aggregate IPC of 1.05,

while workload-l4 and workload-l8 have IPCs of 3.02 and 3.41, respectively. In Sec-

tion 4.4.3 we saw that GETS and DATAX are most delay sensitive. The availability

of more ILP is proportionally able to offset 13% and 12% of the slowdown for these

messages with an addition of eight floating point computations per iteration.

ILP_factor = 0
ILP_factor = 4
ILP_factor = 8

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

 1.200

 1.400

ACKINVPUTGETXWBDATADATADATAXGETS

N
or

m
al

iz
ed

 IP
C

Coherence Message Type

Figure 4.4. Performance impact under different levels of available ILP

48

4.4.5 Memory Consistency Model

Memory consistency models also play a role in determining the ability of a

processor system to absorb delays. Stricter consistency models have constraints

on the amount of parallelism that can be exploited in memory requests. More

relaxed consistency models are more optimistic about the correctness of operations

and overlap memory requests often, such models would be better able to hide

latency in servicing the requests. However, some form of additional book-keeping or

programming constructs are normally required to ensure correctness. We evaluate

two models of consistency in this section: Sequential Consistency and an Alpha-like

Relaxed Consistency model. As mentioned earlier Opal by default models the

latter: memory operations are allowed to execute out of order and only load-store

dependences are checked in the LSQ. In order to model a more strict sequentially

consistent memory model, we modify Opal to execute memory operations in order

but allow flexibility in reordering independent nonmemory operations.

Figure 4.5 shows the performance slowdown observed for 4, 8 and 16 cycles

of additional link latency for both consistency models under consideration. As

surmised, out of order execution when coupled with a relaxed consistency model

provide further tolerance to wire delays. For an eight cycle overhead in network link

latency, compared to a sequential consistency model, a relaxed consistency model

is able to absorb 18% and 21% of the total slowdown for the two most critical

messages: GETS and DATAX.

4.4.6 Case Study: SPLASH-2

Figure 4.6 shows the percentage slowdown for four applications: barnes, fmm,

ocean, water and three kernel programs: cholesky, fft and lu from the Splash-2 [63]

suite of parallel benchmarks for eight cycles of extra link latency. The figure also

shows the mean slowdown for the chosen programs.

Execution statistics are tracked for the parallel sections of the benchmark after

an initial warm-up period of 1 million instructions. All programs are compiled for a

processor with four cores and simulations are run till the end of the parallel section

or until any of the four cores commits 100 million instructions.

49

16ns Overhead
8ns Overhead
4ns Overhead

 0%

 20%

 40%

 60%

 80%

 100%

RCSCRCSCRCSCRCSCRCSCRCSCRCSCRCSC

P
er

ce
nt

ag
e

S
lo

w
do

w
n

 GETS			 DATAX			 DATA			 WBDATA			 GETX			 PUT			 INV			 ACK			

Figure 4.5. Slowdown percentage for sequential and relaxed consistency models

GETS
DATAX
DATA
WBDATA
GETX
PUT
INV
ACK

 0%

 5%

 10%

 15%

 20%

 25%

meanwateroceanlufmmfftcholeskybarnes

E
xe

cu
tio

n
Ti

m
e

S
lo

w
do

w
n

(in
 P

er
ce

nt
)

SPLASH−2 Benchmark

Figure 4.6. Percentage slowdown for SPLASH-2 benchmarks

50

GETS has the highest mean slowdown of 7.4% for all benchmarks, followed

by DATAX and DATA with slowdowns of 5.3% and 3.6%, respectively. These

numbers in general agree with our previous results based on our synthetic macro-

benchmark which argue that read requests and data occur the most on the critical

path. However, the magnitude of the slowdowns are low compared to our synthetic

benchmark as they are likely to have sufficient ILP and spatial/temporal locality in

their cache accesses. A few benchmarks such as ocean and fft experience a nontrivial

slowdown for GETX also, which may be due to the fact that these benchmarks are

more cooperative in their operation than our random workload. With such an

access pattern, a value written to a shared memory location has a high probability

of being read by another thread. Hence GETX often occurs on the critical path.

CHAPTER 5

RELATED WORK

Numerous automated floorplanning tools and algorithms exist in the literature

[64, 65, 38, 66, 67, 39, 33, 6]. The objective function for some of these tools is purely

performance [64], while for others it is some combination of temperature and wire

communication [65, 38, 67, 39, 33, 6]. To date, there is no architectural evaluation

that comprehensively quantifies the effect of wire delays between various micro-

architectural blocks. Some of these data can be found scattered in the literature.

For example, Sprangle et al. [30] quantify the effect of increasing the number of

cycles for ALU bypass, L1/L2 cache access, and branch mispredict penalty. Borch

et al. [28] quantify the effect of increasing the number of cycles in the branch

prediction and load-hit speculation loops.

The MEVA floorplanner [29, 4] adopts the methodology of Sprangle et al. [30].

Other floorplanning tools [5, 33, 6] over estimate the IPC effect of wire delays

because they do not consider simple pipeline optimizations. For example, (i)

Long et al. [33] report IPC differences of up to 60% for various floorplans, (ii)

Sankaranarayanan et al. [6] report an IPC penalty of 50% and 65% when four

cycles of delay are introduced between branch predictor and I-Cache, and between

issue queue and integer execution units, respectively. We show interblock wire

delays are not as critical as they have been made out to be.

Early stage computer architecture results for 3D technology have appeared in

the last two years (examples: [27, 29, 68, 69, 9, 47, 7]). A study by Loi et al. [69]

evaluate an architecture where cache and DRAM are stacked upon a planar CPU

implementation. Li et al. [68] quantify the effect of the 3D stacking approach on

a chip multiprocessor and thread level parallelism. This work focuses on the effect

52

of 3D stacking on a single core and instruction level parallelism. A recent paper

by Black et al. [27] evaluates stacking for a Pentium4 processor implementation.

However, that evaluation does not provide the details necessary to understand if

the stated approach is profitable for other processor models. We attempt to address

that gap in Section 3.3.4. Li et al. [68] employ a 3D on-chip network to connect

cache banks and cores in a CMP. We have also done a comparison of our results

with that of [27]. Cong et al. [29] quantify the impact of a few critical loops

on performance and 2D and 3D layouts, but we present the most comprehensive

analysis to date of the effect of wire delays on critical processor loops.

Cheng and Muralimanohar et al. [24] propose the use of heterogeneous intercon-

nects for cache coherence traffic and large L2 caches [70]. They map wires of varying

latency and power dissipation characteristics to coherence protocol messages by

examining their bandwidth and latency needs in a directory based cache coherence

system. However, their study does not include a detailed characterization of the

impact of coherence message delays on performance. Lebeck et al. [71] extend the

uniprocessor DAG (Directed acyclic graph) model to quantify instruction criticality

and slack in shared memory multiprocessor systems and study how the choice of

coherence protocols may affect the slack distribution. To our knowledge, no other

work characterizes the impact of wire delays on cache coherence message paths for

chip multiprocessor systems.

CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis presents a methodology to determine the effect of interblock wire

delays on performance. We observed that the relative importance of wires was

constant across a range of out-of-order processor configurations. The computed

weights may therefore be directly input to state-of-the-art floorplanning algorithms.

We also observed that the IPC effects of various wire delays are roughly additive,

obviating the need for detailed architectural simulations during the floorplanning

process. We show that the wire delay between the ALU and data cache is most

critical to performance because of its impact on three critical loops. An IPC-

optimized floorplan can outperform a basic floorplanner by up to 17% on average,

while incurring a minor increase in peak temperature. A floorplanning algorithm

that can exploit the reduced signal distances provided by 3D bonding can further

improve performance by 4% albeit with a nontrivial increase in temperature.

We also perform a wire delay study in the context of coherence protocols for

a directory based shared memory multiprocessor system. We show that read

requests, exclusive data and shared data occur the most on the critical path causing

slowdowns up to 20% for a set of SPLASH-2 programs. However, we find that for

an out-of-order processor employing a fairly relaxed memory consistency model,

most other wire delays are noncritical and at most cause an average slowdown

of 2%. This presents the opportunity to perform aggressive interconnect power

optimizations and priority based resource allocations.

The key contributions of the work can be summarized as follows:

• We present the most comprehensive analysis of the impact of wire delays on

critical processor loops (including various pipeline optimizations and SMT

54

cores).

• Based on the wire delay study we present two IPC aware floorplanning algo-

rithms for 2D and 3D integrated circuits.

• This work is the first to integrate many varied aspects (loop analysis, auto-

mated floorplanning, etc.) in determining the benefit of 3D for single core

performance.

• This work also identifies the impact of wire delay on coherence messages for

a shared memory out-of-order CMP.

Recently transactional memory systems are showing great promise as the pre-

ferred programming approach for effectively using the multithreaded environment

offered by future chips with multiple cores. Our future work will attempt to recog-

nize the criticality of coherence messages within a hardware log based transactional

memory system, such as LogTM. It will also be worthwhile quantifying the benefits

of the proposed techniques (section 4.3) that exploit coherence message criticality

while exploring other applications.

APPENDIX

SYNTHETIC BENCHMARK

PSEUDOCODE

SYNTHETIC_BENCH(N,P,I,W,L)

gl_array[N][N] <- init_global_matrix(N,N,double)

thread_create(P, SLAVE())

thread_wait()

free_global_matrix()

return

SLAVE()

//init indices for warm-up

lo_warm_index[N*N/P][2] <- init_random_indices(N)

//init indices for compute

lo_main_index[I][2] <- init_random_indices(N)

//init write flags for compute

lo_main_write_flag[I] <- init_random_flag(W)

//warm-up

for i <- 1 to N*N/P

x <- lo_warm_index[i][0]

y <- lo_warm_index[i][1]

read(gl_array[x][y])

barrier

//compute

for i <- 1 to I

56

x <- lo_main_index[i][0]

y <- lo_main_index[i][1]

if lo_main_write_flag[i]

write(gl_array[x][y])

else

read(gl_array[x][y])

for j <- 1 to L

dummy_flop()

return

REFERENCES

[1] B. Black, D. Nelson, C. Webb, and N. Samra, “3D Processing Technology and
its Impact on IA32 Microprocessors,” in Proceedings of ICCD, October 2004.

[2] Samsung Electronics Corporation, “Samsung Electronics Develops World’s
First Eight-Die Multi-Chip Package for Multimedia Cell Phones,” 2005. (Press
release from http://www.samsung.com).

[3] Tezzaron Semiconductor. (http://www.tezzaron.com).

[4] A. Jagannathan, H. Yang, K. Konigsfeld, D. Milliron, M. Mohan, M. Romesis,
G. Reinman, and J. Cong, “Microarchitecture Evaluation with Floorplanning
and Interconnect Pipelining,” in Proceedings of ASP-DAC, January 2005.

[5] W. Liao and L. He, “Full-Chip Interconnect Power Estimation and Simulation
Considering Concurrent Repeater and Flip-Flop Insertion,” in Proceedings of
ICCAD, 2003.

[6] K. Sankaranarayanan, S. Velusamy, M. Stan, and K. Skadron, “A Case for
Thermal-Aware Floorplanning at the Microarchitectural Level,” Journal of
ILP, vol. 7, October 2005.

[7] Y. Xie, G. Loh, B. Black, and K. Bernstein, “Design Space Exploration for
3D Architectures,” ACM Journal of Emerging Technologies in Computing
Systems, vol. 2(2), pp. 65–103, April 2006.

[8] J. Rattner, “Predicting the Future,” 2005. Keynote at Intel Developer Forum.

[9] S. Mysore, B. Agrawal, N. Srivastava, S. Lin, K. Banerjee, and T. Sherwood,
“Introspective 3D Chips,” in Proceedings of ASPLOS-XII, October 2006.

[10] K. Puttaswamy and G. Loh, “Implementing Caches in a 3D Technology for
High Performance Processors,” in Proceedings of ICCD, October 2005.

[11] K. Puttaswamy and G. Loh, “Dynamic Instruction Schedulers in a 3-
Dimensional Integration Technology,” in Proceedings of GLSVLSI, April 2006.

[12] K. Puttaswamy and G. Loh, “Implementing Register Files for High-
Performance Microprocessors in a Die-Stacked (3D) Technology,” in Proceed-
ings of ISVLSI, March 2006.

[13] K. Puttaswamy and G. Loh, “The Impact of 3-Dimensional Integration on the
Design of Arithmetic Units,” in Proceedings of ISCAS, May 2006.

58

[14] P. Reed, G. Yeung, and B. Black, “Design Aspects of a Microprocessor Data
Cache using 3D Die Interconnect Technology,” in Proceedings of International
Conference on Integrated Circuit Design and Technology, May 2005.

[15] Y.-F. Tsai, Y. Xie, N. Vijaykrishnan, and M. Irwin, “Three-Dimensional Cache
Design Using 3DCacti,” in Proceedings of ICCD, October 2005.

[16] Corporate Institute of Electrical and Electronics Engineers, Inc. Staff, IEEE
Standard for Scalable Coherent Interface, Science: IEEE Std. 1596-1992. 1993.

[17] J. Laudon and D. Lenoski, “The SGI Origin: A ccNUMA Highly Scalable
Server,” in Proceedings of ISCA-24, pp. 241–251, June 1997.

[18] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato, “The Use of Pre-
diction for Accelerating Upgrade Misses in CC-NUMA Multiprocessors,” in
Proceedings of PACT-11, 2002.

[19] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D. Hill, and D. A.
Wood, “Multicast Snooping: A New Coherence Method Using a Multicast
Address Network,” SIGARCH Comput. Archit. News, pp. 294–304, 1999.

[20] J. Huh, J. Chang, D. Burger, and G. S. Sohi, “Coherence Decoupling: Making
Use of Incoherence,” in Proceedings of ASPLOS-XI, pp. 97–106, 2004.

[21] A.-C. Lai and B. Falsafi, “Memory Sharing Predictor: The Key to a Speculative
Coherent DSM,” in Proceedings of ISCA-26, 1999.

[22] K. M. Lepak and M. H. Lipasti, “Temporally Silent Stores,” in Proceedings of
ASPLOS-X, pp. 30–41, 2002.

[23] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock Rate versus IPC:
The End of the Road for Conventional Microarchitectures,” in Proceedings of
ISCA-27, pp. 248–259, June 2000.

[24] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. Carter,
“Interconnect-Aware Coherence Protocols for Chip Multiprocessors,” in Pro-
ceedings of ISCA-33, June 2006.

[25] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and J. Carter,
“Wire Management for Coherence Traffic in Chip Multiprocessors,” in Proceed-
ings of the 6th Workshop on Complexity-Effective Design, held in conjunction
with ISCA-32, June 2005.

[26] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-
sel, “The Microarchitecture of the Pentium 4 Processor,” Intel Technology
Journal, vol. Q1, 2001.

[27] B. Black, M. Annavaram, E. Brekelbaum, J. DeVale, L. Jiang, G. Loh, D. Mc-
Cauley, P. Morrow, D. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Shankar,
J. Shen, and C. Webb, “Die Stacking (3D) Microarchitecture,” in Proceedings
of MICRO-39, December 2006.

59

[28] E. Borch, E. Tune, B. Manne, and J. Emer, “Loose Loops Sink Chips,” in
Proceedings of HPCA, February 2002.

[29] J. Cong, A. Jagannathan, Y. Ma, G. Reinman, J. Wei, and Y. Zhang, “An
Automated Design Flow for 3D Microarchitecture Evaluation,” in Proceedings
of ASP-DAC, January 2006.

[30] E. Sprangle and D. Carmean, “Increasing Processor Performance by Imple-
menting Deeper Pipelines,” in Proceedings of ISCA-29, May 2002.

[31] G. Reinman, T. Austin, and B. Calder, “A Scalable Front-End Architecture
for Fast Instruction Delivery,” in Proceedings of ISCA-26, May 1999.

[32] R. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, vol. 19, pp. 24–36,
March/April 1999.

[33] C. Long, L. Simonson, W. Liao, and L. He, “Floorplanning Optimization with
Trajectory Piecewise-Linear Model for Pipelined Interconnects,” in Proceedings
of DAC, 2004.

[34] Y. Liu, A. Shayesteh, G. Memik, and G. Reinman, “Tornado Warning: The
Perils of Selective Replay in Multithreaded Processors,” in Proceedings of ICS,
June 2005.

[35] D. Burger and T. Austin, “The Simplescalar Toolset, Version 2.0,” Tech. Rep.
TR-97-1342, University of Wisconsin-Madison, June 1997.

[36] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” in Proceedings of ASPLOS-X,
October 2002.

[37] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, “Exploiting
Choice: Instruction Fetch and Issue on an Implementable Simultaneous Mul-
tithreading Processor,” in Proceedings of ISCA-23, May 1996.

[38] M. Ekpanyapong, J. Minz, T. Watewai, H. Lee, and S. Lim, “Profile-Guided
Microarchitectural Floorplanning for Deep Submicron Processor Design,” in
Proceedings of DAC-41, June 2004.

[39] W. Hung, Y. Xie, N. Vijaykrishnan, C. Addo-Quaye, T. Theocharides, and
M. Irwin, “Thermal-Aware Floorplanning using Genetic Algorithms,” in Pro-
ceedings of ISQED, March 2005.

[40] T.-Y. Chiang, S. Souri, C. Chui, and K. Saraswat, “Thermal Analysis of
Heterogeneous 3-D ICs with Various Integration Scenarios,” in Proceedings
of IEEE IEDM, 2001.

[41] S. Das, A. Chandrakasan, and R. Reif, “Timing, Energy, and Thermal Perfor-
mance of Three-Dimensional Integrated Circuits,” in Proceedings of GLSVLSI,
2004.

60

[42] W. Hung, G. Link, Y. Xie, N. Vijaykrishnan, and M. Irwin, “Interconnect
and Thermal-Aware Floorplanning for 3D Microprocessors,” in Proceedings of
ISQED, March 2006.

[43] D.F.Wong and C.L.Liu, “A new algorithm for floorplan design,” in Proceedings
of the 23rd ACM/IEEE conference on Design automation, pp. 101–107, 1986.

[44] R. Kumar, V. Zyuban, and D. Tullsen, “Interconnections in Multi-Core Archi-
tectures: Understanding Mechanisms, Overheads, and Scaling,” in Proceedings
of the 32nd ISCA, June 2005.

[45] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proceedings of
ISCA-27, pp. 83–94, June 2000.

[46] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, and K. Sankaranarayanan,
“Temperature-Aware Microarchitecture,” in Proceedings of ISCA-30, pp. 2–13,
2003.

[47] K. Puttaswamy and G. Loh, “Thermal Analysis of a 3D Die-Stacked High-
Performance Microprocessor,” in Proceedings of GLSVLSI, April 2006.

[48] K. Banerjee and A. Mehrotra, “A Power-optimal Repeater Insertion Method-
ology for Global Interconnects in Nanometer Designs,” IEEE Transactions on
Electron Devices, vol. 49, pp. 2001–2007, November 2002.

[49] W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, and M. J. Irwin, “Interconnect
and thermal-aware floorplanning for 3d microprocessors,” isqed, vol. 0, pp. 98–
104, 2006.

[50] S. T. Srinivasan and A. R. Lebeck, “Load Latency Tolerance in Dynamically
Scheduled Processors,” Journal of Instruction-Level Parallelism, vol. 1, Octo-
ber 1999.

[51] J. Casmira and D. Grunwald, “Dynamic Instruction Scheduling Slack,” in
Proceedings of KoolChips Workshop at MICRO-00, 2000.

[52] E. Tune, D. Liang, D. Tullsen, and B. Calder, “Dynamic Prediction of Critical
Path Instructions,” in Proceedings of HPCA-7, pp. 185–196, January 2001.

[53] W. J. Dally and B. Towles, “Route packets, not wires: Onchip interconnection
networks,” in Proceedings of Design Automation Conference, pp. 684–689,
2001.

[54] L. Benini and G. D. Micheli, “Networks on Chip: A New Paradigm for Systems
on Chip Design,” in Proceedings of the Conference on Design, Automation and
Test in Europe, pp. 418–419, 2002.

[55] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express Virtual Channels:
Towards the Ideal Interconnection Fabric,” in Proceedings of the 34th Interna-
tional Conference on Computer Architecture., June 2007.

61

[56] W. J. Dally, “Express cubes: Improving the performance of k-ary n-cube
interconnection networks,” pp. 1016–1023, 1991.

[57] S. Kaxiras and C. Young, “Coherence Communication Prediction in Shared-
Memory Multiproce,” in Proceedings of HPCA-6, pp. 156–167, 2000.

[58] S. S. Mukherjee and M. D. Hill, “Using Prediction to Accelerate Coherence
Protocols,” in Proceedings of the 25th International Conference on Computer
Architecture, pp. 179–190, July 1998.

[59] J. Chang, J. Huh, R. Desikan, D. Burger, and G. S. Sohi, “Using Coherent
Value Speculation to Improve Multiprocessor Performance,” in Proceedings of
1st Value-Prediction workshop, 2003.

[60] A. R. Lebeck and D. A. Wood, “Dynamic Self-Invalidation: Reducing Coher-
ence Overhead in Shared-Memory Multiprocessors,” in Proceedings of ISCA-
22, pp. 48–59, 1995.

[61] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full System
Simulation Platform,” IEEE Computer, vol. 35(2), pp. 50–58, February 2002.

[62] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset,” Computer Architecture News,
2005.

[63] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations,” in Proceedings
of ISCA-22, pp. 24–36, June 1995.

[64] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis, “Microarchitecture
Evaluation with Physical Planning,” in Proceedings of DAC-40, June 2003.

[65] M. Ekpanyapong, M. Healy, C. Ballapuram, S. Lim, H. Lee, and G. Loh,
“Thermal-Aware 3D Microarchitectural Floorplanning,” Tech. Rep. GIT-
CERCS-04-37, Georgia Institute of Technology Center for Experimental Re-
search in Computer Systems, 2004.

[66] S. Gerez, Algorithms for VLSI Design Automation. John Wiley & Sons, Inc.,
1999.

[67] Y. Han, I. Koren, and C. Moritz, “Temperature Aware Floorplanning,” in
Proceedings of TACS-2 (held in conjunction with ISCA-32), June 2005.

[68] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, N. Vijaykrishnan, and M. Kan-
demir, “Design and Management of 3D Chip Multiprocessors Using Network-
in-Memory,” in Proceedings of ISCA-33, June 2006.

62

[69] G. Loi, B. Agrawal, N. Srivastava, S. Lin, T. Sherwood, and K. Banerjee,
“A Thermally-Aware Performance Analysis of Vertically Integrated (3-D)
Processor-Memory Hierarchy,” in Proceedings of DAC-43, June 2006.

[70] N. Muralimanohar and R. Balasubramonian, “Interconnect Design Considera-
tions for Large NUCA Caches,” in Proceedings of ISCA-34. To Appear., June
2007.

[71] T. Li, A. R.Lebeck, and D. J.Sorin, “Quantifying Instruction Criticality for
Shared Memory Multiprocessors,” June 2003.

