
LOW OVERHEAD SECURE SYSTEMS

by

Meysam Taassori

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2020

Copyright © Meysam Taassori 2020

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Meysam Taassori

has been approved by the following supervisory committee members:

Rajeev Balasubramonian , Chair(s) 24 Oct. 2020
Date Approved

Erik L. Brunvand , Member 24 Oct. 2020
Date Approved

Mahdi Nazm Bojnordi , Member 24 Oct. 2020
Date Approved

FeiFei Li , Member
Date Approved

Mohit Tiwari , Member 24 Oct. 2020
Date Approved

by Mary Hall , Chair/Dean of

the Department/College/School of School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

Trusted Execution Environments (TEEs) allow users to store their data and outsource

their computation over cloud servers without trusting cloud providers. The significant

overhead of current implementations of security primitives is a major challenge for TEEs.

In this dissertation, we propose several solutions to enhance the efficiency of a TEE while

security guarantees stay intact or improve.

There are three major problems with the current implementations of security features:

large metadata structures, data movement, and information leakage. In this dissertation,

we propose several new structures for metadata and apply multiple techniques to address

these three problems.

First, with shared counters and variable arity, we propose a smaller and more cacheable

integrity tree to reduce its bandwidth and capacity overhead. Second, we introduce a

more compact structure to store message authentication codes (MACs) and thus reduce

its capacity overhead. These techniques enable a TEE to define secure pages across the

external memory, while the metadata overheads are still in check. Therefore, pages do not

have to be swapped between the secure and nonsecure regions, which alleviates the data

movement overhead in current implementations. Third, we further improve the meta-

data overhead of the state-of-the-art system that uses a combination of integrity and error

correction. We share the error correction metadata across multiple data blocks to reduce

its footprint. This technique enables us to embed reliability metadata into the integrity

tree to propose a single compact, unified metadata structure. This new metadata structure

provides all required metadata blocks to support reliability and security guarantees, thus

reducing the overall overhead for both.

Prior works share their security metadata structures among multiple applications, thus

introducing a potential side channel. We address this issue by isolating applications such

that each application has separate, isolated metadata structures. Not only does this tech-

nique eliminate the information leakage, it also improves performance due to the better

metadata cache efficiency.

In short, we thus propose (i) a low-overhead TEE, which provides a scalable, secure

memory for sensitive applications at more than 3× lower bandwidth overhead relative to

Intel® SGX, (ii) low-overhead support for both reliability and integrity, which improves

storage overhead by an order of magnitude and bandwidth overhead by more than 60%

relative to the state-of-the-art technique, and (iii) a leakage-free solution to provide in-

tegrity verification.

We thus confirm our hypothesis that by reducing the size of metadata structures, the

overhead of security features will be reduced, while having little negative side-effects.

We also demonstrate that by separating metadata structures across the applications, the

potential side channel through these structures will be eliminated.

iv

For my parents, Parvin and Mahmood,

and my brother, Mehdi.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . ix

LIST OF TABLES . xi

CHAPTERS 1

1. INTRODUCTION . 1

1.1 Trusted Execution Environments Challenges . 1
1.2 Dissertation Overview . 4

1.2.1 Thesis Statement . 5
1.2.2 Contributions . 6

1.2.2.1 VAULT: A Low Overhead Trusted Execution Environment 6
1.2.2.2 Compact Leakage-Free Support for Integrity and Reliability 7

1.3 Thesis Organization . 7

2. BACKGROUND . 9

2.1 Security Concepts . 9
2.2 Trusted Execution Environment (TEE) . 11

2.2.1 Introduction to TEEs . 11
2.2.2 Academic TEEs . 11
2.2.3 Commercial TEEs . 14

2.2.3.1 ARM TrustZone . 14
2.2.3.2 Intel® SGX . 17
2.2.3.3 AMD SEV . 17

2.2.4 Software Guard Extensions (Intel® SGX) . 20
2.2.4.1 Threat Model . 20
2.2.4.2 SGX Memory Organization . 21
2.2.4.3 Control Data Structures in SGX . 21
2.2.4.4 Attestation . 25
2.2.4.5 Sealing . 27
2.2.4.6 Enclave’s Life Cycle . 28
2.2.4.7 Paging in SGX . 29
2.2.4.8 SGX Memory Access Protection . 32
2.2.4.9 SGX Memory Encryption Engine (MEE) . 33

2.3 Attacks . 35
2.3.1 Passive Attacks . 35
2.3.2 Active Attacks . 35
2.3.3 Physical Attacks . 35
2.3.4 Software Attacks . 36

2.3.5 Address Translation Attack . 37
2.3.6 Cache Attacks . 38
2.3.7 DRAM Timing Side-Channel Attack . 39
2.3.8 DRAM Access Pattern Attack . 41
2.3.9 Denial of Service Attack (DoS) . 42
2.3.10 Man-in-the-Middle Attack . 42
2.3.11 Iago Attack . 42

3. RELATED WORK . 43

3.1 Memory Integrity Verification . 43
3.2 Memory Reliability . 45
3.3 Unified Integrity and Reliability . 49
3.4 Smart Memories for Security . 50
3.5 SGX Performance Enhancements . 52
3.6 Side-Channel Attacks in SGX . 54

4. VAULT: A LOW OVERHEAD TRUSTED EXECUTION ENVIRONMENT 61

4.1 Introduction . 61
4.2 Background . 64

4.2.1 Threat Model . 64
4.2.2 Merkle Trees . 66
4.2.3 Bonsai Merkle Trees . 67
4.2.4 Intel® SGX Baseline . 68

4.3 Proposed Techniques . 71
4.3.1 Unifying the EPC and Non-EPC Regions . 71
4.3.2 Variable Arity Unified Encrypted-Leaf Tree (VAULT) 72
4.3.3 Shared MAC with Compression (SMC) . 76
4.3.4 On-Demand MAC Allocation (ODMA) . 78
4.3.5 Security Analysis . 79
4.3.6 Discussion . 80

4.4 Methodology . 81
4.5 Results . 82

4.5.1 Evaluation of VAULT . 82
4.5.2 Evaluation of Reset Overhead and VAULT . 83
4.5.3 Evaluation of SMC . 84
4.5.4 Impact of Caching the Integrity Tree Nodes . 85
4.5.5 Page Fault Overhead . 85
4.5.6 Summary of the Proposed Methods . 87

4.6 Conclusions . 87

5. ITESP: COMPACT LEAKAGE-FREE SUPPORT FOR INTEGRITY AND RE-
LIABILITY . 89

5.1 Introduction . 89
5.2 Background . 92

5.2.1 Threat Model . 92
5.2.2 Integrity Verification . 92
5.2.3 Synergy . 94

vii

5.2.4 Motivation . 96
5.3 Isolated Tree with Embedded Shared Parity . 97

5.3.1 Isolated Metadata . 97
5.3.2 Covert Channel Demonstration . 100
5.3.3 Caching Shared Parity . 102
5.3.4 Embedding Parity in the Integrity Tree . 103
5.3.5 Implementation Details . 104
5.3.6 Security Analysis . 106
5.3.7 Reliability Analysis . 107

5.4 Methodology . 109
5.5 Results . 111

5.5.1 ITESP for VAULT and Synergy Baselines . 111
5.5.2 Sensitivity Analysis . 114
5.5.3 Address Mapping Policies. 115
5.5.4 ITESP with Morphable Counter Baseline . 117

5.6 Conclusions . 117

6. CONCLUSION . 119

6.1 Future Work . 120

REFERENCES . 125

viii

LIST OF FIGURES

4.1 SGX overhead. Left-side: Slowdown for three different benchmarks with
various numbers of page faults. The overhead is broken down in three por-
tions, CS (Context Switch), DT (Data Transfer), and SIT (SGX Integrity Tree).
The slowdown is against a nonsecure baseline system (BL). Middle: The
slowdown of SGX in a real system for a Key Value Store with two different
working set sizes [140]. Right-side: Slowdown for SGX in a real system
for synthetic benchmarks, with random and sequential accesses, to different
sizes of memory [36]. 62

4.2 SGX integrity tree (SIT). 71

4.3 Variable Arity Unified Tree (VAUT). 73

4.4 VAUT with encrypted Leaves (VAULT). 75

4.5 Shared MAC with Compression (SMC). 77

4.6 Execution time for MT, BMT, SIT, and VAULT, normalized against a nonse-
cure 8-core baseline. The trees cover the entire 16GB memory space. 83

4.7 Average access breakdown for reads and writes in MT, BMT, SIT, and VAULT. 84

4.8 Execution time overhead introduced by counter reset handling. This graph
only shows the 8 most affected benchmarks. 84

4.9 Average normalized execution time after applying the SMC technique with
different group sizes, for varying core counts. 85

4.10 Normalized execution time as the size of hash cache changes from 8 KB to
128 KB per core. 86

4.11 Execution time for SGX, Eleos, VAULT, and VAULT+SMC4, normalized against
a nonsecure 1-enclave system. 86

4.12 Average normalized execution time for SGX, Eleos, VAULT, and VAULT+SMC4
(shown by SMC4) when the number of enclaves varies. 87

4.13 Comparison of different proposed methods. 88

5.1 Data organization in baseline memory and Synergy. 94

5.2 Metadata block utilization while in cache in VAULT (left Y-axis) and meta-
data cache hit rate (right Y-axis). 97

5.3 Breakdown of metadata access patterns. 97

5.4 Isolated integrity tree. Baseline integrity tree and metadata cache for 4 apps
(top). Isolated integrity trees and metadata caches (bottom). 99

5.5 Covert channel demonstrated on an SGX v1 system. Observed latencies by
the attacker and victim enclaves when pages are interleaved (A) or isolated
(B). Two example victim code vulnerabilities (C) are also shown. 101

5.6 A block of counters in VAULT and ITESP. 104

5.7 Different integrity trees with Morphable Counters: (a) SYN128: Arity of 128
throughout; (b) ITESP 64: Arity of 64 at leaf level and 128 at other levels; (c)
ITESP 128: Arity of 128 throughout. 104

5.8 Execution time for the secure VAULT baseline, Vault with isolated trees and
metadata caches (ITVAULT), VAULT+Synergy baseline (SYNERGY), VAULT
and Synergy with isolation (ITSYNERGY), ITSYNERGY with a parity cache,
ITSYNERGY with shared parity (no parity cache), ITSYNERGY with shared
parity and a parity cache, and the proposed ITESP, all normalized to the non-
secure baseline. Assumes 4 cores and 1 memory channel. The benchmarks
are organized by the suite. 112

5.9 Breakdown of data+metadata accesses for each read and write operation.
Averages are reported for the top-15 memory-intensive benchmarks. 113

5.10 Normalized memory energy (on the left) and normalized average system
energy delay product (EDP, on the right) for the same models described in
Figure 5.8. 114

5.11 Execution time, memory energy, and system EDP for a 4-core model with 1
channel and an 8-core model with 2 channels, normalized against a nonse-
cure baseline. 115

5.12 Execution time, memory energy, and system EDP for various metadata cache
sizes, normalized against a nonsecure baseline. The bars represent averages
over top-15 memory-intensive benchmarks. 115

5.13 Address mapping policies for a 1-channel config. 116

5.14 Impact of address mapping policies on performance, metadata cache miss
rate, and row buffer hit rate (assuming 4 cores and 1 channel). 116

5.15 Normalized execution time (incl. local counter overflows) for Synergy and
Morphable Counters (Synergy128), Synergy128 with Isolation, and ITESP

with Morphable Counters (ITESP 64 and ITESP 128). Assumes 8 cores with
2 channels. 117

x

LIST OF TABLES

2.1 Fields in an EPCM entry . 22

2.2 Fields in the SECS structure . 24

4.1 Memory capacity overhead for different integrity techniques. Except for SGX
(Baseline), other schemes use one unified tree for the entire 16GB memory
space. 80

4.2 Benchmark’s specifications. Comp (Compressibility in percentage), WS (Work-
ing Set size in MB), and PF (average number of page faults in 50M instruc-
tions). 81

4.3 Simulator parameters. 82

5.1 Metadata memory capacity overheads. 105

5.2 Summary of SDC and DUE rates per billion hours for Synergy and ITESP. . . . 108

5.3 Simulator parameters. 110

5.4 Benchmark specifications. The 15 most memory-intensive benchmarks are
shown in bold font. 110

CHAPTER 1

INTRODUCTION

1.1 Trusted Execution Environments Challenges
Today, our computer systems are composed of millions of distributed devices at the

front-end connected through the Internet to collect data and send it to the cloud servers at

the backend to store or execute. Using the Internet as a backbone, Internet of Things (IoT)

nodes inherit all issues of the Internet, including security and privacy concerns. Due to

the ubiquitous nature of this network and its closeness to our lives, security and privacy

threats become more critical in IoT nodes.

Furthermore, the growing demand for cloud services to store or outsource the compu-

tation over private data raises privacy and security issues. The statistics in recent years

show that the innovations in cloud systems did not adequately address these issues. For

example, The number of organizations hacked with a ransomware attack in 2019 has

increased by 41% within one year [157].

Customers cannot trust cloud providers, nor other applications sharing the same plat-

form with theirs. Even though cloud providers are spending an enormous amount of

money on their security practices – Forrester reported that cloud providers are expected

to spend $12.7bn on cloud security by 2023, which shows an 18% growth [5] – cloud

customers are being continuously hacked; for example, in Cloud Hopper, hackers broke

into cloud servers, including CGI and IBM, to steal a significant amount of intel® lectual

property, security clearance, and other records from multiple companies over the past

several years [42]. A survey by Cloud Security Alliance [31] – conducted every year in

the past decade – shows that shared technology vulnerabilities, insider threats, and more

importantly, the lack of a thorough security strategy are always in the top ten threats to

cloud systems every year [14], [18], [26], [28].

The Cloudbleed buffer overrun vulnerability in Cloudflare in 2017, which affects more

2

than 3000 of its customers, is an example of the possible threat when multiple customers

share one platform [23], [79].

A study [122] in 2017 shows that more than 58% of security breaches happened because

of employee’s behavior (i.e., insider threat), whether maliciously or not. The LinkedIn

password hack [15], the MongoDB data loss on Amazon EC2 cloud [40], and the Yahoo

data breach [20] are three examples of unintentional misbehavior of insiders, which leads

to a substantial security threat; whereas, the Zynga data breach [70] is an example of a

malicious employee who sold highly confidential business information to a third party.

In recent years, several terrifying attacks occurred due to the lack of a sound security

strategy in big cloud providers, which compromised millions of users’ records. The Face-

book user data leak [112], and the Equifax data breach [138] fall into this category. The

former happened because of insecure backups, which were available for public accesses

without any authentication mechanism. The Equifax data breach was caused by multiple

failures, some of which were not patching a well-known vulnerability in the system; not

properly segmenting different parts of the system, which enable attackers to move from

the web portal to other part of the servers and find usernames/passwords in plain-text;

and finally, not renewing a certificate of one of the internal security tools, which allows

attackers to exfiltarate customers’ records without being inspected [73].

Besides vulnerabilities of cloud systems, an honest-but-curious cloud server may profit

from customers’ data by analyzing or selling their records. The Facebook-Cambridge Ana-

lytica data scandal [61] is an example of harvesting customers’ profiles without consent for

political purposes. Selling customer’s query keywords by search engines to advertisement

companies is another example of privacy invasion in cloud systems.

Because of cloud systems vulnerabilities – which cause the security accidents, and

despite the effort cloud providers make to avoid them, these accidents continuously occur

– customers must consider cloud systems completely untrustworthy and independently try to

preserve their privacy and security properties.

Trusted Execution Environments (TEEs) allow users to store their data or outsource

their code to execute on the cloud servers without trusting the cloud providers and other

applications running on the same platform with theirs. Although TEEs seem to be a

promising solution to use cloud services securely, their significant overhead imposed on

3

the applications discourages customers from requesting the security features.

Most commercial TEEs provide two main security features, confidentiality, and in-

tegrity, along with freshness [179]. Confidentiality is preserved by encrypting any data

exiting from the CPU boundary. Integrity is the guarantee that a CPU read matches the

data last written to that location. To verify data integrity, we append every 64B data block

with a 64b hash tag named Message Authentication Code (MAC). The produced MAC is

the output of a hash function with data block, the address, and a counter as its inputs.

To guarantee each data block’s freshness, we associate it with a counter, which tracks

the version of a data block. To further protect these counters from a replay attack, we

maintain an integrity tree. Therefore, to verify a data block’s integrity, besides the block,

we are required to fetch one block of MAC, one block of counter, and multiple blocks of

integrity tree nodes. Therefore, due to the additional memory accesses that must be made

to provide integrity and confidentiality, it imposes a significant bandwidth overhead. For

example, for a 16GB memory, we have to fetch 12 extra metadata blocks – one counter

block, one block of MAC, and 10 blocks of integrity tree nodes (based on the Merkle

tree [123]). Moreover, as mentioned, MAC values impose 12.5% capacity overhead.

To handle the significant overheads imposed to guarantee these properties, TEEs con-

sider a limited size for their secure memory. If the working set size of an application

exceeds the secure memory size, secure pages must be swapped between the secure and

nonsecure regions of memory frequently. This page swap imposes a significant perfor-

mance overhead because it requires an OS system call, context switching, page copying,

and metadata updating.

Intel® SGX [7] is one of the commercial TEEs, which provides confidentiality and in-

tegrity. SGX splits the entire physical memory into two parts: the EPC and the non-EPC

part. The EPC size is 96 MB – SGX reserves 128MB of memory called Processor Reserved

Memory (PRM), 96MB of which is allocated to enclaves’ code and data, and the remaining

part is dedicated to metadata. SGX provides cache line-granularity metadata for data

blocks as they are located in the EPC region, whereas it supports metadata at the gran-

ularity of page for secure pages when they are stored in the non-EPC region.

The “multigranularity metadata support” helps SGX keep the metadata overheads in

check. However, as mentioned, secure pages must be swapped between these two regions

4

frequently during the execution time, which introduces the paging overhead. SGX suffers

from three major sources of overhead [198]: (1) context switch, when an exception occurs

or when an OS call is performed; (2) transferring data between the EPC and non-EPC

regions, or paging overhead; and (3) secure memory access, which is imposed by MEE [82]

to provide confidentiality and integrity against physical attacks.

The overall overhead of memory accesses, i.e., (2) and (3), that SGX imposes on sensi-

tive applications is related to their working set size. If an application can fit into the LLC,

the overhead is trivial. If its size is less than 96MB, the size of EPC, the overhead can go up

to 12× for random memory access. Due to the paging cost, this overhead can dramatically

increase to 1000× when the working set size exceeds the EPC size [36].

Besides this significant overhead, in current implementations of security properties,

metadata structures are shared among different applications, thus introducing potential

side channels. Microarchitectural attacks, such as Meltdown [110] and Spectre [99] have

shown us that to exploit side or covert channels, physical access is not required. Therefore,

it is more challenging to protect against this kind of attack.

1.2 Dissertation Overview
According to the prior discussion, we can draw a conclusion that the size of meta-

data structures maintained to provide a security feature plays a key role in its significant

overhead; a large metadata structure can exacerbate the imbalance between CPU and

memory speed, causing significant performance degradation. In this thesis, we address

this considerable overhead by proposing more compact metadata structures. Smaller data

structures need fewer memory accesses to fetch all required metadata. Moreover, the

cachability of a compact structure is higher, increasing the cache hits, which results in

reducing the number of memory accesses. In Chapter 4, we show the impact of a more

compact metadata structure on the overhead of secure memory access, shown as (3) in

Section 1.1.

We notice that by reducing the metadata overhead, the multigranularity metadata sup-

port, dictated by SGX, is no longer required. The size of the secure region in the external

memory can grow while the bandwidth and storage overheads of metadata are still in

check. Using this new compact metadata structures, In Chapter 4, we propose a low

5

overhead TEE built on top of Intel® SGX. We show that this new TEE can provide sensitive

applications with a scalable, secure memory in which raising the working set size of an

application does not increase the overhead of security features dramatically.

In Chapter 5, we show that the state-of-the-art technique that uses a combination of

error-correction and security metadata to provide low overhead support for both, still suf-

fers from large metadata structures, which causes the significant overheads. We share one

block of error-correction metadata across multiple data blocks to reduce its footprint. This

technique enables us to embed the reliability metadata in the security metadata structure

to achieve a more compact metadata structure, which provides both, error-correction and

integrity metadata, at a lower cost.

In Chapter 5, we also demonstrate that when metadata structures are shared among

multiple applications, a side-channel attack is possible. Then, we propose a solution to

eliminate the potential side channel, which improves performance as well.

1.2.1 Thesis Statement

We state that there are two major problems with the current implementations of in-

tegrity verification, the significant overhead due to the large metadata structures, and

information leakage. Due to the wide gap between CPU and memory speeds, further

pressure on memory bandwidth, caused by large metadata structures, can exacerbate the

imbalance between CPUs and memory speed, imposing significant performance overhead.

Moreover, in current security implementations, multiple applications share security data

structures, and thus introduce potential side channels. In this dissertation we address these

two issues.

We hypothesize that the overhead of security algorithms can be reduced if we decrease the size of

required metadata structures so that it is feasible to provide sensitive applications with a scalable,

secure memory system. We further hypothesize that isolating applications by separating their

metadata structures not only eliminates the potential side channel, it also improves performance.

In the following section, we focus on the contributions of this thesis, where we provide

a brief summary of VAULT (Section 1.2.2.1) and ITESP (Subsection 1.2.2.2). Finally, we

describe the organization of this dissertation in Subsection 1.3.

6

1.2.2 Contributions

1.2.2.1 VAULT: A Low Overhead Trusted Execution Environment

Intel® software guard extension (SGX) [21] provides confidentiality, integrity, and fresh-

ness for sensitive applications. To control the overheads of these security guarantees,

SGX places the sensitive pages in a protected region of the memory, named Processor

Reserved Memory, and makes its capacity limited to 128MB. If the sensitive working set of

an application exceeds this size, sensitive pages have to be swapped between the protected,

i.e., PRM, and unprotected regions frequently, which poses a significant paging overhead

on the application’s performance. To increase the PRM size to reduce the paging overhead,

we need to overcome the large overhead of required metadata, which is proportionally

increased by PRM’s size.

The metadata overhead is classified into bandwidth and capacity overhead. Besides the

data blocks, a secure system, e.g., SGX, has to fetch multiple metadata blocks to guarantee

different security principles. These extra metadata blocks pose a significant bandwidth

overhead on the memory system and make it much slower, widening the gap between

the speed of the processor and the memory system. The second source of the metadata

overhead is the capacity that these extra data blocks occupy. A secure system requires

storing the metadata for future use, and due to its large capacity, they have to be stored in

the memory system. For instance, more than one-fourth of the entire Processor Reserved

Memory (PRM) is dedicated to the metadata to guarantee the promised security properties

for the remaining region – which is called an Enclave Page Cache (EPC).

As mentioned above, the main barrier to increase the PRM size to mitigate the paging

overhead is the overhead of metadata, which grows proportionally – imagine that more

than 25% of the entire memory system is unavailable to store data if SGX extends its

PRM to the whole memory system. On the other hand, by increasing the protected region

size, the number of metadata blocks required to protect one single data block increases,

amplifying the bandwidth overhead.

We reduce the overhead of metadata significantly by proposing a series of techniques

in VAULT. These techniques enable VAULT to allocate secure pages across the physical

memory to eliminate paging overhead caused as secure pages swap between non-EPC

and EPC regions in conventional SGX.

7

1.2.2.2 Compact Leakage-Free Support for Integrity and Reliability

The current implementations of security algorithms have two major problems; sig-

nificant metadata overhead, and shared metadata structures, which lead to information

leakage. In this chapter, we mitigate these two problems by proposing Isolated Tree with

Embedded Shared Parity (ITESP).

Prior work shares a metadata structure among different applications, which introduces

a potential side-channel – two adversaries can establish a covert channel. To mitigate this

issue, we isolate each application by implementing separate metadata structures for each

application. We show that not only does isolation eliminate the side channel, it also can

improve performance.

Then, we share a metadata block among multiple data blocks to reduce the metadata

footprint and lower the metadata bandwidth overhead. Sharing helps us design a more

compact metadata structure and enables us to provide all required metadata blocks by ac-

cessing a single leakage-free structure, called ITESP, to improve performance and eliminate

the potential side channel.

1.3 Thesis Organization
The rest of this dissertation is organized as follows. In Chapter 2, we provide some

background on security and privacy concepts. Section 2.1 presents definitions of terms

that will be used in this dissertation. Then, Section 2.2 gives a brief explanation about

current Trusted Environments, and we focus on Intel® SGX, as our baseline, in more detail

in subsection 2.2.4. Finally, we study different well-known attacks in Section 2.3.

Chapter 3 provides a thorough survey of the state-of-the-art techniques that try to im-

plement different security features more efficiently. In Section 3.1, we study the proposals

that provide integrity verification at lower overhead. Then we explore works supporting

reliability (3.2) and reliability along with security (3.3). We also explain two works that ex-

ploit 3D memory to reduce the overhead of security properties (3.4). Finally, we elaborate

on different studies trying to enhance SGX performance (3.5) and works that demonstrate

various side-channel attacks mounted on SGX (3.6).

Chapter 4 proposes VAULT as a low overhead Trusted Execution Environment built

upon intel® SGX. Chapter 5 introduces ITESP as a solution to address major issues of

8

providing integrity verification along with reliability. Finally, we conclude this thesis by

summarizing the contributions and discussing new challenges as follow-up studies to this

dissertation in Chapter 6.

CHAPTER 2

BACKGROUND

This chapter first clarifies some basic security concepts to provide an essential security

glossary for future use in this dissertation. Then, we focus on academic and commercial

trusted environments to explore their infrastructures, strengths, and weaknesses. Since in

Chapters 4 and 5, Intel® SGX is considered as a baseline, we explain this commercial TEE

in more detail.

2.1 Security Concepts
This section defines some basic concepts in the security field.

• Confidentiality is the protection of the secret’s content from being disclosed to an unau-

thorized party.

• Integrity is the prevention of any type of data manipulation by an unauthorized party.

When Data Integrity is guaranteed, it means that an authorized entity can read the data

as it was written last.

• Authentication means to identify who a user or a system is. If authentication is pro-

vided, the system can ensure that requests are serviced to valid parties. Authentication

without integrity is meaningless because authentication information should stay intact,

and no attacker can manipulate it. Protecting sensitive data from any unauthorized

accesses guarantees its confidentiality and integrity. Authentication is required to dis-

criminate between unauthorized and authorized parties.

• Availability means providing a valid user with a particular service as requested. Avail-

ability ensures that no attacker can deny service to the users [179]

• Freshness guarantees that the last version of data is available. The validity of data does

not suffice its integrity. It also should be guaranteed that data is “valid” and “fresh.” To

10

provide this feature, nonces – numbers which are used once – contain the version of data

blocks, thus guaranteeing their freshness [104], [179].

• Obliviousness is to hide, or obfuscate, the patterns of requests provided for an autho-

rized party. By providing obliviousness, an attacker cannot obtain sensitive informa-

tion, including the content of data or the users’ identity, by observing the sequences of

requests.

• The Attack Surface means the collection of ways – or different points of a system –

through where an attacker can break a system’s security. The wider the attack surface of

a system is, the less secure and the more vulnerable it is.

• Threat Model clarifies the specifications of threats that are protected and defines the

capabilities of attackers for a particular system. In other words, a threat model specifies

the security features provided to protect a system and the vulnerabilities that cannot be

protected.

• Trusted Computing Base (TCB) is a set of trustworthy hardware, software, and firmware

components that designers rely on to provide security properties for the remaining parts

of a system. In other words, the TCB is a set of components that no attacker can tamper

with. The larger a TCB is, the more vulnerable the secure system is. That is why in

today’s secure systems, the operating system is excluded from the TCB; it is difficult to

guarantee that in tons of lines of code in today’s operating systems, there is no bug that

attackers can exploit to compromise the system.

• Secure Hash is a function that maps an input (m), to a fixed-size output (h), called a

hash value. The input size can vary, while the output size is fixed and smaller than

that of the input. It should be mathematically impossible to reverse a hash function. It

means that if h = hash(m), it is computationally infeasible to calculate m = hash−1(h).

Moreover, two inputs should not be mapped to the same output; it means that it should

be difficult to find m1 and m2, where m1 6= m2 and hash(m1) = hash(m2). That is, a

secure hash should be collision-resistant. Hash values are used to generate the Message

Authentication Codes (MAC), provide digital signatures, derive a cryptographic key,

and maintain integrity trees.

11

The purpose of MACs is to provide integrity and authentication together. To this end, it

should be guaranteed that, unlike secure hashes, MACs can only be generated by desig-

nated parties, e.g., the owner. Therefore, to derive MACs, besides data, a cryptographic

key is required, which is available to certain entities. If an attacker manipulates the data,

he cannot generate the corresponding MAC because of the lack of access to the key.

Therefore, a MAC tag can detect any malicious change to the data.

2.2 Trusted Execution Environment (TEE)
2.2.1 Introduction to TEEs

Trusted Execution Environments are protected environments, intended to preserve

contents and states of data from different hardware/software attacks [150]. Based on their

threat model, TEEs provide a secure environment for code and data to execute securely.

TEEs usually provide confidentiality and integrity protection from hardware and software

attacks.

In TEEs, confidentiality is enforced by “encryption,” “isolation,” and “flushing” [179].

If data emerges from the TCB – which is usually CPU package boundary – it has to be

encrypted for the sake of confidentiality. Confidentiality against a software attack can

be provided by isolation. A memory region allocated to a sensitive application can be

isolated by owner checking the accesses, granting the owner’s, and denying others’ ac-

cesses. Authentication enables us to do owner checking. This isolation guarantees that

only the owner can access its data, and hence the confidentiality of data is provided. States

of an application can be secured by flushing the component containing the states as the

application execution time ends. For example, when an application ends, before starting

another application, registers, the cache system, and TLBs should be flushed. Flushing is

required when the CPU contexts switching between two applications or threads.

2.2.2 Academic TEEs

There are a handful of academic architectures to establish a TEE to protect sensitive

applications. eXecute-Only Memory(XOM) [108] assumes only CPU package is in the TCB,

and the memory system is untrusted. XOM encrypts data blocks before storing them in

the memory system. By allocating different keys to different applications to encrypt their

data blocks, XOM implements isolation to protect confidentiality of sensitive data stored

12

in the memory system. XOM does not provide integrity. To fix the main weakness of

XOM, AEGIS [177] provides confidentiality and integrity. Before writing a data block in

memory, AEGIS encrypts data and appends it with a hash value, named MAC, to support

confidentiality and protect data from unauthorized manipulations.

The Secret-Protection (SP) [105] is an architecture that uses hardware protection and

some security mechanisms to establish a Trusted Software Module (TSM) to protect a

sensitive application from software attack and a limited number of hardware attacks. SP

encrypts data and uses MACs to provide confidentiality and integrity as data and code go

to off-chip memory. To preserve confidentiality of registers and states, before switching

to the operating system mode, SP encrypts the registers’ content and appends them with

MACs. Bastion [53], unlike SP, can establish multiple TSMs with different security domains

in parallel. Besides encryption and MAC protection, Bastion provides the replay attack

protection by maintaining an integrity tree for the memory system.

Beyond encryption, integrity protections, and replay attack protections, Ascend [72],

[146] provides obliviousness to hide data access patterns. Ascend is also resilient against

the differential power analysis techniques to conceal power consumption patterns as well.

AISE [149] proposes a counter-mode based memory encryption to reduce the encryption

overhead. AISE provides confidentiality, integrity protections, and replay attack protec-

tions at a lower overhead by introducing a novel integrity tree.

SecureMe [59] is a hardware-software mechanism that protects an application from

physical attacks, malicious operating systems, and hypervisors. By using AISE [149],

this trusted environment provides confidentiality and integrity over the entire memory

system. SecureMe uses memory cloaking to ensure that a malicious OS or hypervisor

does not have access to the plain-text data – operating systems and hypervisors do not

require accessing the plain-text for their duties such as page allocation and swapping.

SecureMe leverages a hardware mechanism in the secure processor, AISE, to do memory

cloaking in order to reduce its overhead. Unlike SGX, SecureMe provides security features

– integrity, confidentiality, memory cloaking – for entire memory. This technique defines

two modes to access the main memory: the “cloaked mode” and “uncloaked mode.” In the

uncloaked mode, the cipher-text data is brought into the CPU, decrypted, and its freshness

and integrity are verified; then, plain-text data will be passed to the application. In cloaked

13

mode, neither the integrity/freshness verification nor decryption is applied, the cipher-text

data will be handed to the OS.

PoisonIvy [107] proposes a trusted environment that provides integrity verification,

freshness, and confidentiality. This proposal uses speculation to improve performance of

the integrity verification. PoisonIvy speculatively hands in plain-text data to the applica-

tion without checking its integrity and freshness. Then, while the application consumes

data, its integrity is also being checked. By running integrity verification in the background

and passing the data to the CPU speculatively, PoisonIvy removes this process from the

critical path to reduce integrity verification overheads.

Sanctum [63], SCONE [36], Ryoan [87], Haven [44], Eleos [140], SGXBounds [100],

ZeroTrace [154], Graphene-SGX [185] have been proposed based on Intel® SGX. Sanctum

tries to empower an SGX-enabled system to hide its page-level access pattern from a

malicious operating system by making enclaves in charge of managing their own page

table. By doing so, applications’ page-level address patterns are invisible to the operating

system.

SCONE accelerates SGX by implementing user-level threading to reduce the overhead

of enclave transitions. SCONE also reduces the overhead of system calls in an SGX-based

system by executing system calls outside the enclave. Ryoan uses SGX to establish a

distributed sandbox. In Ryoan’s threat model, neither enclaves nor infrastructures hosting

enclaves are trusted. These two parties – enclaves and their hosts – try to steal users’ secrets

covertly, and Ryoan’s responsibility is to detect and stop any covert channel between the

infrastructure and the enclave.

Haven leverages an SGX-enabled CPU to implement shielded execution for unmodi-

fied applications which are not adapted for running in an enclave. Haven loads a Windows

library OS along with the application inside an enclave; by doing so, a significant portion

of the OS support is available inside the enclave. Therefore, Haven reduces the number

of required system calls at the expense of increasing the TCB size. Eleos reduces the SGX

overhead by handling the page faults in the software level. SGXBounds augments SGX

with a low overhead memory safety approach. ZeroTrace provides obliviousness for an

SGX-based system.

Similar to Haven, Graphene-SGX proposes a framework to run unmodified applica-

14

tions in an SGX enclave at a comparable performance overhead with modified appli-

cations. Graphene-SGX employs a library-OS, Graphene [184], to load an unmodified

application into an SGX enclave. Unlike Haven, Graphene-SGX modifies the library-OS to

run inside the enclave efficiently. Therefore, the TCB size in this framework is significantly

smaller than that in Haven. Graphene-SGX and Haven support multitasking. Graphene-

SGX instantiates a separate instance of the library-OS for each process inside the enclave.

Unlike Haven, by doing so, this platform provides isolation for different processes [165].

Graphene-SGX concludes that by using a library OS along with several optimizations

for SGX such as dynamic loading, it is possible to run an unmodified application in the

enclave as efficiently as a modified application – and even more efficiently in some cases.

Graphene-SGX tries to load a library OS in an SGX-based machine efficiently despite the

fact that loading a library OS inside an enclave enlarges the TCB size significantly, thus

increasing the SGX overhead. Tian et al. [183] show that this attempt has failed.

2.2.3 Commercial TEEs

2.2.3.1 ARM TrustZone

The TrustZone architecture splits hardware and software resources into two parts, the

Secure world for sensitive applications and the Normal world for nonsensitive applications.

The TrustZone architecture guarantees that no Normal world components can access any

Secure world resources. Moreover, in the TrustZone infrastructure, a single physical core

can execute the Normal and Secure worlds’ jobs securely in a time-sharing manner. By

doing so, a TrustZone-based system does not require to dedicate one core to secure appli-

cations, thus saving power and area consumption [3], [25].

To separate these two worlds, TrustZone extends the address bus in the AMBA bus

with an extra control signal, named “nonsecure bit (NS bit).” The NS bit indicates whether

an access belongs to the Secure world or not. This new AMBA bus is called AMBA3 AXI.

nonsecure bus managers set their NS bit to one to ensure that they cannot access any

secure components. Setting the NS bit generates an address that does not match any secure

components’ address, guaranteeing the isolation between these two worlds. If a nonsecure

bus manager tries to access a secure component, the bus or the secure component raises an

error and halts this action.

15

TrustZone enables the CPU to communicate with peripherals securely. In AMBA3,

there is a low power, low bandwidth bus for peripherals called Advanced Peripheral Bus

(APB). The APB connects to the system bus through a bridge, which is called AMBA3

AXI-to-APB bridge [136]. The APB bus does not have the NS bit for compatibility with pe-

ripherals. However, the AMBA3 AXI-to-APB bridge guarantees all security requirements

for the TrustZone architecture. This bridge prevents nonsecure peripherals from accessing

the Secure world, and it rejects unauthorized requests to secure peripherals as well.

Every physical CPU core in the TrustZone architecture can work as two virtual cores:

Secure and nonsecure cores. The nonsecure core has access to only nonsecure components,

while all resources are available to the secure core. The CPU core contexts switch between

these two worlds in a time-sharing fashion to mimic these two virtual cores. Although this

policy helps the architecture save power and silicon area, switching between these two

worlds may open this architecture to a wide range of side-channel attacks [4], [102], [109],

[135], [136], [170], [204].

To context switching robustly and securely between these two virtual cores, the Trust-

Zone architecture proposes a new mode called “Monitor mode.” The monitor mode im-

plements the interprocess communication between the software of these two worlds. The

Secure world’s software can set its NS bit to jump into the Normal world. However,

context switching from the Normal world to the secure one has to follow a couple of

rules. This transition happens only through the monitor mode. A Normal world’s software

can switch to the monitor mode by executing an instruction, named Secure Monitor Call

(SMC), or by hardware exception mechanisms – e.g., IRQ, external data abort, or external

prefetch abort exceptions. The monitor mode stores the state of the source world and

restores the state of the destination world. The monitor mode is a subset of the Secure

world. The processor can access both secure and nonsecure addresses when it is in the

monitor mode.

The TrustZone implements separate page tables for each virtual core to guarantee the

isolation between the Secure and Normal words. This feature enables Secure and Nor-

mal worlds to have independent control over their virtual addresses and translations to

physical addresses. Virtual page tables include the extra security bit, NS bit; the NS bit is

used by the secure virtual processor to determine the world it intends to access. Whereas,

16

the nonsecure processor ignores this bit and considers its value as one to ensure that no

unauthorized access to the Secure world can be made.

The TrustZone architecture supports two configurations for TLBs; if TLBs contain the

NS bit in address tags, the monitor mode does not have to flush the TLBs when it context

switches between two worlds, thus accelerating the context switching process. In the

second configuration, TLBs do not include the NS bit, and hence, they have to be flushed

when context switching happens [62]. Although the former configuration is faster than the

latter, the latter is more secure, preventing information leakage between two Secure and

Normal worlds.

The cache hierarchy in the TrustZone architecture can also be implemented in two

configurations: first, the cache hierarchy contains the NS bit in the data tag to indicate

each block’s security state. In this configuration, each block of the cache can belong to the

Secure or Normal worlds. This security state can change dynamically. Every block can

be replaced by another one regardless of their security states. In the second configuration,

blocks are agnostic to the NS bit. Instead, there is a component called the TrustZone Memory

Adapter (TZMA) [3] to partition internal memories, i.e., SRAM or ROM, into two secure and

nonsecure regions.

The TrustZone Address Space Controller (TZASC) is a configurable component in the

TrustZone architecture, which is responsible for partitioning the address range of the cor-

responding node – the component which is attached to TSZASC – to define different

regions. The TZASC is also in charge of partitioning the DRAM main memory in the

TrustZone infrastructure. Therefore, in this structure, separate main memory systems are

not required, leading to a lower cost, area, and power consumption. However, as always,

shared resources among secure and nonsecure applications can make a system vulnerable

to various types of information leakage. The size and number of regions can be configured

on the TZASC.

The TrustZone architecture is not resilient against types of physical attacks. Consider-

ing CPU package boundary as the TCB for this architecture, while code and data reside

inside package, they are not subject to physical attacks. TrustZone document [3] recom-

mends keeping sensitive data and code inside CPU package, stored in on-chip memory.

However, following this recommendation imposes a rigid restriction on the size of sensi-

17

tive code and data [62].

2.2.3.2 Intel® SGX

Since in the entire dissertation, we pick an SGX-based system as our baseline, We

explain this TEE in more detail in Section 2.2.4.

2.2.3.3 AMD SEV

In 2016, AMD proposed the first version of its TEE, named Secure Encrypted Virtual-

ization (SEV) [10], to isolate virtual machines (VMs) from the underlying hypervisor and

other VMs. This technology enables cloud customers to run their VMs without trusting

the cloud system and getting affected by potential bugs in the cloud infrastructure. SEV

encrypts VMs’ data stored in the main memory; therefore, the untrusted hypervisor, other

VMs, or even an administrator can only access the encrypted version of VMs’ data.

When context switching occurs, the hypervisor stores all VM’s states, including regis-

ters’ content in the main memory available to other untrusted hypervisors. To mitigate this

issue, AMD introduced the second version of SEV, named SEV with Encrypted State (SEV-

ES) [95]. Beyond the memory encryption, SEV-ES provides confidentiality and integrity

for VM’s registers to protect their states and contents from untrusted hypervisors.

Since to manage a VM, the hypervisor needs to access its registers state encryption can

be challenging. To address this issue, in SEV-ES, the VM explicitly shares registers’ state

with the hypervisor. That is, VMs decide what information should be shared with the

hypervisor [27]. This policy leaves the hypervisor in charge of managing the VMs, while

the sensitive information of VMs is still intact and protected.

The next generation of SEV, called SEV with Secure Nested Page (SEV-SNP) [30], is built

upon SEV and SEV-ES. SEV-SNP adds memory integrity protection on top of data and reg-

isters encryption to prevent unauthorized accesses to VMs’ data. This technology protects

VMs’ sensitive information from replay attacks, memory aliasing, and memory remapping

when a page is swapped out of the memory.

AMD SEV defines two types of pages, Private and Shared. The former contains sen-

sitive information, while the latter’s content is not confidential. To determine the type of

pages, one bit, named C-bit, is stored in the page table entry. C-bit defines whether or not

the pages’ content should be encrypted.

18

In the SEV-SNP threat model, AMD is assumed to be trustworthy, the AMD SoC hard-

ware and AMD secure processor are considered to be trusted. This threat model assumes

that the VM is secure, trusted, and bug-free. The remaining part of the system – including

BIOS, drivers, hypervisor, cloud software, and other VMs – is considered untrusted. In

SEV and SEV-ES, the hypervisor was “benign but vulnerable,” meaning that while the

hypervisor is not fully trusted, it does not attack the VMs purposefully. In SEV-SNP, the

threat model is stronger, assuming that hypervisor can be malicious too.

SEV-SNP, like its predecessors, can not protect the VMs against any physical attacks.

Therefore, attacking the DRAM bus and manipulating data over the memory bus is beyond

the scope of the SEV threat model. However, SEV1 is resilient against cold boot attacks [30].

To provide integrity against the malicious hypervisor or other VMs, SEV-SNP ensures that

the private pages are only accessible to their owners.

In the memory aliasing attack, one single physical page is maliciously mapped to

multiple VM pages, which leads to memory corruption. SEV-SNP protects the VM’s mem-

ory by ensuring that one physical page cannot be mapped to more than one VM’s page

simultaneously. A memory remapping attack means that the malicious hypervisor maps

one VM’s page to multiple physical pages. SEV-NP addresses this issue by ensuring that

one VM’s page is always mapped to one physical page; if this mapping needs to change,

it should be validated by a trusted secure processor.

To do owner checking, SEV-SNP introduces a new data structure, called the Reverse

Map Table (RMP) to keep track of the pages’ owner. Combining with the page table, the

Reverse Map Table enables SEV-SNP to enforce a couple of memory restrictions to assure

that only the owner of private pages can access them. The RMP is a table indexed by

physical address – in reverse of the page table, which is indexed by the virtual address.

AMD processors implement two-level paging, called Nested paging [1], to translate the

VM’s virtual address to the hypervisor’s physical address. The guest page table first

translates a guest virtual address (gVA) to a guest physical address (gPA). Then, the nested

page table translates the gPA to the System Physical Address (SPA). Finally, one entry

containing gVA and SPA will be created in the TLB.

1When it is written “SEV,” it means all versions of SEV, including SEV, SEV-ES, and SEV-SNP.

19

In SEV-SNP, the RMP is indexed by SPA; therefore, to check the ownership, the SPA

indexes the RMP; each RMP entry contains the corresponding gPA. If the entry’s gPA

matches the gPA translated in the nested page, the access is granted, and a new TLB will

be created. Otherwise, the access will be denied, and a page fault will be generated.

As mentioned, since every RPM entry contains the gPA at which the corresponding

physical page will be mapped, every SPA can only be mapped to one gPA, which means

memory aliasing attacks can be detected. SEV-SNP also guarantees that mapping one gPA

to multiple SPAs is forbidden – i.e., a memory remapping attack is impossible. Note that

the nested page table assures that one gPA can map to one SPA. To prevent the untrusted

hypervisor from manipulating the page table, SEV-SNP validates all changes made on the

nested page table in a process called Page Validation.

Each RPM entry has a Validate bit, which is set to zero by the CPU as a page is allocated

to a VM. As long as this bit is zero, the page can not be used by the VM. To validate a page,

the VM has to confirm that it has not validated any other page with the same gPA. To do

so, a VM needs to keep track of gPAs of the pages it has validated. This process guarantees

that the memory remapping attack will be detected. After validating a page, the VM sets

its validate bit to one.

The SEV-SNP document [30] states that this architecture is vulnerable to all types of

side-channel attacks, or cache attacks, e.g., PRIME+PROBE. However, SEV-SNP is aug-

mented with hardware capabilities to defend against some speculative side-channel at-

tacks such as Spectre Variant 2 [99].

SEV-SNP has three indirect branch control features to mitigate the branch predictor

based microarchitectural attacks; these features enable VMs to choose their policy in deal-

ing with the indirect branch predictor [2]. AMD uses the“SPEC CTRL” and “PRED CMD”

MSR to allow VMs to activate these features to have software control on the branch predic-

tor structures. By activating the Indirect branch prediction barrier (IBPB) feature, the AMD

processor guarantees that the older indirect branches cannot impact the prediction of the

indirect branches in the future. This feature can be used when context switching between

VMs occurs. The Indirect Branch Restricted Speculation (IBRS) feature can isolate indirect

branches from different privilege levels – i.e., when “CPL=3” vs. “CPL= 0 to 2,” or guest

vs. host. If this feature is active, after transitioning to a higher privileged mode, indirect

20

branches cannot be influenced by branches in the less privileged mode, nor be controlled

by branches of other logical processors. If the Single Thread Indirect Branch Predictor (STIBP)

feature is active, indirect branches cannot impact the prediction of other sibling threads.

2.2.4 Software Guard Extensions (Intel® SGX)

Software Guard eXtensions (SGX) is a set of additional instructions to the Intel® pro-

cessor ISA to provide security properties – i.e., confidentiality, integrity, and freshness – for

sensitive applications [62]. SGX offers hardware-based memory protection, which isolates

a region of memory, called enclave, from unauthorized accesses [13], [119]. SGX allows

application developers to create an enclave over cloud servers to ship their sensitive code

and data and execute software securely over cloud servers. SGX guarantees confidentiality

and integrity, along with freshness, for data and code even in the presence of a malicious

operation system (OS), hypervisor, or any applications running over cloud servers.

2.2.4.1 Threat Model

SGX protects enclaves against a powerful adversary with privileged access to system

software and hardware. The entire software stack, including the operating system, hy-

pervisor, and other processes running on the same machine, are untrusted and might be

compromised by an adversary. Furthermore, SGX can protect enclaves from compromised

BIOS, drivers, System Management Mode (SMM), and Intel® Management Engine (ME).

The Trusted Computing Base (TCB) in SGX covers processor package boundary and the

attestation software, i.e., Quoting Enclave [12], [37]. Once data emerges from processor

package, its confidentiality and integrity should be guaranteed. Since SGX assumes that

the adversary has full access to the system hardware, i.e., the external memory, DMA,

storage system, and the memory bus are untrusted; the adversary can probe the memory

and storage buses [22].

Physical attacks targeting processor package are excluded from SGX threat model. SGX

does not target different types of side-channel attacks, including power analysis attacks,

side-channel attacks, and time channel attacks – e.g., cache timing attacks; moreover, the

Denial Of Service (DOS) attack is also outside SGX threat model. It is worth mentioning

that in SGX threat model, Intel® is assumed to be trustworthy, an Intel® chip is supposed

21

to work appropriately, and the private key is expected not to be compromised [43].

2.2.4.2 SGX Memory Organization

A reserved region of the external memory protected by SGX from unauthorized ac-

cesses is called Processor Reserved Memory (PRM). Data resident in this hardware-protected

memory cannot be accessed by other software – e.g., operating systems, hypervisors, and

even SMM – except for its owner. SGX also does not allow the DMA engine to transfer

data into the PRM to protect this part of the memory from peripheral accesses. Intel® SGX

implementation offers three PRM options that can be chosen in the BIOS: 32MB, 64MB, and

128MB. A subset of the PRM (about 96MB) is allocated to sensitive code and data, called

the Enclave Page Cache(EPC); the remaining part of the PRM is dedicated to metadata.

SGX assigns a range of virtual addresses, called Enclave Linear Address Range (ELRANGE),

to map to the enclave’s code and data which reside in the EPC region. The virtual ad-

dresses outside the ELRANGE are assigned to nonsensitive pages located outside the EPC.

ELRANGE is represented by a base (BASEADDRESS field) and a size (SIZE field) – two

fields of the enclave’s SECS. The size should be a power of 2, and the base should be

aligned to the size. These restrictions help SGX simply check whether or not an address

belongs to this range.

2.2.4.3 Control Data Structures in SGX

SGX maintains several data structures to manage the EPC region and provide different

security features for the code and data stored in this region. These data structures help SGX

protect enclaves from malicious operating systems and applications. To understand how

SGX provides the various security features, we briefly summarize some of the essential

SGX data structures in this subsection.

• The Enclave Page Cache Map (EPCM). The EPC is partitioned into 4KB pages to store

enclaves’ sensitive data and code. To perform all security checks, SGX maintains some

metadata for each EPC page in a data structure, called Enclave Page Cache Map (EPCM).

EPCM is an array in which every entry belongs to an EPC page. The fields of the EPCM

is shown in Table 2.1 [62].

PT in the EPCM structure shows the type of the corresponding EPC page. PT is “PT REG”

22

Table 2.1: Fields in an EPCM entry

Field Bits Description
VALID 1 “1” for allocated EPC pages

PT 8 Page type
ENCLAVESECS - indicates the slot number of the enclave’s SECS,

which identifies the page’s owner
ADDRESS 48 Virtual address allocated to this EPC page

R 1 EPC page is readable
W 1 EPC page is writable
X 1 EPC page is executable

BLOCKED 1 indicates if the page is evicted

for regular EPC pages storing enclaves’ code and data, “PT SECS” for EPC pages con-

taining SECS information, “PT TCS” for EPC pages saving thread control structures,

or “PT VA” for pages containing version arrays. “VALID” in the EPCM entry shows

whether or not the corresponding EPC page is allocated to any enclave. “BLOCKED” in-

dicates if the EPC page is evicted or not. Subsection 2.2.4.6 discusses how a combination

of the BLOCKED and VALID fields can show the stage of an enclave. “ENCLAVESECS”

is a field of EPCM that contains the slot number of the enclave’s SECS, which is the

owner of the EPC page.

Note that SGX does owner checking for EPC pages by checking the ENCLAVESECS field

in the EPCM entry of the corresponding EPC page. By doing so, SGX can guarantee that

each page is only accessible to its owner, and neither the system software nor other

enclaves can access it. This owner-checking enables SGX to disallow an enclave to share

EPC pages with other enclaves. However, enclaves can share pages in the non-EPC

region.

• The SGX Enclave Control Structure (SECS). SGX also maintains metadata information

per enclave to identify each enclave. This data structure is called The SGX Enclave Control

Structure (SECS), stored in EPC pages with the type of PT SECS. The content of these

pages is not accessible to enclaves or the system software; however, similar to other EPC

pages, they can be evicted by the OS. In the enclave life cycle, allocating and deallocating

an EPC page for the enclave’s SECS are the first and last steps. Hence, this data structure

is suitable for identifying enclaves. The system software uses the virtual address of the

enclave’s SECS to point to an enclave. Every SGX instruction gets the SECS virtual

address as one of its inputs, and the system software also stores this information in page

23

table entries. Since the SECS structure is unavailable to enclaves and the OS, it contains

secrets related to an enclave.

Two fields of “BASEADDR” and “SIZE” in the SECS represent ELRANGE of the en-

clave. “ATTRIBUTES” is another field of the SECS with ten subfields: The first sub-

field,“DEBUG,” which shows whether or not the enclave is in the debugging mode –

when the enclave is in the debugging mode, no security guarantee is provided. The sec-

ond subfield is “XFRM,” which is 64 bits and contains the value of the CPU’s XCR0 dur-

ing enclaves execution time. SGX guarantees that the value of XCR0 is equal to XFRM

while an enclave is running. “MODE64BIT” is another subfield of the ATTRIBUTES

field, which is set to one for a 64-bit enclave.

INIT, another subfield of ATTRIBUTE, shows if the enclave is initialized by EINIT. Once

the SECS structure is created, this bit is unset, indicating that the enclave is not yet

initialized, and its code cannot execute. Two other subfields, “PROVISIONKEY” and

“EINITTOKEN KEY,” show if the enclave has access to Provisioning Key and Provi-

sioning Seal and EINITTOKEN Key, respectively. The fourth bit and bits in the positions

of six to sixty-three in the ATTRIBUTE field are reserved. The fourth bit must always be

set to zero. “SSAFRAMESIZE” is another SECS field, which indicates the size of the SSA

(explained later) in the number of EPC pages. It simplifies how to locate different fields

of SSA.

The MRENCLAVE, MRSIGNER, ISVSVN, and ISVPRODID fields in the SECS struc-

ture enable an enclave to attest to the remote entities [24]. SGX maintains two regis-

ters, “MRENCLAVE” and “MRSIGNER,” for attestation (Subsection 2.2.4.4) and sealing

(Subsection 2.2.4.5), respectively. MRENCLAVE and MRSIGNER contain 256-bit hash

digest, produced by the SHA-256 hash algorithm. MRENCLAVE, named Enclave Iden-

tity, is an internal log that records all the enclave activities after creation, including its

code, data, and security flags. The second identity for enclaves, called “sealing identity,”

is stored in MRSIGNER and used for data protection. This register contains the hash

value of the enclave author’s public key.

Another SECS field, “ISVSVN,” contains the enclave’s security version number (SVN).

The enclave author assigns an SVN to each version of the enclave. Different SVNs show

24

different security properties among various enclave versions. The “ISVPRODID” field

contains the enclave product ID. Multiple enclaves that are authenticated with the same

public key may end up with the same value in their MRSIGNER register. The Product

ID field allows the author to differentiate enclaves with the same author’s identity.

ENCLAVESECS is the physical address of the EPC page containing the correspond-

ing SECS. Therefore, if this SECS page is swapped out of the EPC, the content of EN-

CLAVESECS is subject to change. Therefore, ENCLAVESECS is suitable for identifying

an enclave as long as the SECS page resides in the EPC. SGX resolves this problem

by using 64 reserved bits of the SECS structure to store an enclave ID, called Enclave

ID (EID). Some SGX instructions, which are involved with evicted pages, e.g., EWB,

use EID to identify the owners of pages. The 32-bit MISCSELECT field in the SECS

specifies which extended information should be stored in the SSA structure when an

AEX occurs. For instance, if the least significant bit of MISCSELECT is 1, the exception

information about page faults and general protection exception in the enclave is stored

in this region [147]. A summary of the SECS’s fields is shown in Table 2.2

• The State Save Area (SSA). When an exception occurs, SGX needs to store the thread’s

execution contexts in a data structure securely while the exception is being handled; this

data structure is called The State Save Area (SSA), which contains the values of general-

purpose registers (GPRs) plus the future-specific registers, e.g., FP0-FP7 for FPU. Since

Table 2.2: Fields in the SECS structure

Field Bits Description
BASEADDR 64 Base address to represent ELRANGE

SIZE 64 the size of ELRANGE

ATTRIBUTES

DEBUG 1 set for debugging mode

XFRM 64 the value of control register XCR0
during the enclave’s execution time

MODE64BIT 1 “1” for a 64-bit enclave
INIT 1 Set once the enclave is initialized

PROVISIONKEY 1 “1” when Provisioning Key is available from EGETKEY.
EINITTOKENKEY 1 “1” when EINIT token key is available from EGETKEY

EID 64 Enclave ID
SSAFRAMESIZE 32 shows the size of SSA in number of EPC pages

MRENCLAVE 256 a hash digest by SHA-256, contains Enclave identity
MRSIGNER 256 a hash digest by SHA-256, contains Sealing Identity
ISVPRODID 256 Product number for different modules of an enclave

ISVSVN 256 Security version number for an enclave
MISCSELECT 32 Specifies the extra features stored

in the MISC region of the SSA as an AEX occurs

25

this data structure is stored in a regular EPC page with the type of “PT REG,” the SSA’s

content is available to the owner enclave. The “SSAFRAMESIZE” field of the enclave’s

SECS contains the maximum number of EPC pages occupied by SSA data structures.

• The Thread Control Structure (TCS). Since SGX supports multicore processors, mul-

tiple threads may execute the same enclave code simultaneously. To manage the mul-

tithread execution, SGX uses a structure called Thread Control Structure (TCS) to store

required information for different logical processors that execute the same enclave. EPC

pages containing this data structure have the type of “PT TCS” in their EPCM entries.

These pages are not accessible to the system software or enclaves, including the owner.

2.2.4.4 Attestation

Attestation is the mechanism of assuring a remote party that its code is hosted by a

trusted container and executes securely. In this mechanism, the remote party is called

verifier, and the trusted container is called prover. For the attestation process, SGX uses the

software attestation mechanism, where the attestation process is implemented without any

additional secure hardware at the prover side. The software attestation process employs

a challenge-response protocol [34], where the verifier challenges the prover with a crypto-

graphic signature. In other words, the remote party, a user, asks the prover, a cloud server,

to sign a hash digest of initial states of the user’s code and send the hash digest and the

signature to the user. Then, the user verifies the signature with the public key provided by

the trusted container. If the verification passes, the user can be convinced that the trusted

container is trustworthy.

There are two types of attestation processes implemented in SGX; the first type is called

local attestation or intra-platform attestation mechanism, which enables two enclaves executing

on the same machine to authenticate each other. The second type is Remote attestation or

interplatform attestation mechanism in which the prover and verifier are not on the same

platform [33].

• Local Attestation. When two enclaves on the same machine are intended to cooperate,

they need to authenticate each other in the first step. One enclave can prove its identity

to another enclave, named target enclave, by calling the EREPORT instruction. This

26

instruction creates a signed structure, called REPORT. The REPORT structure contains

the enclave measurements, i.e., MRENCLAVE and MRSIGNER.

The report structure is appended with a 128-bit MAC tag generated by the cipher-based

MAC (CMAC) algorithm [67]. The EREPORT instruction uses a symmetric key, named

Report Key, to produce the MAC. The Report Key is only shared between the EREPORT

instruction and the target enclave. The target enclave can obtain its Report Key by run-

ning the EGETKEY instruction to recalculate the MAC tag and verify it. If the reproduced

MAC matches, the target enclave can conclude that the sender is a valid enclave running

on the same platform. The target enclave then produces a REPORT structure with the

same MRENCLAVE field as the received one and sends it to the sender to confirm that

it accepted the report message.

• Remote Attestation. Unlike the local attestation mechanism, the remote attestation

process requires an asymmetric key. To do so, SGX creates an enclave, named the Quot-

ing Enclave to handle the remote attestation process. The Quoting Enclave verifies the

REPORT structure from another enclave, called attested enclave, in the same platform

by using the local attestation method. Then, after verifying it, the Quoting Enclave

replaces the MAC tag of the REPORT structure with a signature produced by a private

asymmetric key to generate a message which is called a QUOTE [33].

Three enclaves collaborate in the same platform to provide the remote challenger with an

appropriate response: the first one is the Attested enclave, which is the application enclave

intended to be attested; this enclave receives the challenge from the remote challenger.

The second one is called Provisioning Enclave, which produces the encrypted attestation

key for the third enclave, the Quoting Enclave. The Quoting enclave produces the final

response and communicates with the remote challenger [62].

Using the EGETKEY instruction, the Provisioning Enclave generates the Provisioning Key

to authenticate itself to the Intel® provisioning service. When assuring that it commu-

nicates with an authenticated SGX processor, the Intel® provisioning service sends an

Attestation Key to the Provisioning Enclave. Then this enclave uses the EGETKEY instruc-

tion to generate another key, called the Provisioning Seal Key to encrypt the Attestation

key and store an encrypted version of that in the system software.

27

In the next step, the Attested enclave generates the local attestation report – similar to

the report produced in the local attestation mechanism – and sends it to the Quoting En-

clave. The Quoting Enclave uses the EGETKEY instruction to generate two types of keys.

First, the Report Key to verify the attestation report received from the attested enclave.

Second, this enclave obtains the Provisioning Seal Key to decrypt the Attestation key

received from the Provisioning Enclave.

Finally, the Quoting Enclave replaces the MAC tag of the attestation report with the

Attestation Signature, which is derived by the Attestation Key and contains a crypto-

graphic hash of the enclave measurements and messages. The structure produced by

the Quoting Enclave is called a Quote. The Quote is sent back to the remote challenger

as a response.

The Quoting Enclave uses an asymmetric signing algorithm, in which the signer makes

a signature by its private key, while the verifier can verify it using the signer’s public

key [62]. For this purpose, the Quoting Enclave uses the Attestation key received from

the Provisioning Enclave.

2.2.4.5 Sealing

The Sealing process enables an enclave to generate a seal key to encrypt its sensitive

data and store it in the untrusted external memory when being destroyed. This process

also allows an enclave to retrieve the key to decrypt its sensitive data once it is required.

According to the way that EGETKEY generates a seal key, the enclave dictates how the

sealed data can be accessed in the future.

Intel® has two policies to generate a seal key; in Sealing to the Enclave Identity or Sealing

to the Current Enclave, EGETKEY uses the enclave’s MRENCLAVE to produce the seal key.

Therefore, the derived key is bound to the enclave’s measurement. By choosing this policy

any changes in the enclave content or version result in a different seal key. This policy is

useful to assure that the old version of the enclave is not accessible anymore. Sealing to the

Sealing Identity or Sealing to the Enclave Author forces EGETKEY to bind the seal key to the

enclave’s author, MRSIGNER, and the enclave’s product ID (ISVPRODID). Hence, only an

enclave with the same MRSIGNER and Product ID can unseal it.

Sealing to the enclave’s author has two advantages over the previous policy; first,

28

different versions of an enclave can retrieve the same seal key. Second, authors can have

the same seal key for all of their enclaves [22], [24].

The enclave invokes the EGETKEY instruction to generate the required seal key to

perform the sealing process. After obtaining the seal key, the seal operation will be done

using the AES-GCM encryption algorithm [153] to encrypt the data. It is essential to

delete the seal key to prevent any unauthorized unsealing process. Finally, the sealed

data, along with the key request structure, will be stored in the external memory. The

unsealing process is straightforward. The seal key can be retrieved by calling the EGETKEY

instruction. Then, the decryption process will be performed to unseal the data [24].

2.2.4.6 Enclave’s Life Cycle

An enclave passes through multiple states during its lifetime; these states are defined

by the enclave’s resources – especially EPC pages. In the SGX model, the system software

manages the enclave’s transitions between the states during its lifetime.

The system software creates an enclave by invoking the ECREATE instruction to allocate

the first EPC page to the enclave SECS structure, initializing it by assigning the values

to the SECS fields such as SIZE, BASEADDR, and INIT – INIT is set to zero. By calling

ECREATE, the enclave will be in the “uninitialized” state. Then, the system software calls

the EADD instruction to allocate new EPC pages and copy the data and code from the

non-EPC region into these newly-allocated pages. EADD makes some security checks; it

assures that the new EPC page has not already been allocated to another enclave – i.e., the

VALID field on its EPCM should be zero. Moreover, The SECS of the owner of the new

EPC page should not be in the initialized stage. Finally, EADD ensures that the assigned

virtual address is in the ELRANGE range of the enclave. The system software uses the

EEXTEND instruction to update the enclave’s measurement while loading EPC pages.

At this step, the newly-created enclave cannot execute until it gets initialized. The

system software calls the EINIT instruction to use a privileged enclave, named Launch

Enclave (LE). The Launch Enclave provides an EINIT token structure, EINITTOKEN, to

initialize the uninitialized enclave. In the SGX system, each enclave should be vetted

by a Launch Enclave before running the sensitive code. The LE approves the enclave

by providing an EINIT token (EINITTOKEN). To issue the EINITTOKEN structure, the

29

LE requires access to the enclave’s certificate signed by the author, named the Signature

Structures (SIGSTRUCT).

First, EINIT verifies the SIGSTRUCT structure to initialize the SECS fields of the en-

clave and prepare it for execution. EINIT copies some SECS fields from the SIGSTRUCT

structure and produces MRSIGNER. After verifying different fields of EINITTOKEN, EINIT

sets the INIT bit to one, indicating the SECS is initialized [7]. Setting the INIT bit to one

means that EADD cannot add any new pages to this enclave, and the enclave is allowed to

execute its code. At this moment, the enclave is in the “Initialized not in use” state.

When a logical processor executes a code resident in the EPC pages, or inside the

enclave, it is called the processor is in enclave mode. When the processor is outside enclave

mode, it cannot make any accesses inside the enclave. Invoking the EENTER instruction, a

logical processor becomes “in enclave mode,” executing the code in the EPC pages.

A logical processor can exit from the “in enclave mode” by executing the EEXIT in-

struction, returning back to the nonsecure code. By executing EEXIT, control of the pro-

gram will be transferred to outside the enclave. This form of exiting from the enclave mode

is called Synchronous Enclave Exit.

If transferring to outside the enclave occurs because of a hardware exception such as a

fault or an interrupt, it is called Asynchronous Enclave Exit (AEX). By shifting the program

control to outside the enclave, the enclave’s state will change to the “Initialized Not in

use” state. The EREMOVE instruction deallocates EPC pages and destructs the enclave.

This instruction resets the VALID field of the corresponding EPCM entry to zero to free

that page. Finally, EREMOVE deallocates the pages containing the enclave SECS to destroy

the enclave completely.

2.2.4.7 Paging in SGX

SGX leaves the untrusted system software in charge of paging. SGX does not change

the address translation process, page allocation, or page table management. Instead, it

adds security checks to monitor the system software to ensure that any malicious behavior

is detected and halted. Similar to swapping a page from the main memory to the storage

system, the operating system is allowed to pick a victim among EPC pages and evict it to

the non-EPC region. However, SGX dictates a mechanism to guarantee that this process

30

takes place securely, and security features are provided for evicted pages while residing in

the non-EPC region.

In regards to TLBs, two requirements should be met: First, SGX assures when a logic

processor exits from an enclave, its TLBs are flushed. Second, when an EPC page gets deal-

located from the enclave, SGX ensures that all logical processors involved with this page

are forced to exit from enclave mode. Therefore, SGX guarantees that no TLB entry with

the evicted EPC page resides in the TLBs. The system software sends an interprocessor

interrupt (IPI) to cause a logical processor to exit from an enclave, which triggers an AEX

and a TLB shootdown. To reduce the overhead of this process, the system software sends

one IPI after evicting a batch of EPC pages.

To verify this process, SGX employs two bits in EPCM entries to define three different

states for EPC pages: VALID and BLOCKED. An EPC page is free, if both bits are zero;

it is in Use, if VALID=1 and BLOCKED=0, and the EPC page is blocked, if both bits are

one. Requests targeting a blocked page will face a page fault. Therefore, while a page is

blocked, its TLB entry is not going to be duplicated. Moreover, SGX instructions check to

ensure that none of the pages they work with is blocked.

Before evicting a batch of EPC pages, the operating system runs the EBLOCK instruction

for those EPC pages. This instruction sets the BLOCKED bit in the corresponding EPCM

entries, which changes the state of these pages from “in Use” to “Blocked.” This instruction

ensures that no new translation targeting the corresponding TLB entries is responded.

Then, the operating system is supposed to remove the corresponding entries from the

page tables. To ensure SGX that no malicious behavior is performed, after blocking the

required EPC pages, the operating system issues the ETRACK instruction. This instruction

allows SGX to keep track of logical processors that exited from the enclave, and their TLBs

got flushed. Then, the operating system sends IPIs to logical processors to trigger an AEX

and flush their TLBs.

Finally, to evict an EPC page into the non-EPC region, the system software executes

EWB; this instruction takes a few steps to guarantee confidentiality, integrity, and freshness

of an evicted page, while it is located outside the EPC. EWB requires a new data structure,

called the Version Array (VA), to store a nonce assigned to each evicted EPC page. EWB

assigns an 8-byte counter as a nonce to each evicted EPC page to keep its version to

31

guarantee its freshness. This page version is stored in a Version Array (VA), which is

an EPC page whose type is “PT VA.” Each VA contains 512 8-byte counters to keep the

versions of 512 EPC pages.

Unlike regular EPC pages, VA pages are not allocated to any enclave, and hence, neither

enclaves nor the system software has access to these pages. However, similar to other EPC

pages, VA pages can be evicted by the system software. SGX needs to provide all essential

security features for these pages while locating in the non-EPC region. To do so, SGX

maintains a data structure, which is a forest of Eviction Trees; an eviction tree is a tree

structure whose leaves are the EPC pages and nodes in upper levels are VA pages. An

evicted VA page, along with its EPCM, is appended with a MAC tag and assigned with an

8-byte counter to keep its version. This assigned counter also needs to be stored in another

VA page. These VA pages containing versions maintain the eviction tree to guarantee the

freshness of the VA pages and, as a result, freshness of the EPC pages. The system software

can shape these eviction trees because it doesn’t have any impact on their security.

The EWB instruction appends the encrypted version of the EPC page, along with some

fields of its EPCM, the owner’s SECS, with a MAC tag, generated by the page version.

The generated MAC, along with the metadata fields participating in the MAC generation,

is stored in a data structure called Page Crypto Metadata (PCMD). EWB writes all these

structures except for the page version in the main memory; the page version will be

inserted in an available slot in a VA page – each VA page has 512 slots for 512 pages’

version. Note that every time one node of eviction trees gets updated, all its parents up to

the root should be fetched, updated, and written back.

Although an evicted EPC page may still locate in the main memory, any address trans-

lation targeting it will face a page fault, the CPU control exits from enclave mode by

an AEX, and the operating system invokes the page fault handler. First, if the evicted

page resides in the storage system, it will be taken back to the main memory; then, the

system software issues the ELDB/ELDU instruction to fetch an EPC page back to the EPC

region and set the page’s state. ELDB/ELDU verifies the MAC tag, produced by EWB at

eviction time, and it only fetches the page if its MAC matches. ELDB sets the state of the

newly-fetched page as “blocked” – i.e., BLOCKED=1, VALID=1, while ELDU tags it as “In

Use” – i.e., BLOCKED=0, VALID=1.

32

2.2.4.8 SGX Memory Access Protection

SGX is intended to protect the content of an enclave from hardware and software

attacks. Hardware protection is performed by a component called Memory Encryption

Engine (MEE), explained in Subsection 2.2.4.9. SGX protects against software attacks by

a series of security checks. First, SGX guarantees that only the owner of each EPC page

can access the page content; this guarantees confidentiality, integrity, and freshness of EPC

pages against any software attacks.

Second, SGX needs to monitor the address translation process and checks a few security

requirements to ensure that any malicious activity is detected and halted. These security

checks mainly rely on the EPCM metadata and page table attributes.

SGX security checks a few page table attributes – it verifies the “W” (writable), “XD”

(executable), and “S” (supervisor) flags in the corresponding page table entry to ensure

that the access type and permission comply with the page table flags. If the logical proces-

sor is not in the enclave mode, any address translation is granted as long as the physical

address is outside the PRM.

If the logical processor is in the enclave mode, SGX checks to ensure that all virtual ad-

dresses in ELRANGE are translated to physical addresses inside the EPC region and virtual

addresses outside the ELRANGE range must be mapped to physical addresses outside the

EPC region. Then, SGX verifies the ownership by comparing either the ENCLAVESECS

field of the corresponding EPCM or the EID field in the SECS structure with the identifier

of the access maker.

The next step, SGX checks the BLOCKED and the PT fields in the EPCM entry to ensure

that the EPC page is not blocked, and the type is “PT-REG.” As mentioned in Table 2.1,

SGX maintains a reverse page table in the “ADDRESS” field of the page EPCM, which is

the virtual address used to access the EPC page. The SGX security check will reject any

given virtual address unmatched with this field [62]. If these security checks are met, this

address translation will be granted to add to the TLB. The P, W, and XD flags in the page

table are logically anded with the R, W, X flags in the EPCM entry.

SGX protects EPC pages from the active memory mapping attacks (Subsection 2.3.5).

When an EPC page is allocated to an enclave, the assigned virtual address is saved in the

“ADDRESS” field in the EPCM entry. Later on, at the address translation time, the CPU

33

ensures that the page table’s virtual address matches the expected virtual address stored in

the corresponding EPCM entry. SGX also defends against some passive memory mapping

attacks (Subsection 2.3.5). SGX guarantees that access permissions of the EPC pages satisfy

the owner’s purposes. To this end, SGX stores the access permissions of EPC pages in their

EPCM entries, i.e., R, W, and X in Table 2.1. When an EPC page is allocated, its access

permissions in the page table will be overridden by the corresponding values in the page’s

EPCM entry. By doing so, SGX guarantees that the permissions entirely comply with

the author’s expectations. However, SGX is vulnerable to the passive address translation

attack. We discuss SGX vulnerabilities against side-channel attacks in Subsection 3.6.

2.2.4.9 SGX Memory Encryption Engine (MEE)

As mentioned in Subsection 2.2.4.1, SGX considers the processor package boundary as

a part of the TCB, and thus the main memory and its bus are untrusted, subject to different

attacks. To provide confidentiality, integrity, and freshness for memory accesses, SGX

employs the Memory Encryption Engine (MEE) [82], which is a hardware component in the

memory controller. The MEE can protect the main memory against a random corruption,

replay attack, and cold boot attack; whereas, it does not hide memory access patterns or

requests type.

EPC Memory requests must be routed through the MEE. For a write request, MEE

encrypts a block of data, appends it with the 56-bit MAC tag, and assigns a 56-bit counter

to keep track of its version. These counters guarantee data blocks’ freshness and protect

data against a replay attack. Likewise, for the read request, MEE computes the MAC tag

and compares it with the received MAC to ensure that no unauthorized data manipulation

occurs. If these two MAC tags do not match, the data block will be dropped, and the

system will be halted [22]. If the MAC check is passed, the MEE decrypts the data block

and stores the plaintext into the cache.

In the MEE threat model, adversaries have physical access to the machine. They can

modify data blocks, write the plaintext of data blocks into any desired memory address,

and fetch any data blocks from the main memory. They are able to store a block in the cache

or evict any data blocks from the cache and send it to the main memory. Adversaries can

also observe sequences of memory requests and tamper with the memory bus. However,

34

the processor package boundary is considered as a part of the TCB. Intel® is assumed to

be trustworthy, and keys are supposed not to be forged [82].

The MEE maintains three keys, generated at booting time by the Intel® Digital Random

Number Generator (DRNG) unit [6], which are kept in the MEE registers. These three

secret keys are a 128-bit confidentiality key for encryption/decryption, a 128-bit Masking

key, and a 512-bit universal hash key for integrity verification. The MEE uses the counter-

mode based memory encryption; it splits a 512-bit data block into four 128-bit chunks and

uses the AES128 algorithm to encrypt/decrypt these four parts separately. The MEE then

concatenates these parts to create the ciphertext of the data block. To derive the crypto

pad, the MEE uses the 128-bit “confidentiality key” and a seed composed of a 33-bit cache

line address, a 2-bit index representing the data chunk location in the data block, and a

56-bit version counter. The MEE generates the ciphertext of the data chunk by Xoring the

128-bit produced pad and the corresponding data chunk – the one whose index is part of

the seed. The MEE produces the encrypted version of data after repeating this process for

four different parts of the data block and concatenating them together.

The MEE uses the Carter-Wegman MAC method [197] to produce required MAC tags.

The MEE defines a 128-bit nonce composed of 33 bits of the data block address, and a

56-bit version of the data block, which is padded with 39-bit zeros. Using this nonce, a

128-bit masking key, and the AES128 algorithm, the MEE generates a 128-bit ciphertext of

the nonce. Carter-Wegman MAC method employs the multilinear universal hash [196] in

which the MAC tag is driven by MACtag = hk1(data)⊕ fk2(nonce), where k1 is a hash key,

h is a hash function, f is an encryption function, e.g., AES, and k2 is an encryption key [82].

The MEE breaks a 512-bit data block into eight 64-bit chunks (Q0, Q1, ..., Q7), and splits

its 512-bit hash key into eight 64-bit keys (k0, k1,, k7). To generate the MAC tag, the

MEE uses MACtag = L⊕Q0.k0⊕Q1.k1⊕ ...⊕Q7.k7, where L is the 64-bit least significant

part of the ciphertext of the nonce, and all operations are in GF(264). The 64-bit produced

MAC tag will be truncated to 56 bits – 56 least significant bits are chosen – for the sake

of the space concerns [82]. To guarantee the freshness of versions, the MEE maintains an

integrity tree, which will be discussed in Subsection 4.2.4.

35

2.3 Attacks
In a modern computer system, the entire hardware and software stacks are subject to

various types of attacks. These attacks can be classified from different aspects. In terms of

the affected component, attacks can be divided into physical (or hardware) and software

attacks; from the aspect of attack’s impact on the system, attacks can be broken into passive

and active attacks. In this section, we study different types of well-known attacks. In

Chapter 3, we will discuss solutions to protect against some of these attacks. Knowledge

about various types of attack helps engineers design a secure system which is resilient

against a vast range of attacks.

2.3.1 Passive Attacks

Based on whether an attack may change the content of data, attacks can be divided into

Passive and active attacks. In a passive attack, attackers do not alter data. They intend to

obtain information about the victim, including the content of data or its footprint.

2.3.2 Active Attacks

In an active attack, data will not stay intact. The attacker tries to actively manipulate

data, change the content, order, or version of data. Active attacks can be categorized as

Spoofing, Splicing, and Replay attacks [104], [179]. In the memory-CPU model, Spoofing

Attack is when an attacker can make unauthorized access to the block of memory by

writing in the memory or injecting a read request. Splicing attack means that the contents of

two or more memory blocks are exchanged. Another type of active attack is Replay Attack,

an attack where the old version of a memory block replaces the current version.

2.3.3 Physical Attacks

Physical attack is the attack that an attacker exploits physical components of a victim

to perform an unauthorized operation. To mount physical attacks, physical access to the

victim is required. Whereas, a software attack can be mounted by executing software on

a victim machine remotely. While the former is more expensive, complicated, harder to

launch, and more challenging to detect, the latter is more common with a vast range of

variety.

Some well-known physical attacks are as follows; Port Attack is a form of attack where

36

attackers exploit the existing ports of the computer to steal its secrets. One example is

Cold boot attack in which the attacker uses the victim’s USB port to boot it from the flush

memory connected through the USB port; by doing so, the attacker can find access to the

victim’s peripherals. In one case of a cold boot attack, the attacker abuses the fact that the

retrievable data remains in the DRAM memory for a while after power cuts off to dump

the preboot DRAM data into a file.

Bus tapping attacks where attackers can tap the memory bus to sniff the memory data,

actively change, or inject memory requests. Another form of physical attack is based on a

correlation between the circuit power consumption and the computed data, which is called

Power Analysis Attack. In this attack, attackers can infer the input value by measuring the

power consumption.

2.3.4 Software Attacks

This class of attack can be performed by executing software on a victim machine.

Mounting attacks on different parts of the software stack, including the operating system,

hypervisor, and System Management Mode (SMM), falls in the software attack category. A

compromised SMM – the most privileged level of software – allows the attacker to access

all other parts of the software stack. One form of software attack is when attackers execute

a malicious application on the CPU to compromise a physical component. Although in

this form of attack, a physical component is compromised, in terms of cost and difficulty,

this form of attack resembles the software attack [62].

PCI Express Attack is a form of software attack in which an attacker can exploit the

PCIe bus to perform Direct Memory Access (DMA) to find access to the DRAM memory.

Similar to the bus tapping attack, which is extremely expensive and difficult to launch,

this method empowers an attacker to access DRAM directly at a lower cost relative to the

bus tapping attacks. DRAM Attacks can be implemented through a piece of software code.

A Rowhammer attack [80], [98] exploits the fact that by changing the content of a DRAM

cell frequently, the charge of the neighbors is also subject to change. By implementing the

Rowhammer attack, an attacker can flip the user/supervisor bit in the page table entry

(PTE) to gain kernel privilege [160].

Some processors – such as Intel® Core Duo – are augmented with digital temperature

37

sensors whose data is accessible through the MSR register. Besides, the system software

also has access to an array of performance monitoring events [147]. All this information

enables a malicious OS to launch the Performance Monitoring Side Channel attack.

Motherboards have a flash memory chip containing their firmware, which is used to

boot the machine. Although this approach makes updating the firmware more convenient,

it also makes the system more vulnerable to a particular type of attack, called Boot Firmware

Attack. An attacker tampers with the system software to inject malicious firmware and,

therefore, modify the whole system software when it is loaded during the boot process.

This attack may empower the attacker to access DRAM memory directly, similar to what

might be obtained by the DRAM bus tapping at a lower cost and much more moderate

difficulty.

2.3.5 Address Translation Attack

When an untrusted system software is in charge of address translation, managing the

page table, and the page allocation process, a series of attacks is imminent. These attacks

are known as the Address translation Attack. The system software requires to swap a victim

page and replace it with a new one based on its replacement policy to perform the page

allocation process. To this end, the system software relies on the accessed (A) and dirty

(D) fields of the page table entries. By monitoring this information, applications’ memory

access patterns can be revealed to the untrusted system software. Since the attacker does

not alter the content of pages, it can be known as a passive attack. Xu et al. [199] introduce a

new class of attack, called Controlled-channel attacks, in which the operating system exploits

the memory access pattern of an application to break the confidentiality of an SGX-enabled

processor and access the plain-text version of encrypted images.

In another class of the address translation attack, the malicious system software tries

to modify the page table to missteer an application to access the wrong page. Note in this

attack, the attacker does not change the content of data directly; however, due to its impact

on data, it is known as an active attack. Let us consider three scenarios, which cause active

address translation attacks.

In the first scenario, a malicious system software modifies the page table such that

virtual addresses are translated to wrong DRAM pages; this attack can fool the application

38

to access its data wrongly, which damages it significantly. In the second scenario, the

system software tries to implement an active address translation attack without forging

the page table. The malicious operating system can swap two pages into the storage

system, exchange the contents, and swap those pages back into the DRAM memory. The

contents of pages when they are swapped back are exchanged without altering the page

table. Although the result of this active attack is as harmful as the first one, it is more

challenging to detect this attack.

In the third scenario, a malicious system software does not invalidate the TLB entry of

an evicted page, which leads to a security issue. Two pages are evicted from the DRAM

memory while their corresponding TLB entries are kept valid. Then, when these pages are

swapped back to the memory their locations in the main memory are exchanged, and the

page table is updated accordingly; however, since the corresponding TLB entries did not

get invalidated, the TLB entries do not get updated correctly and do not contain the last

version of data. In the next address translation, there is a hit for these pages in the TLB,

and the application will be misled to access the wrong page. The third scenario is harder

to detect with the same result as the two first ones.

Section 2.2.4 explains that Intel® SGX can address all these active address translation

attacks, while it is vulnerable to the passive one.

2.3.6 Cache Attacks

are one of the most potent side-channel and software attacks. In this attack, the attacker

exploits the relation between memory access time and its location. In this class of attack,

attackers can not directly access the victim’s secret; however, they can obtain the victim’s

memory access pattern by measuring the access time.

Prime+Probe [111] is a cache attack technique that an attacker fills the cache with its

data, the prime part, and then lets a victim access the cache. After the victim filled the

cache with its data, the attacker again accesses all its data blocks. In this step, the attacker

observes a longer latency to access one of its data block – this block got evicted because

of the victim’s memory access. By implementing this attack, the attacker can infer which

address is touched by the victim.

39

Flush+Reload [201] is another way of mounting a cache attack that exploits shared pages

between the victim and attacker to gain the victim’s memory access pattern. In this sce-

nario, the attacker flushes all shared data blocks from the cache. Then, it lets the victim

access one of the shared blocks to store back into the cache. Finally, the attacker accesses

all the shared blocks. The attacker observes lower latency in accessing the block fetched

back by the victim compared with other blocks; this timing difference enables him to obtain

the victim’s memory footprint.

Flush+Flush [81], similar to Flush+Reload, this method also uses the shared data blocks

between the victim and attacker to implement a cache attack. This method relies on the fact

that the execution time of the clflush instruction depends on whether or not the target

resides in the cache. In case of a cache hit, the block needs to be evicted from different

cache hierarchy levels, whereas clflush aborts quickly when flushing a missing block.

To exploit this fact, the attacker flushes shared data blocks from the cache and lets the

victim make access. Then, the attacker executes the clflush instruction on the same

blocks for the second time, while measuring the execution time of the clflush instruc-

tion. Based on the measured time, the attacker can obtain the address victim had touched

previously.

In contrast to other cache attack methods, this technique does not make any memory

accesses, and hence its impact on the cache is minimum – it does not make any cache miss

and makes only a few cache hits. Compared with Flush+Reload, this technique is less

accurate, but faster with higher covert channel bandwidth.

2.3.7 DRAM Timing Side-Channel Attack

Every shared resource is prone to side-channel attacks. Similar to the cache hierarchy,

there is a dependency between the DRAM memory access time and the location the access

targets. Modern DRAM memory systems are organized in multiple channels, DIMMs,

Ranks, Banks, and each bank contains multiple rows. The timing parameters in DRAM

memory dictate different memory access times when accesses target various memory or-

ganizations’ locations. An attacker can exploit this time difference to establish a covert

channel.

DRAMA [144] exploits the DRAM row buffer, which is a shared resource in the mul-

40

tiprocessor systems to establish a covert channel. DRAMA uses the timing difference

between memory access to an open row buffer, and a closed one to develop a covert

channel. DRAMA also exerts this timing side-channel to obtain the victim’s memory

access pattern. To build a covet channel, the sender and receiver – both are malicious –

make memory accesses on the same bank. The receiver keeps accessing while measuring

the access time. To send one bit “one,” the sender accesses the same row in the same bank

where the receiver is accessing. Since the receiver’s access leads to a row buffer hit – due

to the sender’s access, the receiver observes lower memory access time, inferring it as one

bit “one.” If the sender accesses a different row on the same bank with the receiver, then a

row conflict occurs, increasing the memory access time experienced by the receiver, which

can be inferred as one bit “zero.”

Using different memory access latency caused by row conflicts, DRAMA [144] also

performs a side-channel attack. To employ the timing leakage to infer whether or not the

victim accesses a particular address (say α), the attacker accesses two memory locations;

one location in a same row of the same bank with α, say β, and another one mapped to the

different row of the same bank with the victim’s address, say γ. Then the attacker makes a

row conflict by accessing address γ and waiting for the victim to make access. Finally, the

attacker accesses address β and measures the access time. If the victim accesses address α,

then there is a row buffer hit as the attacker accesses address β, and the attacker observes

a lower latency in its measurement. Otherwise, there is a row conflict, which leads to a

higher latency experienced by the attacker. therefore the attacker can infer the victim’s

footprint.

Since DRAM memory is a shared resource in multiprocessor systems – even if two

threads do not access a shared page on the DRAM memory – one thread’s accesses can

affect the memory access time observed by another thread when these two threads access

memory concurrently [191]. Two malicious threads can establish another covert channel

by exerting this timing effect. To send one bit “one,” the sender requires to access mem-

ory more frequently, which leads to an increase in memory access time observed by the

receiver. Similarly, if the sender accesses memory less frequently, it occupies less memory

bandwidth; therefore, the receiver can experience a lower memory access latency.

Wang et al. [191] and Shafiee et al. [162] try to eliminate this information leakage by

41

forcing the applications to make memory access at a constant rate. Camouflage [205] pro-

poses a flexible approach to shape the memory requests; this proposal provides a trade-off

between performance and security to allow designers to choose the amount of informa-

tion, which is preserved and the performance overhead which the system should tolerate.

Ferraiuolo et al. [71] consider a system composed of secure and nonsecure applications in

which nonsecure applications do not require timing-channel protection. This assumption

does meet reality and allow the memory controller to allocate the memory bandwidth

more efficiently, reducing the overhead of timing-channel protection significantly. Using

a lattice model, this work proposes a new scheduling algorithm that meets all security

requirements of all entities in the system at the lower performance overhead.

2.3.8 DRAM Access Pattern Attack

Memory access pattern is a source of critical information whose leak can reveal the

identity of a party [114]. Some studies [48], [103], [114], [180] have performed experiments

where revealing the applications’ footprint empowers the attacker to infer the secrets.

Genome sequencing [48] and variant calling [180] are two famous applications in the

genomic analysis, which require to access a hash table containing a reference genome.

Brasser et al. [48] and Taassori et al. [180] have shown that if an attacker can observe the

memory access pattern of these applications, the customers’ genome will be revealed to

the attacker and thus jeopardizing customers’ privacy.

Membuster [103] demonstrates that an SGX-based system is also vulnerable to this class

of attack. Membuster runs two applications – Hunspell and Memcached – in enclaves to

show that observing the memory access pattern can reveal the enclave’s secret. Hunspell

uses a hash table to do spell checking. If an attacker can monitor this application’s memory

footprint, he can obtain the hash table entries accessed by Hunspell, and therefore infer

the word, which is being looked up. In another experiment, Membuster executes Mem-

chached as another victim in which secret is the data being searched in the Memcached

cache. Similar to the first tool, there is a hash table in this database that the accessed entries

address can reveal the secret.

To address this problem, Ascend [72] and Phantom [114] employ an Oblivious RAM

(ORAM) infrastructure to hide the footprint of applications. ZeroTrace [154] implements

42

ORAM for enclaves in an SGX-based system to augment SGX with obliviousness. Oblix [127]

uses multiple oblivious access techniques along with an SGX-based platform to design an

efficient oblivious search index.

2.3.9 Denial of Service Attack (DoS)

A DoS attack occurs when a legitimate user can not use a resource because of unavail-

ability due to the malicious activity of an untrusted party [11]. Moscibroda et al. [129]

demonstrate that it is feasible to mount a DoS attack on multicore processors. Since current

memory controllers are not informed of the owner of requests, one thread can abuse

unfairness in memory scheduling policies and hog the entire memory bandwidth, posing

a long memory latency to other threads. Distributed DoS Attacks (DDoS) occur when a node

in a network maliciously generates a flood of requests to disrupt the normal traffic.

2.3.10 Man-in-the-Middle Attack

In this class of attacks, the attacker intercepts the communication between two or mul-

tiple trusted parties to interfere in their communication. The attacker can just sniff and not

alter the data – which is a passive attack – or inject, steal, or forge transmitted data – which

is an active attack [179].

2.3.11 Iago Attack

is a class of attacks that an untrusted operating system compromises an isolated and

protected application by manipulating system call returns. For example, if an application

uses the getpid() and time() system calls to obtain a seed nonce to generate a new

random number – this scenario happens when in the SSL protocol, the server and client

establish shared cryptographic secrets based on a public nonce. A malicious OS can im-

plement a replay attack by replying to these system calls with compromised values [55].

CHAPTER 3

RELATED WORK

In this chapter, we provide a brief survey on the studies mitigating the large overhead

of integrity verification algorithms (Section 3.1). We briefly look at a large number of stud-

ies which try to address DRAM memory reliability (Section 3.2) and attempt to provide

both reliability and integrity efficiently (Section 3.3). Then, we continue with the impact

of smart memories in secure systems (Section 3.4). In Subsection 2.2.4, we elaborated on

different aspects of Intel® SGX. In this chapter, we discuss SGX performance improvement

(Section 3.5) and SGX information leakage vulnerabilities (Section 3.6).

3.1 Memory Integrity Verification
One of the applications of hash functions is to generate a hash digest to detect any

unauthorized modification on data. To ensure that only authorized parties can generate

hash tags, they are bound to a cryptographic key; the hash function whose input is a

data block along with a key is called Message Authentication code (MAC) function [104].

In memory systems, to assure that the MAC for different blocks in different addresses

cannot be exchanged MAC function receives the memory address as another input – this

ensures that splicing attacks are detected. Moreover, to protect against a replay attack, the

MAC value should be bound to a version – or a counter [149] containing the data block’s

version. Therefore, MAC tag can be derived by MAC tag = MAC(M, Addr, count, Key),

where M is a data block, Addr is its memory address, count is its version, and Key is the

cryptographic key.

A hash tree is required to protect against a replay attack. A hash tree is a data structure

where leaves are the hash values for data blocks, and each node of the tree is the hash value

of its children. Therefore, the intermediate nodes in the hash tree also contain hash values.

The root is a representative of the whole data stored in the secure memory – located in

the CPU package. The hash tree was initially proposed to check signatures in public-key

44

cryptography systems; the tree is called Merkle Tree [123]. Then, Gassend et al. [75] employ

this tree to protect against replay attacks.

For data integrity verification, the corresponding hash values from the leaf up to the

root in the Merkle tree are required. To write a memory block, we need to fetch all

corresponding hash values, update them, and write them back to the memory. The Merkle

tree has a large bandwidth and capacity overhead, so several studies have been conducted

to mitigate its overheads [68], [75], [94], [149], [176].

Gassend et al. [75] propose a cached tree in which the hash values are cached on the

CPU. In this scenario, to verify a data block’s integrity, we just need to fetch hash values

from the leaf up to the node of the tree that is resident in the cache. MAPS [106] analyzes

different caching strategies for integrity metadata. MAPS observes that caching all types

of metadata increases cache efficiency; this work claims that in the metadata cache, reuse

distances are either long or short and always highly related to the type of metadata. MAPS

makes an observation that traditional eviction policies are not useful for a metadata cache

containing different metadata types.

Champagne et al. [52] reduce the size of the hash tree by excluding unused pages.

Szefer et al. [94] employ a skewed tree that can prioritize the frequently accessed locations

of memory by putting them in a leaf with a shorter path to the root. Suh et al. [176]

introduce “Log Hash” that checks the integrity for a sequence of accesses, to reduce the

performance overhead of this security property. In this technique, the CPU maintains read

and write logs and updates them for future use. To update these logs efficiently, Log Hash

uses incremental multiset hash functions [60].

A few studies have designed integrity trees that can be updated and authenticated

in parallel [68], [83]. Parallelizable Authentication Tree (PAT) [83] and Tamper-Evident

Counter Tree (TEC-tree) [68] are two examples that update and authenticate data in paral-

lel but with more capacity overhead than Merkle Tree.

In Chapters 4 and 5, we will discuss the state-of-the-art integrity verification techniques

– Merkle tree [75], [123] (Subsection 4.2.2), Bonsai Merkle Tree [149] (Subsection 4.2.3), MEE

integrity tree [82] (Subsection 4.2.4), and Morphable Counters [151] (Subsection 5.2.2).

In the database literature, there are handful techniques to provide integrity verification

for outsourced sensitive database systems [65], [118], [134], [142], [166]. Materla et al. [118]

45

and Pang et al. [142] employ authenticated data structures to assure clients of the authen-

ticity and integrity of query replies. The drawback of these techniques is their significant

bandwidth and capacity overheads. To address this issue, a group of work [131], [134] uses

the signature aggregation mechanism to guarantee the correctness [131] or both correct-

ness and completeness of query answers [134]. When multiple parties sign a document,

signature chaining preserves the orders of signatures, guarantees the liability of signers,

integrity, and authenticity of the document [35], [155], [156].

Blockchain is deployed to provide integrity guarantees in a distributed database [64],

[74], [178]. Each block in a blockchain maintains the hash value of its previous block

to create a linkage between every two consecutive blocks and a Merkle tree of a bunch

of transactions to verify modifications. This structure enables blocks to validate each

transaction to provide integrity supports [64]. Using a blockchain-based platform, a group

of work [39], [46], [64] proposes low overhead solutions to manage healthcare databases

and patients’ sensitive information.

3.2 Memory Reliability
There are two possibilities when there is a mismatch between what the processor reads

and what was last written. First, a failure in the memory system that corrupts the data –

addressed by “Reliability solutions”; second, a malicious activity intentionally alters the

data – detected and protected by “Security solutions” . Although the impact on the data

is similar, when there is a combination of smartness and maliciousness behind the change,

it requires a smarter workaround. Another similarity is that protection against both issues

imposes a significant performance, capacity, and energy overhead.

To address the capacity overhead, Frugal ECC [97] and COP [141] compress a data

block at cache granularity to store ECC metadata along with the data block. While both

techniques provide ECC protection for a non-ECC DIMM, Frugal ECC can provide chipkill

protection. Sharing one block of ECC metadata among multiple data blocks is another way

to reduce the capacity overhead of reliability mechanisms. ECC-parity [92] shares the ECC

bits among different channels to reduce the power and capacity overhead of a reliable

memory system. Multi-ECC [91] provides chipkill for an ECC DIMM by leveraging a

shared checksum.

46

There are several new challenges to provide reliability for 3D DRAM memories; this

new DRAM family requires a new failure model because patterns of failure in 3D stacked

chips are different compared with that in the traditional DRAM memory – e.g., due to the

vertical structure, the outer dies can shield the inner ones from alpha particles, leading to

a heterogeneous error rate across different layers [195]. Moreover, there is a new compo-

nent, Through Silicon Via (TSV), in the stacked DRAM whose potential failure should be

considered. It is well-known that the error rate in 3D DRAM memories is higher than that

in 2D memory systems because of their higher density. Multiple studies [57], [90], [117],

[133] try to provide reliability for the stacked memories at an affordable cost.

Citadel [133] provides reliability for 3D stacked memories when a large granularity

failure occurs – which is commonplace in this memory family. Protecting against large

granularity failures – like what we have in ChipKill – requires to stripe a data block

in different channels, ranks, and banks; this kind of address mapping requires multiple

banks opening to fetch one single data block, which is not energy efficient. Citadel enables

the memory system to store a data block in one bank while protecting against a large

granularity failure. To that end, this technique swaps the TSVs when one of them is

faulty; furthermore, it provides 3-dimensional parity in three spatial dimensions to handle

internal DRAM die failures. Finally, this technique implements dynamic sparing for faulty

cache lines; when a 3-dimensional parity code restores a faulty data block, its row is

remapped to a new spare location.

Similar to Citadel, RATT-ECC [57] employs a two-tiered error-correction technique to

provide reliability for a 3D stacked memory. Using Reed-Solomon code in the first tier,

RATT-ECC can detect large granularity failures and correct small granularity failures –

such as TSV failures or single-bit errors. As a Tier-2 code, this technique also has a 2D

parity code across banks and channels to correct errors detected by the first tier code.

Unlike Citadel, RATT-ECC increases the refresh interval, thus introducing some additional

errors, which can be corrected by its low latency tier-1 code. Hence, this method reduces

the refresh energy as well.

In a similar way to Citadel and RATT-ECC, Jeon et al. [90] exploit a two-tiered error-

correction method to protect 3D stacked memory from various types of failures. This

technique uses SSC-DSD codes, CRC-8 technique, as its tier-1 code, which can correct

47

single-bit, column, and TSV errors; this technique employs a RAID5-like parity coding

across channels to correct the multibit errors, which are not covered by the first tier error

code. Similar to Citadel and RATT-ECC, for every read request, this technique makes

two memory accesses. However, for a write request and error correction, the bandwidth

overhead of this technique is lower than two other methods.

None of these proposals mentioned above – Citadel, RATT-ECC, and [90] – can protect

against die or channel failures. Moreover, all prior techniques assume that there is a single

unified memory controller with all knowledge of the entire HBM capacity to compute and

store parity bits. However, due to the point that every HBM channel has its own memory

controller, this assumption is not close to reality.

To address these issues, Jenga [117] proposes a solution to reduce the memory band-

width overhead at a higher capacity overhead. In all prior methods, the second tier code

is the Xor of multiple data blocks, which, along with those data blocks, is stored across

different channels. This strategy increases the bandwidth overhead of error correction and

write requests significantly. Jenga mitigates this issue by adding redundancy at the finer

granularity; this reduces the bandwidth overhead at a higher capacity cost. Jenga splits a

72 Byte data block into two 36 Byte halves, computes their bitwise Xor, and spreads these

three 36Byte subblocks of data in different channels and different dies. Therefore, Jenga

achieves a lower bandwidth overhead with an affordable additional capacity overhead

compared with prior works.

Two-tiered error protection [116], [186], [203] separates the correction and detection

mechanisms to improve energy and capacity of reliability techniques. LOT-ECC [186] uses

parity and RAID-like approaches to provide chipkill protection at a lower cost. Virtualized

ECC (VECC) [203] uses a tier-1 code to detect different types of failure, but it cannot correct

them. Then in a rare case that an error gets detected by the tier-1 code, VECC employs the

second tier code to correct it. Since the tier-1 error code is required for every memory

access, it is stored along with data in the same rank, in the ECC chip, i.e., the 9th chip in

the ECC DIMM. This technique saves the tier-2 error code separately in a page allocated

by the operating system. Although implementing VECC on an ECC DIMM boosts its

performance, it is not required.

Like VECC, Odd-ECC [116] exploits a two-level error code mechanism to define differ-

48

ent levels of protection for pages; these levels can be determined dynamically on demand

for each page stored in the memory. Different levels of fault tolerance can be defined at

the page granularity or the granularity of a region – e.g., standard regions such as the

stack, heap, and global. Odd-ECC proposes a DRAM placement where ECCs are stored in

separate pages, invisible to the application, and allocated by the OS.

This technique defines three levels of protection: “Tier zero (T0)”, i.e., no protection,

where no ECC page is allocated. The second level is “Tier one (T1)”, where error detection

and correction are supported for a single-bit error, and only error detection is provided for

multibit errors; in this level, for every 56 pages, eight ECC pages are allocated to store tier-1

error codes. Finally, the full protected level is “Tier two (T2)” to correct multibit errors. In

this level, every 49 data pages have seven pages containing the tier-2 code and eight pages

allocated for the tier-1 code.

Kim et al. [97] present and evaluate a family of the single-tier error correction and

detection codes for DRAM memory, called Bamboo ECC. Bamboo ECC can protect against

various types of error on DRAM pins, providing up to the chipkill level. Bamboo ECC can

correct more pin and chip errors compared with the current single-tier ECC approaches. By

providing better detection capabilities, Bamboo ECC can reduce the silent data corruption

(SDC) rate. This family delivers a fine-grained redundancy to achieve chipkill protection

compared with prior techniques – 8b granularity compared with 8B in current chipkill

techniques.

Bamboo ECC can improve memory bandwidth and storage overhead to protect all

required types of failures – and chipkill protection – compared with prior techniques. One

key advantage of Bamboo ECC is that it can provide the same protection level with fewer

additional pins than previous techniques. For example, in a DIMM with 16 x4 DRAM

chips, Bamboo ECC can correct one pin failure with two extra pins, while a SEC-DED

code requires eight extra pins (2 DRAM x4 chips) to provide the same level of protection

– 3.1% vs. 12.5% storage and pin overhead. However, in the case of single pin correction

(SPC), Bamboo ECC is not compatible with off the shelf DRAM chips – they are either x4 or

x8. This weakness is not applicable when this family provides the single-pin-correcting-

and-triple-pin-detecting (SPC-TPD) or double-pin-correcting (DPC) techniques. To that

end, one extra x4 DRAM chip is enough to provide four 8-bit redundant symbols, aug-

49

menting a DIMM with the SPC-TPD or DPC capability – one extra chip compared with

two extra chips in the SEC-DED method. Bamboo ECC can also prepare the Quadruple-

pin-correcting (QPC) capability or a chipkill protection with two additional x4 chips in a

16-chip DIMM.

While DRAM technology scales down to the smaller and more dense families, DRAM

chips are becoming more error-prone. To address this issue, manufacturers have started

augmenting DRAM chips with internal error correction codes, called On-Die ECC. XED [132]

and DUO [77] try to exploit this on-chip redundancy to reduce the overhead of error pro-

tection techniques. XED makes the on-die ECC error correction available to the memory

controller for error detection; using a parity-based error correction code, XED provides an

efficient chipkill protection for an ECC-DIMM with nine x8 DRAM chips.

Contrary to XED, DUO tries to bypass the on-die ECC module and exploit the on-chip

redundancy to strengthen rank-level ECC protection. DUO uses the Reed-Solomon code

(RS) to protect a 64B data block – for example, for an ECC-DIMM with 18 x4-DRAM chips,

DUO uses RS(72,64) to provide 12 check symbols for a data block. DUO exploits the on-

chip redundancy to exert the Reed-Solomon code efficiently. Implementing a plain RS code

cannot provide the single-device-data-correcting (SDDC). However, the key point is that if

the failure device is spotted correctly, all its failures can be corrected using a burst erasure

decoding technique [89]. Regarding this point, to spot the faulty chip, DUO does a brute

force decoding search. In each trial of this search, DUO assumes that a different device is

failed, applying the burst erasure decoding, and checking with RS code to spot the faulty

chip. DUO proposes a new usage for the on-chip redundancy to mitigate its overfetching

issue – this issue is due to the mismatch between the on-chip ECC codeword length and

the memory bus width – thus reducing consumed energy.

3.3 Unified Integrity and Reliability
Due to the noticeable resemblance between security and reliability, proposing a solu-

tion with a combination of security and reliability metadata can mitigate the significant

overall overhead of both effectively. Synergy [152] and IVEC [85] try to use integrity meta-

data to provide reliability, while Osiris [202] exploits the reliability metadata to provide

integrity verification, and hence these techniques reduce the overall overhead of reliabil-

50

ity and security. In addition to Synergy (Subsection 5.2.3), IVEC [85] offers a combined

solution for both integrity and chipkill. Unlike Synergy that exploits an ECC DIMM,

IVEC supports chipkill for non-ECC DIMMs. IVEC borrows the idea of virtualized ECC

(VECC) [203] to provide chipkill for non-ECC DIMMs; IVEC employs the MAC tag as a

detection code, while the correction process is performed by parity bits.

Encryption counters in architectures using counter-mode encryption [149] must be cor-

rectly restored after a crash to allow the system to recover secure data stored in nonvolatile

memories. The maintenance cost of these counters so that their persistence is guaranteed

after the crash is significant. Osiris [202] exploits the error correction codes (ECCs) to

accelerate the recovery process of these encryption counters. This technique claims that

if plain-text data appended with its ECC is encrypted, ECC bits provide a sanity check

for encryption counters. When a crash happens, first, Osiris recovers the last version of

counters using ECC bits; then, it creates a Merkle tree and compares the computed root

with the version that is stored in the CPU.

3.4 Smart Memories for Security
A memory system augmented with computational capabilities – called smart memory

– provides security primitives more efficiently than a conventional one. In this section, we

explore studies that implement different security features by adding computation compo-

nents in the memory side.

Two works, InvisiMem [164] and ObfusMem [38], show how memory devices with

logic capabilities can lower the overheads for both integrity verification and oblivious

RAM. Since in DRAM stacked memories, such as HBM or HMC, DRAM dies are excluded

from the TCB, the data still has to be appended with a hash tag and encrypted to protect

against any data manipulations – such as Row-hammer attacks or cold boot attacks. How-

ever, providing data freshness does not require an integrity tree. Indeed, every data block

does not need a separate counter. Instead, to guarantee the freshness of data, the processor

and memory system maintain a global counter or timestamp. When writing a block, the

processor generates a MAC tag for the encrypted data using the global counter and a hash

algorithm, e.g., HMAC. In the memory side, the MAC tag will be regenerated, and if it

matches, the data, its MAC, and the timestamp will be stored in the memory.

51

Obliviousness can be provided by smart memories very efficiently. The processor

encrypts the data, address, and type of request to provide obliviousness; memory also

encrypts data and sends it back to the processor in response to a read request to ensure that

there are no similarities between a read and prior write requests. Note that read responses

and write requests carry data, while read requests and write responses do not. Therefore,

by revealing the length of requests/responses, attackers can infer the type of requests or

responses. InvisiMem and Obfusmem equalize the shorter ones by adding a dummy data

field to address this issue, which causes a trivial performance reduction.

Akin to ORAM, the mechanism mentioned above cannot hide the number of mem-

ory accesses and access time. Regarding the location, the access time may vary, which

leaks applications’ memory access patterns. To address this issue, InvisiMem dictates

both memory and CPU to send packets at a constant rate. If there is no packet to send

for a time slot, one dummy block will is sent. Note that conventional memory systems

cannot send packets at a constant rate. In these memory systems, banks’ states and several

DRAM timing parameters dictated by the memory controller in the CPU side determine

the response time.

Although exploiting a smart memory system is highly fascinating because of their low

bandwidth overhead, there are multiple issues in this type of memory: first, we expand

the TCB to embrace the memory logic layer. It is very challenging to include the memory

system in the attestation process. Second, smart memories – e.g., HMCs or HBM with a

logic layer – are still expensive with a limited capacity. Therefore, to replace all commodity

DRAM chips with this type of memory to achieve the same memory capacity, we have to

use a farm of smart memory packages connected in a grid network; this configuration

leads to a tremendously high cost and area. Moreover, the connection between memory

packages in the grid is not trusted, requiring some protection guarantees, which increases

the overhead.

As an intermediate solution, Secure-DIMM [161] proposes a method to move some

ORAM functionalities to the memory side to reduce the overhead of obliviousness signif-

icantly. Secure-DIMM is built upon commodity DIMM augmented with a secure buffer

to do computation. In this technique, instead of inserting an ORAM controller in the

CPU, which poses a significant bandwidth overhead on the memory bus, the ORAM con-

52

troller is outsourced to the DIMM. Therefore, the memory channel between DIMM and the

processor does not observe any extra bandwidth pressure to provide ORAM primitives.

The packets are encrypted by a global counter similar to what Invisimem and Obfusmem

propose. Note that accessing different DIMMs and channels can reveal the memory access

pattern; to eliminate this leakage, Secure-DIMM applies a traffic shaping strategy, which

obfuscates the accesses to different DIMMs, channels, and ranks at a trivial performance

cost. In Secure-DIMM, the overhead of integrity verification and freshness is similar to a

conventional DIMM.

3.5 SGX Performance Enhancements
Since SGX imposes significant overheads on a secure system, a couple of studies at-

tempt to alleviate these substantial overheads. In this section, we discuss some works

trying to improve efficiency of an SGX-based system.

The transition between the EPC and non-EPC regions is the major overhead of SGX [36].

A significant number of studies reduce this dominant part of the SGX overhead [36],

[140], [182], [183], [198]. SCONE [36] observes that in SGX, an enclave can access the

non-EPC region with relatively low overhead compared with an EPC access. To leverage

this observation, SCONE tries to run system calls outside the EPC. To that end, SCONE

defines an asynchronous system call interface with shared memory to pass the system call

arguments and return values. This shared memory also contains a variable to signal that

arguments are ready, and the system call should execute. Another thread outside the EPC

executes system calls, and thus the thread inside the enclave does not have to exit. Note

SCONE itself is responsible for providing confidentiality and integrity protection for the

data transferred from outside the EPC.

To further reduce the number of enclave transitions and decrease their overheads,

SCONE also implements an internal threading process. Multiple application threads (say

M) are assigned to several OS threads (say N). When a thread is waiting for a system

call, another thread gets woken up and executes until the return values of the system call

become available for the first thread. Like SCONE, Eleos [198] proposes a mechanism

to handle page faults without exiting from enclaves, thus reducing the overhead of page

faults in SGX. This technique allocates two regions, one in the EPC, called EPC++, and

53

another one in the non-EPC region, named as the backing store. Eleos maintains the page

tables for these two regions. When a requested page does not reside in the EPC++, a page

fault happens, but this page fault can be handled in the software level by moving the pages

from the backing store to the EPC++; this page fault handler does not require enclave to

exit.

Weisse et al. [198] break down the overall overhead of SGX into three parts: first,

secure context switches, second, parameters and data transfer between application – which

creates an enclave – and its enclave, and finally, memory access overhead – MEE cost to

guarantee security primitives [82]. HotCall [198], like SCONE, provides an asynchronous

system call interface for an SGX-based system to reduce the overhead of transition be-

tween enclave and non-enclave. To avoid context switching, HotCall uses an un-encrypted

shared memory to communicate between a requester, the party that requests a call or an

enclave, and a responder, the untrusted code which is waiting for a call request. When

issuing a system call, the enclave copies the system call arguments, and the ID of the

required system call into the shared memory and sets a signal to indicate that the requests

are ready to execute. The responder continuously monitors the shared memory to execute

requested system calls.

SGXKernel [183] implements asynchronous system calls at the user level, while prior

work, e.g., SCONE, needs to load a special kernel to do so. In contrast to Graphene-

SGX [185] conclusion and how Haven [44] deals with a Windows-based library OS, Tian et

al. [183] observe that for library OSes running inside an enclave two requirements should

be met; first, it is necessary to reduce the number of enclave transitions – a transition

happens when an enclave calls an untrusted function outside the enclave. Second, we aim

to have a small library OS to fit it into the EPC region. SGXKernel proposes a switch-

less architecture with two halves: one secure half residing in the enclave and the second

one located outside the enclave. These two halves asynchronously communicate through

shared memory. Moreover, similar to SCONE, this technique exploits an in-enclave multi-

threading technique.

Prior works [36], [140], [183], [198] implement an asynchronous system call in which

one sender thread sends a request through an untrusted shared buffer to a server thread,

which executes system calls asynchronously. Although this solution seems entirely prac-

54

tical, Tian et al. [182] argue that it is not always a wise choice to allocate a separate core

to reduce the number of enclave transitions. Tian et al. evaluate the performance im-

provement of these switch-less techniques for different benchmarks and conclude that

switch-less calls can improve performance only if Ecall/Ocall functions are short and

frequent. In other words, switch-less calls can achieve a significant improvement just for

heavy workloads, and its improvement shrinks rapidly when the workloads’ intensity

decreases. Tian et al. propose a mathematical model characterizing a switch-less call’s

performance improvement, and hence, they define an efficiency factor that indicates this

technique’s effectiveness.

3.6 Side-Channel Attacks in SGX
SGX threat model does not cover any types of information leakage sources; therefore,

an SGX-based system is vulnerable to a vast range of side-channel and covert attacks. In

this section, we explore different side-channel attacks implemented over an SGX-based

system and discuss the proposed solutions to mitigate them.

Xu et al. [199] demonstrate that a malicious OS can observe the memory access pattern

of an application running in an enclave by tracking its page fault addresses. This attack is

called controlled channel attack or pigeonhole attack [168]. Xu et al. [199] perform this attack

on a JPEG application running in an SGX-based system to obtain the encrypted images.

The compromised OS forces a sensitive application to encounter a page fault after every

memory access by swapping out the touched pages. Therefore, the OS can observe the

application’s page-level memory access pattern, revealing the program’s flow.

Sanctum [63] proposes a hardware extension for SGX to mitigate this issue. The

operating system in Sanctum allocates a block of physical addresses to each enclave and

allows the enclave to maintain its page table. Therefore, the OS does not have the visibility

inside the enclave’s page table, which hides the enclave memory accesses. This approach

cannot support “demand paging.” Hence, memory is overcommitted to the enclaves. If

Sanctum intends to support demand paging, It has to use an Oblivious Ram (ORAM)

technique to obfuscate page accesses, which imposes a significant overhead on system

performance.

Similar to Sanctum, Invisipage [32] is a hardware solution that supports both obliv-

55

iousness along with demand paging for an SGX-based system. In this technique, the

page management process is handled by the collaboration between the operating system

and the enclave. The operating system is still in charge of page allocation; however, the

enclave manages its own page table. Since the untrusted operating system performs page

allocation, the page level access pattern can be revealed to the OS, when pages move

between the EPC and non-EPC regions. To eliminate this leak, Invisipage exploits an

ORAM based technique, named OPAM, to obfuscate the page accesses. This technique

applies several optimizations to reduce the bandwidth overhead of the OPAM. To reduce

the number of OPAM accesses, Invisipage defines a new region, called EPC-lite, where the

integrity and confidentiality are supported at page granularity, like the non-EPC region.

However, its page information is kept in the enclave page table, similar to the EPC region.

The enclave has information of EPC-lite pages in its page table. Therefore, the enclave does

not require to issue a page fault to access EPC-lite pages, and thus page transition between

the EPC and EPC-lite is invisible to the OS and does not require obliviousness.

Shinde et al. [168] propose a compiler-based solution to eliminate leakage through page

faults. This work tries to guarantee that applications’ page-level access patterns cannot

reveal the programs’ execution flow. Shinde et al. propose an LLVM instrumentation

technique to make page accesses utterly irrespective of the input secret’s value. Therefore,

the page-level access pattern does not contain any sensitive information. This proposal

designs an efficient compiler to detect the sensitive branches in the application. Then, it

makes the execution trees entirely balanced for these branches by adding some dummy

execution blocks in the tree; this technique decouples the tree’s fetch and execution steps.

In the fetch step, all execution blocks will be fetched in every level of the tree, but only the

required one will execute. A naive implementation of this technique imposes a consider-

able performance overhead (up to 4000×). The authors introduce some developer-assist

optimizations to reduce the overhead, which requires a significant amount of manual effort

by programmers.

Sinha et al. [169] implement an efficient compiler that provides page access obliv-

iousness at a low overhead. The proposed compiler finds all of the secret-dependent

conditional branches, and adds some dummy accesses to make read and write operations

in both paths, if the branch is taken or not taken, completely identical. This technique also

56

provides a verifier to certify the program’s obliviousness. The verifier checks whether or

not the application’s execution with different inputs can produce different page accesses.

If it does so, the code does not satisfy the obliviousness requirements.

The verifier removes the compiler from the TCB, which makes the TCB significantly

smaller than that in prior work [168]. Although both techniques, ([168] and [169]), use

the same approach to address the page fault attack, the former poses more bandwidth

overhead than the latter. Moreover, the former’s optimizations to reduce the bandwidth

overhead rely on the developers, whereas the latter’s can be applied automatically.

Some studies [58], [167] propose a solution for the page fault attack based on monitor-

ing the OS and enclaves to recognize any suspicious activities from an untrusted OS or

any unusual situation for enclaves to halt the system. T-SGX [167] employs Intel® Transac-

tional Synchronization Extensions (TSX), which can implement a hardware transactional

memory to protect the enclave against page fault attacks. T-SGX leverages the point that

any exception occurring inside the TSX will not be directly delivered to the untrusted OS.

Instead, the processor transfers control to the transaction’s abort handler.

T-SGX partitions the code into multiple execution blocks, each of which is wrapped

into a transaction, protected by a TSX. T-SGX places the code between transactions along

with the transaction abort code on one page, which is called “Springboard.” When an

exception happens, control will transfer to the abort handler, and it determines whether the

transaction should be restarted or terminates the enclave in case that the exception seems

abnormal. The point is that only exceptions on Springboard are visible to the untrusted

OS; the OS only can see the abort handler’s address as a point where exception happens,

and the real address where the exception occurred is hidden.

Exploiting Intel® Transactional Synchronization Extensions (TSX), similar to T-SGX,

Deja Vu [58] empowers the enclave to detect that page fault attacks occur to terminate

itself. Since SGX does not inform enclaves that a page fault, interrupt, or exception occurs,

and enclaves cannot rely on the untrusted OS for this regard, an enclave cannot recognize

that an AEX happens. Deja Vu enables enclaves to measure the execution time securely and

accurately. As an exception or interrupt inside the enclave happens, the enclave has to exit,

which increases its execution time significantly. Therefore, the execution time can serve as

an indicator of an AEX’s occurrence. Deja Vu instruments the program at compile time to

57

embed measured time for different blocks in the control-flow graph (CFG). Then, at the

run time, by using a real-time clock, the enclave frequently measures the execution time of

different paths in the CFG; if the measured time is suspiciously longer than before, it raises

a flag for the enclave that OS may show a malicious activity, and Deja Vu terminates the

enclave.

It is well-known that SGX does not have any protection against the side-channel or

covert channel attack. Different levels of memory systems ranging from TLBs to the ex-

ternal main memory in an SGX-based system can leak sensitive information. In an SGX-

enabled CPU, when HyperThreading (HT) is activated, one enclave thread and one non-

enclave thread are likely to share a TLB, and they may use some similar entries. Therefore,

the non-enclave thread can easily mount a cache attack against the enclave thread to obtain

its access pattern. In SGX, entering and leaving the enclave flushes the corresponding

entries in the TLB; therefore, an attacker can leverage this capability to flush entries in

the TLB to perform cache attacks against another enclave – note that in this scenario, the

attacker does not require HyperThreading to implement the attack.

Moreover, since Page Table Entries (PTEs) are also stored in the different cache hier-

archy levels, they can also be exerted to implement cache attacks. PTEs contain different

flags that can leak the enclave access pattern to a malicious OS without any page fault or

even Asynchronous Enclave Exit (AEX). For example, when the page table walk translates

a virtual address to a physical address in the page table entry, the accessed flag of the

corresponding entry will be set to one, leaking to the OS which page table entry is recently

accessed. The dirty flag in a PTE can also reveal the type of access, write, or read.

It is well-studied that SGX is vulnerable to cache attacks in all different levels of the

cache hierarchy. Finally, SGX does not hide the DRAM memory access pattern, and since

the DRAM memory controller, memory channels, ranks, banks might be shared among

different applications, a DRAM timing channel attack is feasible [50], [190].

Exploiting these information leakage resources, Wang et al. [190] introduce a new memory-

based attack, named Sneaky Page Monitoring (SPM), which does not need any page faults

or AEX; hence it is more stealthy and more challenging to detect compared to the page

fault attacks. Wang et al. implement three types of SPM attacks by monitoring the page

table entries in conjunction with different methods to flush TLBs. Note that PTEs can be

58

exploited to implement an attack only if they are updated. To that end, the attacker needs

to be able to flush the TLB entries. In the basic PSM or B-SPM attack, the malicious OS

checks the PTE accessed flag to see whether it is set or not. Once it gets set to one, it means

that the enclave touches the corresponding page. Then, the OS resets the accessed flag and

waits for this flag to set to one again. To implement this attack effectively, the attacker

needs to flush the TLB entries. The attacker needs to generate an interinterprocessor

interrupt (IPI) for a different CPU core to shoot down the TLB.

The second SPM attack is T-SPM or time enhancement, in which, similar to B-SPM, the

malicious OS focuses on the accessed flag of the PTE. Unlike B-SPM, in T-SPM, the attacker

takes advantage of the timing leakage to reduce the number of TLB shootdowns. When

in an attack, frequent TLB flushing is required, this strategy makes it more feasible. For

example, for a secret-conditioned branch where only one path contains a loop, the attacker

needs to flush the TLB once per loop trial during the loop execution to infer which path

is taken by counting the number of accesses to the page – if the page is accessed multiple

times, the path with the loop is taken. However, T-SPM suggests a more stealthy way of

implementing this attack. If there is an entry page (say ENT) and exit page (say EXT) to

enter and exit this piece of the code, the attacker can recognize the path by monitoring

the PTEs corresponding to ENT and EXT and measuring the time interval between ENT

and EXT access times. Hence, the number of TLB shootdowns will reduce dramatically

because the attacker needs to flush only corresponding entries of EXE and ENT in the TLB

once.

The third SPM attack is HT-SPM that does not require any interrupt to flush the TLB,

and thus is more stealthy and more challenging. In this attack, the attacker takes advantage

of HyperThreading to flush TLB entries. In Hyperthreading, threads running on the same

physical core, share the TLB. The attacker can flush shared entries just by accessing some

pages accordingly, without issuing any interrupts.

It is well-known that SGX is vulnerable to cache attacks [48], [78], [128], [159] and

microarchitectural side channels based on speculation [56], [69], [126], [139], [187], [188].

SgxPectre [56] and SGXSpectre [139] mount a Spectre-like attack against an SGX-based

system using the Branch Target Buffer. Since unauthorized accesses to the enclave memory

does not trigger any page fault exception, a plain Meltdown attack cannot be performed

59

on an SGX-based machine. Foreshadow [187] tries to address this issue by clearing the

“present bit” of the corresponding PTE, which forces SGX to issue a page fault exception

if there is an access to the corresponding page. Then, similar to a Meltdown attack, the

attacker can mount a Flush+Reload cache attack to obtain the secret. BranchScope [69]

is another Spectre based attack that applies to all Intel® processors, including SGX. This

attack poisons the shared direction branch predictor component of the branch predictor

unit – contrary to prior works which use Branch Target Buffer (BTB) – to steer the victim

to the wrong direction, forcing the victim to fetch the secret to obtain it through a covert

channel – e.g., the shared cache hierarchy.

Microarchitectural Data Sampling (MLS) is a new set of vulnerabilities in Intel® processor

– including the secure one, SGX, as well – that leaks secret data through CPU’s internal

buffers and registers. These weaknesses allow unauthorized speculative access to reach

data stored in internal registers and buffers. Unlike other speculative execution attacks

– e.g., Meltdown, Spectre, and Foreshadow – MLS attacks can obtain arbitrary in-flight

data from internal buffers and registers, which has not yet been stored in the cache [121].

Using different buffers while HyperThreading is activated, researchers mount various

MLS attacks against Intel® processors.

RIDL (Rogue In-Flight Data Load) [188] exploits speculative access to obtain arbitrary in-

flight data from the Line Fill Buffers (LFBs1). The scenario to implement RIDL is straight-

forward; first, the victim loads or stores a secret, which is performed through some internal

buffers such as LFBs. Then, when an attacker executes another load or store request, the

CPU speculatively – without checking the virtual or physical addresses which are involved

– fetches in-flight data from the LFB and stores it in the cache in the hope that this data is

what the attacker requested. Finally, the CPU recognizes that the fetched data block does

not belong to this request and wipes it from the cache; however, its remaining impact on

the cache suffices for the attacker to obtain the secret of another application.

Similar to RIDL, Fallout [126], another MLS attack, exerts speculative access on store

buffers to empower an attacker to gain a sample of other threads’ data – it is called a “sam-

ple” of data because it may be a snapshot of data stored in an internal register or buffer

1It is called Line Fill Buffer in SandyBridge, while its name is Miss Status Handling Registers (MSHRs) in Xeon
Phi.

60

which has not yet been stored in the cache. Intel® implemented a couple of optimizations

in the store buffer to merge two store requests with the same addresses or consider a hit

when a load request has the same address as prior store request, and the value of the store

instruction will be returned for the load request. To accelerate this process, the processor

predicts whether or not an address of a load request is the same as prior store requests.

Based on this prediction, the processor speculatively returns the store’s value for the load

instruction and stores it in the cache. Later on, if the processor realizes that the previous

prediction was wrong, the data will be wiped from the cache; however, its leakage can give

enough information to the attacker.

Recently, Plundervolty [130] extracts the enclave cryptography key by injecting faults

into an SGX-enabled CPU. To implement this attack, an attacker sets a fixed frequency

for the CPU, while the working voltage can vary by writing on the MSR register – MSR

with address 0x150 is to define the CPU voltage. Then the attacker mounts frequently

the “Bellcore and Lenstra fault-injection attacks” [47] on an RSA function that uses the

Chinese Remainder Theorem (CRT) optimization – Boneh et al. [47] show that the RSA

cryptosystem is vulnerable to transient faults – to obtain the cryptography key.

CHAPTER 4

VAULT: A LOW OVERHEAD TRUSTED

EXECUTION ENVIRONMENT

4.1 Introduction
A number of critical applications, e.g., electronic health records [93], are hosted in the

cloud or in datacenters. Cloud systems must protect against a wide variety of attacks,

including those launched by a compromised OS or by untrusted cloud operators with

physical access to the hardware. Such attackers can snoop on signals emerging out of the

processor, or can interfere with memory and processor inputs.

To protect against such attacks, a secure system must offer Confidentiality, Integrity,

and Authentication (CIA) guarantees. Authentication is usually provided with hardware-

enforced permission checks. Confidentiality is preserved by encrypting all signals that

emerge from the processor. Integrity is the property that the memory system correctly

returns the last-written block of data at any address. It is typically the most onerous

guarantee because it requires the management and navigation of tree-based data structures

on every memory access.

Intel® has introduced Software Guard Extensions (SGX [62], [82]) that offer CIA guar-

antees for pages marked by an application as sensitive. SGX forms a secure hardware

container, called an Enclave, to protect an application from several attacks, including those

launched by an untrusted OS or by untrusted cloud operators. SGX partitions the physical

memory into two regions: the Enclave Page Cache (EPC) that stores recently accessed sensi-

tive pages, and a non-EPC region that stores nonsensitive pages as well as sensitive pages

spilled out of the EPC.

The SGX memory controller is augmented with a Memory Encryption Engine (MEE) that

performs permission checks, encryption/decryption, and integrity tree operations when

accessing any data block in the EPC. Therefore, EPC accesses are expensive. Sensitive

62

pages in the non-EPC region have to first be moved into the EPC before they can be

accessed. In the context of this work, paging refers to the process of moving pages between

the EPC and non-EPC regions of physical memory. Nonsensitive pages in the non-EPC

region are accessed without security overheads.

On modern hardware, the overheads imposed by SGX are very significant. A simulation-

based analysis is shown in the left third of Figure 4.1, and has been corroborated on the

right by measurements on real SGX hardware, reported by other papers [36] [140]. For

a few memory-intensive applications, we see that marking all pages as sensitive can

incur large overheads. Further, we break down this overhead into three components in

the simulation-based analysis. The bottom blue component is the baseline nonsecure

execution time where none of the pages are marked sensitive. The top three components

(in yellow, red, and black) represent overheads on every EPC hit and miss. An EPC miss

is treated similar to a page fault, and requires an OS context switch (represented by the

black subbar). The red portion of the bar represents the cost of moving a page between

EPC and non-EPC, and corresponding updates of the integrity tree data structures. The

yellow subbar represents the overhead experienced by every EPC hit – when accessing a

block in a sensitive page in EPC, the integrity tree has to be navigated and updated.

Figure 4.1: SGX overhead. Left-side: Slowdown for three different benchmarks with
various numbers of page faults. The overhead is broken down in three portions, CS
(Context Switch), DT (Data Transfer), and SIT (SGX Integrity Tree). The slowdown is
against a nonsecure baseline system (BL). Middle: The slowdown of SGX in a real system
for a Key Value Store with two different working set sizes [140]. Right-side: Slowdown for
SGX in a real system for synthetic benchmarks, with random and sequential accesses, to
different sizes of memory [36].

63

In brief, there is a large gap between EPC hit and miss latencies – 200 cycles vs. 40 K cy-

cles [36]. A recent software solution, Eleos [140], addresses the cost of OS context switches,

but does not address the data transfer and integrity tree navigation costs.

Given these large paging overheads, an obvious follow-up question is: why not make

the EPC larger to increase its hit rate? Intel® SGX allocates only 128 MB for the EPC.1

There may be a multitude of reasons for why the EPC is so small, some only known to

industry engineers. We list some of the reasons here that are addressed by this work. (i)

Integrity tree depth and size: the depth and size of the integrity tree grows with the size of

the memory being protected. A large tree size and depth, in turn, lead to poor cacheability

and higher bandwidth penalties when navigating the tree. (ii) Memory capacity overhead:

the integrity tree and the message authentication codes (MAC) required by every EPC

block can occupy a quarter of the memory being protected (32 MB out of the 128 MB).

(iii) Workload demands: since EPC accesses are expensive, they are not appropriate for

nonsensitive pages. Designating a large fraction of memory as EPC during design time

may waste memory in applications that have few sensitive pages and under-utilize the

EPC.

To enable a large EPC region, it is important to design integrity tree structures that

impose lower bandwidth and capacity overheads, and can easily disable these overheads

when nonsensitive blocks are part of the integrity tree. While we use SGX to motivate and

frame the problem, our proposed integrity tree structures are generally applicable to any

system that demands memory integrity.

We first introduce a Variable Arity Unified encrypted-Leaf Tree (VAULT) of counters for

integrity verification that efficiently manages the trade-off between tree depth and counter

overflow. While Intel® SGX has a tree with arity 8, VAULT is designed to have a variable

arity of 16 to 64. By flattening the tree, and by making it more compact, the cacheability

and bandwidth overheads on every read and write are greatly improved.

Second, we propose a technique (SMC) that uses compression to pack a data block and

its MAC into a single cache line, thus reducing bandwidth overheads. Further, we reduce

storage overheads by sharing a MAC among multiple data blocks. While this approach

1In SGX, the 128MB is called PRM (Processor Reserved Memory) in which 96MB is for data (called EPC) and
the rest is used for metadata. For simplicity, we use EPC to describe both of them in this work.

64

has the potential to increase memory bandwidth demands, we show that the compression-

based technique can eliminate or reduce the bandwidth penalty in most cases. Thus, SMC

can reduce both bandwidth and memory capacity. Finally, we allocate MACs on-demand

just for sensitive pages to further reduce MAC capacity overheads.

With these techniques in place, the EPC can be expanded to cover the entire physical

memory with tolerable bandwidth and capacity overheads. With help from the TLB,

nonsensitive pages can disable subsets of their CIA operations and not be penalized. Even

if a large fraction of pages are nonsensitive, the integrity tree overheads for sensitive pages

are tolerable. Most importantly, when the sensitive working set scales up, there is no

penalty from paging.

Our results show that baseline SGX with paging, and Eleos incur an average slowdown

of 5.55× and 2.43×, respectively, relative to a nonsecure baseline. The capacity overhead

in the baseline is under 1%. If SGX is naively extended with an EPC as large as physical

memory, it incurs a slowdown of 1.71× (from integrity tree navigation) and a capacity

overhead of 25%. With VAULT, SMC, and on-demand MAC allocation in place, and an

EPC as large as physical memory, we experience a slowdown of 1.5× and a capacity

overhead of less than 4.7%. Nonsensitive pages can be accessed without any bandwidth

overheads, and sensitive pages are allowed to have a working set as large as physical

memory.

4.2 Background
4.2.1 Threat Model

• Physical Attacks in the Cloud. In cloud computing environments, applications are ex-

ecuted on remote servers. The hardware platform is therefore managed by a potentially

untrusted cloud operator. This renders the system vulnerable to physical attacks, where

the attacker can replace hardware modules, e.g., DIMMs, with specialized modules that

can snoop on data, modify data, or engage in denial of service. With physical access, an

operator can also install a malicious OS that can tamper with application data by taking

ownership of the application’s pages.

• Software Attack Model. We assume that attackers have full control over different levels

of the software stack including OS and any other programs. The OS or any malicious ap-

65

plications can attempt to compromise data confidentiality and integrity. This work does

not address any side channel attacks, and memory safety bugs (e.g., buffer overflow).

Denial-of-service attacks are also out of the scope of this study.

• Physical Attack in the Memory System. We will assume that the host processor is a

secure entity, i.e., it employs best practices to protect its internal data and does not leak

information through side channels. But such a secure processor must eventually store

results in main memory or disk. We will focus on the more common memory transac-

tions in this work. Memory transactions are performed on DDR memory channels that

are visible on the board and that can be snooped with logic analyzers. Alternatively,

an attacker can design a custom DIMM with a buffer chip that acts as a liaison for all

exchanged signals, and therefore has full access to all exchanged data. In short, since the

attacker can control the hardware and OS, they can access and control all information

going in/out of the secure processor. This is true regardless of whether the memory is

implemented with DDR standards or emerging protocols like that in Micron’s Hybrid

Memory Cube [88].

• Guaranteeing Confidentiality with Encryption. To prevent attackers from snooping on

externally visible data, and guarantee confidentiality, a secure processor can encrypt all

data packets emerging from the processor. Memory devices store data blocks in their

encrypted form and simply return the last-written copy when the block is requested

again.

• MACs to Thwart Some Integrity Violations. While the attacker cannot violate confi-

dentiality, they can violate the property of integrity, which guarantees that the processor

receives exactly the same contents that were last written into a memory block. When

the processor requests data from an address, the attacker can return a randomly created

block of data. This is easy to detect. Every block of plaintext can be associated with a

Message Authentication Code (MAC), which is typically a 64-bit field (in the case of SGX)

produced by applying a hashing function on the plaintext. When the encrypted data

and MAC are fetched from memory, they are first decrypted, the MAC for the plaintext

is re-computed, and this MAC is matched against the MAC received from memory.

If the attacker has created a random block of data, with a very high probability, the

66

processor can detect that the block is corrupted. The encryption/decryption function

can also incorporate the block address so that the attacker cannot perform a splicing

or relocation attack, where they return a valid block/MAC combination resident at a

different memory location.

• Another Integrity Violation – The Replay Attack. In spite of using the MAC, the system

is still vulnerable to a replay attack. In a replay attack, the attacker returns a block/MAC

that was previously written to a given memory location, but is not the last write. Such

a block/MAC, after decryption, will pass the MAC confirmation. This is the type of

attack that integrity trees, including that of SGX, are attempting to thwart. We will

first briefly review Merkle and Bonsai Merkle Trees that have long been used for replay

attack defenses. We will then describe the mechanisms used in SGX, the state-of-the-art

industry baseline.

4.2.2 Merkle Trees

In a Merkle Tree (MT), the MACs of all the data blocks represent the leaf nodes. Each

nonleaf node stores a hash of its child nodes. The root of the tree is maintained on the

processor. Assuming a 64-bit MAC or hash similar to that in SGX, eight MACs/hashes can

fit in a single 64 B cache line. As a result, the tree is organized with an arity of eight. Thus,

a single cache line fetch can retrieve the eight children of a node. On every data block

read by the processor, all ancestors of the block’s MAC have to be fetched from memory;

the MACs/hashes are verified on the processor; if the attacker attempts a replay attack, at

least one of these will yield a mismatch. Because of the relatively low arity, the MT has a

high depth, e.g., a 16 GB memory requires a 10-level MT. In other words, every memory

access in a nonsecure baseline translates to 11 memory accesses when using an MT (MACs

and hashes can be cached, and this will be considered throughout).

All these blocks can be potentially fetched in parallel and the processor can spec-

ulatively proceed with the data block while the verification can happen in the back-

ground [107]. But several modern workloads are already memory-intensive and most

enterprise systems operate their memory channels near saturation. Therefore, while the

latency of a single Merkle Tree fetch can be hidden, the bandwidth overhead will have

repercussions. If the memory channel in a nonsecure baseline is already highly utilized,

67

a 11× bandwidth overhead will manifest as a 11× application slowdown. Therefore, it

is critical to reduce the bandwidth overhead. Note that a write to a data block requires

us to read all its ancestors in the MT, followed by a write to all those ancestors, i.e.,

the bandwidth overhead of a write is nearly twice that of a read. Some of the above

overhead can be alleviated with caching. It is reasonable to expect the processor’s LLC to

accommodate between six to eight levels of the top of the Merkle Tree.

4.2.3 Bonsai Merkle Trees

• Tamper-Proof Counters to Prevent Replay. To alleviate the high overhead of Merkle

Trees, Rogers et al. [149] introduced the concept of Bonsai Merkle Trees. It borrows

many of the same principles as a Merkle Tree, but adds the following new feature. Just as

we used the block address in the encryption/decryption function to prevent the attacker

from returning valid data/MAC at a different address, we can also use a version number

in the encryption/decryption function to prevent a replay attack. Thus, for every block,

we need a counter (or version number) to keep track of how many times this block has

been written, and this counter is required during the encryption/decryption process.

Millions of counters cannot be accommodated on the processor chip, so these counters

will eventually have to be stored to and retrieved from memory. Therefore, during a

read, we must fetch the data block, its MAC, and its counter; the counter is used for

decryption; the MAC is computed to confirm that the block is valid. But an attacker can

perform a replay attack by returning an old block, old MAC, and old counter. Thwarting

any of these three returns is enough to preserve data integrity. To prevent the attacker

from returning an old counter, we can maintain a Merkle Tree on the counters, i.e., the

leaves of the Merkle Tree are 8-bit counters for all data blocks, not the 64-bit MACs for

all data blocks. This simple change results in a Bonsai Merkle Tree (BMT) that has 1 fewer

level than a Merkle Tree. The memory storage overhead of the BMT is small; in fact, the

metadata storage is dominated by the 64-bit MAC that is maintained for every 512-bit

block, i.e., a storage overhead of 12.5%.

• Managing Shared Counters for High Security and Low Overhead. One problem with

this approach is that when a counter reaches its maximum value and cycles back to

zero, it is vulnerable to a replay attack, i.e., the attacker can return an old block that can

68

be correctly decoded with the current counter value. Therefore, counter values should

never be recycled. To enable this, the leaf nodes of the BMT are reorganized. Instead

of placing 64 8-bit counters in a cache line, the BMT places 64 7-bit (local) counters in a

cache line. There is also room for a shared 64-bit global counter that serves as a prefix

for all local counters in that cache line. That is, every data block is now represented

by a 71-bit counter. When any local counter cycles back to zero, the shared counter is

incremented, thus always yielding unique 71-bit counters for a given data block during

the reasonable lifetime of a system. When the global counter is incremented, since it

is shared, all 64 blocks represented by that node have to be reencrypted with their

new counter value and written back. We also take this opportunity to zero out all

64 local counters in that node. This approach addresses the replay vulnerability, but

introduces an overhead (of 64 reads and 64 writes) every time a local counter cycles

back (overflows). As we show later, this overflow overhead is relatively small in the

BMT, but can be significant for other tree organizations.

4.2.4 Intel® SGX Baseline

• SGX Overview. SGX partitions the main memory into two parts: EPC (Enclave Page

Cache) and non-EPC. The enclave created for an application can include both sensitive

and nonsensitive pages. When the application requests the OS for a sensitive page, it

is mapped in the EPC. To protect the EPC, the CPU is responsible for enclave authen-

tication as well as performing TLB checks to prevent the OS from TLB-base attacks. In

addition, the Memory Encryption Engine (MEE) encrypts/decrypts data blocks (con-

fidentiality) and ensures data freshness using an integrity tree (integrity and message

authentication). The EPC has a small 128 MB capacity, of which, 32 MB is used to store

the MAC for each block, as well as the integrity tree structure (which we will describe

shortly), and some other metadata for each EPC page [62].

When a sensitive page is evicted out of the EPC, it is stored in the non-EPC region.

CIA guarantees must be provided for sensitive pages in the non-EPC region as well.

Upon evicting from the EPC, MEE decrypts the page and hands it to the CPU. The CPU

then assigns a counter, encrypts the page using the combination of the counter and the

enclave’s key, and calculates a 128-bit MAC for the entire page. The encrypted page

69

is inserted into a non-EPC integrity tree (called the eviction tree) to guarantee that any

tampering of these sensitive pages can be detected. To reduce its overhead, the eviction

tree works at the page granularity. Note that individual blocks of a sensitive page cannot

be accessed unless it is moved back to the EPC. When an application wants to access a

sensitive page, it is moved into the EPC after the CPU has authenticated the request and

verified it using the eviction tree.

The sensitive pages can take advantage of the eviction tree even when they are moved

to the swap space. The non-EPC region also stores nonsensitive pages without CIA

guarantees.

• Protecting from TLB Manipulation. In SGX, page tables and extended page tables

are fully under the control of the OS or the hypervisor. As a result, a malicious OS

can allocate or redirect an unexpected physical page to a virtual page, which leads to

unintended inputs or a change in the program’s control flow (active memory mapping

attack). To protect from such attacks, SGX maintains an entry of metadata for each sen-

sitive page in an array called Enclave Page Cache Map (EPCM). Every EPCM entry has

ADDRESS and ENCLAVESECS fields; the former contains the virtual address assigned

to the corresponding EPC page while the latter keeps track of the sensitive page’s owner.

SGX uses these fields when handling a TLB miss, to avoid any TLB manipulations for

senstive pages.

After the TLB translates the virtual address to a physical address, the secure CPU uses

the physical address to find the appropriate EPCM entry. It then authenticates the re-

questing enclave using the ENCLAVESECS field and matches the corresponding virtual

address with the ADDRESS field.

It is worth noting that SGX limits the virtual address space assigned to senstive pages

to a range known as ELRANGE (Enclave Linear Address Range). SGX treats the pages

outside this range as nonsensitve and disallows allocating them to any EPC pages.

• Paging Overheads [140]. In SGX v2, sensitive pages can be allocated to enclaves dynam-

ically. When an enclave encounters a page fault, i.e., the requested page does not exist in

the EPC, the enclave is forced to exit, a context-switch to OS occurs, the requested page is

moved to the EPC, and control returns back to the enclave. Unfortunately, this process

70

imposes a significant overhead on performance due to two main reasons: OS-related

and data transfer overheads. OS-related overhead includes exiting and reentering the

enclave (through EEXIT and EENTER instructions), flushing the TLB, context switch-

ing, and handling the page fault. Data transfer overhead is due to data transition and

integrity checks between the EPC and non-EPC parts. The total paging overhead is

around 40K CPU cycles.

• SGX Integrity Tree (SIT). We now discuss the integrity tree algorithm used by SGX for

data blocks in its EPC. Similar to the BMT, every block in the EPC region is associated

with a counter. But instead of building a tree of hashes on top of these counters, SGX

designs a new tree structure, shown in Figure 4.2, that we dub SIT. Every 512-bit node

of the tree is composed of 8 56-bit counters and a 64-bit hash.2 The hash in a node is a

function of the 8 56-bit counters in that node, as well as one 56-bit counter in the parent

node (using the Carter-Wegman algorithm [197]). This sets up the dependency between

child and parent, which must be verified from the leaf node all the way up to the root.

The SIT has an arity of 8 throughout; recall that the BMT has an arity of 64 at the lowest

level and an arity of 8 for all higher levels.

• Read/Write Example. On a read, we fetch the data block, its MAC, and its corresponding

56-bit counter. We then fetch the ancestors of that counter from SIT (until a cache hit).

All of these fetches can happen in parallel, leveraging all the available parallelism in the

memory system. For each level i of the SIT, the processor confirms that the 8 counters

in level i and the corresponding counter in the parent level i − 1 produce a hash that

matches the hash in level i. If the attacker attempts some kind of replay, at least one of

the hashes or MAC will disagree with a very high probability.

When a block is written, the counter for that block and all its ancestor counters (until a

cache hit) must be incremented. The corresponding hashes will also have to be updated.

This requires a read of the counter node and all its ancestors (until a cache hit), followed

by writes to the same nodes.

2While SGX uses a 56-bit hash, without loss of generality, we model SGX with a 64-bit hash.

71

Figure 4.2: SGX integrity tree (SIT).

4.3 Proposed Techniques
4.3.1 Unifying the EPC and Non-EPC Regions

To eliminate paging overheads, we eliminate the demarcated EPC and non-EPC re-

gions, and simply define a single unified physical memory. Within this unified physical

memory, some pages may be marked sensitive, while others may be marked nonsensitive.

This subsection discusses how the hardware determines if a page is sensitive or not, how to

authenticate the enclave, and protect from memory mapping attacks. The next subsection

discusses the integrity check operations in case the page is sensitive.

The basic idea is to allocate one EPCM entry for every physical page in the main

memory. EPCM is updated by the secure hardware to prevent the OS from tampering with

metadata. As described in Section 4.2.4, every EPCM entry includes information regarding

the enclave owning the page, as well as the virtual address bound to the physical address.

We also augment the entry with a field, named SENSITIVE, to indicate whether the page

is sensitive or not. Note that similar to SGX, EPCM is stored in sensitive pages.

When accessing a page, a TLB look-up translates the virtual address to a physical

address. The secure CPU uses the physical address to fetch the corresponding EPCM

entry. For this entry, if the SENSITIVE field is not set, then the CPU performs a regular

memory access, similar to a nonsecure memory system. Otherwise, similar to SGX, the

CPU matches the translated virtual address against the entry’s ADDRESS field. The final

sanity check is to authenticate the enclave, i.e., the CPU compares the ownership infor-

mation of the page (field ENCLAVESEC in the EPCM entry) with the ID of the requesting

enclave. In the case of any mismatches, a general protection fault happens.

Similar to TLB entries, the EPCM entries can be cached in a hardware structure that

72

only the secure CPU can access. Therefore, for a TLB hit, the corresponding EPCM entry is

also available on the chip. However, a TLB miss takes longer, compared to a nonsecure

system, as it requires fetching an EPCM entry from a sensitive page. The table with

EPCM entries represents a negligible capacity overhead of much less than 0.1% in physical

memory because each entry only requires 16 bytes.

When accessing a nonsensitive page, the typical encryption and integrity checks can

be elided and nonsensitive page accesses are as fast as those in a nonsecure baseline.

This concept can be further generalized – multiple bits in the SENSITIVE field of the

EPCM entries can define multiple security levels, some that enforce only authentication

and confidentiality, others that enforce CIA guarantees, etc.

As mentioned in Section 4.2.4, the OS might transfer a page to the swap space. There-

fore, for trusted pages, CIA should also be guaranteed on the swap space. In SGX, the evic-

tion tree provides CIA for both, the non-EPC part of the main memory and the swap space.

In our approach, the entire main memory is protected by a unified tree (Section 4.3.2), while

the eviction tree is shifted to cover merely the swap space.

Next, we introduce more efficient approaches to provide integrity for the entire physi-

cal memory. If the same integrity tree (SIT) used for the baseline 128 MB EPC is now used

for the entire physical memory, there are two major overheads: (i) The depth and size of

the tree would be much greater, thus incurring a significant bandwidth penalty for every

sensitive block access. (ii) The metadata overheads would grow from 32 MB to several

giga-bytes.

4.3.2 Variable Arity Unified Encrypted-Leaf Tree (VAULT)

We first describe a new integrity tree organization, VAUT, that improves tree depth, tree

size, tree cacheability, and hence the bandwidth overhead. The proposed integrity tree is

unified because it includes all blocks, sensitive or not, in physical memory. Similar to the

SIT organization, a 64-bit hash in a node is computed based on the other 448 bits in that

node and a sufficiently large counter in the parent (see Figure 4.3). This hash establishes a

hard-to-fool linkage between parent and child in the tree.

The key to flattening the integrity tree is an increase in its arity. The BMT has an arity

of 8 by placing 8 64-bit hashes in a cache line. The SIT achieves an arity of 8 by placing 8

73

Figure 4.3: Variable Arity Unified Tree (VAUT).

56-bit counters in a cache line. We adopt the same linkage organization as SIT, but place

even more counters in a cache line.

We first construct a strawman where every node of the tree maintains a 64-bit hash and

64 7-bit counters. By using many small counters, we achieve a tree with arity 64 and a

depth of only 5 for a 64 GB memory (with the top two levels potentially being cached on

the processor chip). While this makes the tree access dramatically more efficient, it causes

the counters to cycle back to zero after 128 memory accesses, making the system vulnerable

to replay attacks. Therefore, the tree must be designed to balance arity/depth and counter

overflows.

Figure 4.3 shows our proposed VAUT organization. Similar to the BMT, we use the

concept of shared global counters and local counters in every node. At the lowest level of

the tree, a leaf node maintains a 64-bit hash, a 64-bit shared global counter prefix, and 64

6-bit local counters. In other words, we are maintaining 64 70-bit counters in a node, but

all of these counters share the same 64 most significant bits.

When any of the 64 local counters cycles back to zero, we increment the global counter

and reset all 64 local counters in that node to zero. Such a reset requires us to reencrypt all

the data blocks corresponding to that node, thus incurring an overhead of 64 reads and 64

writes. In the BMT, where the leaf node maintains 7-bit local counters, this reset overhead

is incurred when a local counter value reaches 128. In the proposed organization, the local

counters in the leaves reset when they reach 64, i.e., the reset overhead may be two times

as high and noticeable.

74

If we preserved the same node structure at all levels of the tree, we also have to worry

about reset overheads at other levels of the tree. The local counter in a node is incremented

when any data block in its subtree is updated. This means that the higher levels of the tree

(if uncached) increment their counters far more frequently than lower levels of the tree. If

all nodes in the tree follow the same organization as the leaf node, the 6-bit counters in

higher levels of the tree will cycle back to zero very frequently, and incur the high reset

overhead (64 reads and 64 writes) on each reset.3 Note that the BMT did not have to deal

with this problem; it used global and local counters only for leaf nodes; the nonleaf nodes

were composed of hashes, not counters.

To keep the reset overhead in check, we must allocate more bits for each of the local

counters in a node, as we move to higher levels of the tree. This is illustrated in Figure 4.3,

where the parent of a leaf node has a 64-bit hash, a 64-bit global counter prefix, and 32

12-bit counters. The grandparent of the leaf node and its ancestors have a 64-bit hash, a

64-bit global counter prefix, and 16 24-bit counters. Thus, the higher-level nodes that are

much more vulnerable to reset overheads are provided with significantly larger counters,

yielding a tree with arity 64 at the lowest level, arity 32 at the level above, and arity 16

for higher levels of the tree. The top levels of the tree are likely to see even more counter

updates, but they are also much more likely to be cached – note that counter increments

are not required as soon as we encounter a cached node of the tree. Therefore, it is

not necessary to allocate more than 24 bits per local counter for levels higher than the

grandparent of the leaf. This variable arity tree has a depth of 7 for a 64 GB memory; note

that SGX’s tree depth is 10 and BMT’s tree depth is 9 for the same memory capacity.

Another side effect of VAUT is that the use of more space-efficient counters results in a

smaller tree, relative to SIT structures (1.6% vs. 12.5% of the total memory capacity), that

in turn leads to better hit rates in the processor’s cache. The higher cache hit rate for VAUT

nodes can reduce memory bandwidth and reset overheads.

• VAUT with Encrypted Leaves (VAULT). The biggest drawback of the VAUT technique

is that it only allocates 6 bits per local counter in leaf nodes, causing a noticeable number

3A reset in a nonleaf node requires an update of the hash in all its child nodes. A reset in a leaf node
requires a reencryption of all corresponding data blocks.

75

of resets. Each reset overhead is also highest at the leaf level because it involves 64 reads

and 64 writes (a reset in the parent of the leaf involves 32 reads and 32 writes). Further,

as we show in the next subsection, some of the leaf node bits may be required for other

metadata. If each local counter were to receive only 5 bits, the reset overhead would

essentially double. Therefore, to manage reset overheads in the leaf node, it is important

to somehow grow the size of each local counter.

For the leaf nodes in VAULT, we eliminate the 64-bit hash field. Recall that in VAUT, the

counters in the leaf were combined with a 76-bit counter in the parent to produce the

hash in the leaf. If we eliminate the hash, we need an alternative method to establish a

linkage between leaf and parent. This linkage is established by using the 76-bit counter

in the parent as a key to encrypt the leaf block. If an attacker tries to fabricate either the

leaf or the parent, the decryption of the leaf block would likely yield an incorrect 71-bit

leaf counter (we analyze this further in Section 4.3.5), which in turn would likely yield

an incorrect data block that fails the MAC confirmation – note that every data block in

BMT, MEE, and VAULT is still associated with its own separate MAC. By eliminating the

hash in the leaf node, every local counter can be 7 bits instead of 6 bits, which reduces

reset overheads by roughly a factor of 2×. This organization is shown in Figure 4.4, and

is referred to as a VAUT with encrypted Leaves (VAULT).

However, there is one drawback to this approach. The decryption of the leaf block is

Figure 4.4: VAUT with encrypted Leaves (VAULT).

76

now on the critical path of the MAC confirmation, adding 40-80 cycles [85] to the MAC

confirmation latency. This is also why the encryption-based approach should only be

used where it is most required – at the leaf nodes that suffer from high reset overheads.

It should not be employed at higher levels of the VAULT.

4.3.3 Shared MAC with Compression (SMC)

In the VAULT technique, the tree has a depth of 7 for a 64 GB memory, with the top

levels of the tree potentially cached on the processor chip. A memory access may therefore

require fetching the bottom three levels of the tree, the data block itself, and its MAC.

Since we have reduced the tree access overheads, the MAC overhead is now noticeable

and worth reducing. We reduce this overhead with a compression-based approach that

meshes well with the VAULT design.

Before a data block is encrypted, we first compress the block. If the 512-bit data block

can be compressed to 448 bits or less, the unused tail of the block can be used to accommo-

date the block’s 64-bit MAC. Therefore, instead of separately fetching the data block and its

MAC, a single block fetch can yield the data and its MAC. This can reduce the bandwidth

requirements when dealing with compressible blocks. However, we need one additional

metadata bit per block to track if a block has been stored in compressed or uncompressed

form. This bit can be stored along with the block’s local counter in the leaf node of VAULT.

This reduces the local counter size from 7 to 6, introducing a trade-off between reset

overhead and memory bandwidth. The compression-based approach further increases

the critical path for MAC verification (since the compression bit is required before fetching

the MAC). As our results show, this is a worthwhile trade-off because memory-intensive

applications are more sensitive to bandwidth increase than to latency increase. Also, the

processor can speculate and move ahead with the data block while the verification is

performed in the background [107].

But memory capacity is also an important metric that must be improved. As described

earlier, the MACs introduce nontrivial storage overheads of 12.5% in BMT and SGX’s EPC.

To reduce this capacity overhead, we share a MAC among multiple blocks. If a MAC is

shared among 8 or 4 blocks (referred to as a group), the MAC storage overhead can drop

from 12.5% to a more palatable 1.6% or 3.1%, respectively. However, MAC sharing can

77

lead to an increase in bandwidth requirement, especially when spatial locality is limited.

To verify a MAC, all the data blocks in the group would be required.

To address this storage vs. bandwidth trade-off, we again leverage our compression-

based scheme. As shown in the example in Figure 4.5, a group of 4 data blocks, D0− D3,

share a MAC M0. But if D0 is compressible, it maintains a private MAC m0 that is co-

located with data in a single block. Similarly, D2 is also compressible in this example

and maintains a private MAC m2. The shared MAC M0 therefore only involves blocks

D1 and D3. Thus, by combining a Shared MAC and Compression (a technique we refer

to as SMC), we lower storage overheads and reduce the bandwidth requirements. When

accessing compressed block D0, a single block can provide the data and the MAC. When

accessing uncompressed block D1, we must fetch blocks M0, D1, and D3 – by examining

the compressibility bits for the group, we can avoid fetching all the blocks in the group.

Note that we have used compression here to reduce bandwidth demand; compression has

not been used to reduce overall memory capacity requirements. As seen in Figure 4.5,

compressible blocks can introduce (white) “holes” in memory that are not exploited for

other uses.

Compression itself is a minor overhead relative to the cost of encryption and integrity

verification. Recent compression algorithms, e.g., Base-Delta-Immediate (BDI [143]), are

designed for simplicity instead of a high compression ratio. Note that in this context, we

only require a block to be compressed by a factor of 1.14×. Prior work has shown that BDI

compression/decompression can be implemented with a latency of 2 cycles and power of

Figure 4.5: Shared MAC with Compression (SMC).

78

33mW [163]. The compression and decompression are performed entirely in hardware and

are transparent to the operating system.

Since encryption increases data entropy, compression over a ciphertext block is not

effective. Therefore, we first compress then encrypt data blocks. To encrypt a data block,

we use the counter mode based encryption along with the AES128 algorithm; we split a

512 bit-data block into four 128-bit chunks (D0, D1, D2, D3). A ciphertext block is generated

as Ci = Di⊕ PAD, f or i = {0, 1, 2, 3}, where PAD is the output of the AES algorithm. Using

the counter mode encryption, the space that ciphertext and plaintext clocks occupy is the

same; in other words, the counter mode encryption does not change the space generated

by compression to carry the corresponding MAC.

In a write request, a data block is first compressed, then encrypted; finally, the corre-

sponding MAC – and the ECC block to provide reliability – is generated upon the cipher-

text. In a read request, the received MAC and the corresponding ECC are verified; the data

block is then decrypted and decompressed. We use the “encrypt-then-MAC” method to

protect data from vulnerabilities such as padding oracle attacks that might be generated

by using the “MAC-then-encrypt” method.

4.3.4 On-Demand MAC Allocation (ODMA)

So far, we have employed sharing to mitigate the significant MAC capacity overhead.

For further reduction, we propose to allocate MACs just for sensitive pages. To achieve

this goal, instead of reserving a MAC region for the entire memory, we allow the OS to

allocate a MAC entry for each sensitive page on-demand (ODMA). We include a pointer

to the MAC location in the page’s EPCM entry (extra 32 bits per 8KB page or 0.05%

memory capacity). The delay introduced by the pointer indirection is incurred only on

TLB misses. With this approach, the capacity overhead of MAC reduces linearly with the

size of nonsensitive data.

Due to MAC allocation at page granularity in the eviction tree (Section 4.2.4), the SGX

MAC overhead is trivial (i.e., 12 MB for EPC and 0.02% of the non-EPC region). The ODMA

technique helps our scheme approach the low MAC overhead in SGX for applications with

a small number of sensitive pages.

79

4.3.5 Security Analysis

The techniques introduced in this paper do not weaken security guarantees, relative

to the baseline MEE algorithm. Techniques like VAUT and SMC continue to use similar

sized hash functions as MEE to establish parent-child linkage and construct the MAC,

respectively. Therefore, similar to MEE, for a replay attack to succeed, the attacker would

have to correctly guess the 64-bit output of the hash function or modify the inputs to the

hash function such that it produces a hash known to the attacker, both of which have

success probabilities of less than 2−64.

A new operation in VAULT is the encryption used to generate the leaf nodes of the

integrity tree, so we will focus on proving its security here. Since the hash function that

generates the MAC for a data block is private to the CPU, the attacker must rely on a

replay attack, i.e., the attacker must return an old block of data D, its corresponding MAC

M, and the old counter value c that fulfils the relationship M = hash(D, c). Any change to

a nonleaf node of the tree will be detected by the integrity check in VAUT, exactly as in the

baseline MEE. Therefore, to pull off a successful attack, the attacker must return a leaf node

L′, such that after decryption, the leaf L contains an old counter value c that the attacker

can guess with high probability. The following encryption/decryption steps ensure that

this is not possible.

For encryption, we use 128-bit AES. The plaintext leaf block L is first decomposed into

four 128-bit subblocks L0, L1, L2, and L3. We create a new subblock Lx = L0⊕ L1⊕ L2⊕ L3,

where ⊕ represents XOR. The subblocks, Lx, L1, L2, L3 are then encrypted to create 128-bit

subblocks for the encrypted leaf node L′. Each subblock is created with the following

encryption function: L′∗ = AES(L∗, P⊕ k), where k is the CPU’s 128-bit private encryption

key and P is constructed by concatenating the physical address (padded with zeroes to 52

bits) of the data subblock and the corresponding 76-bit counter stored in the parent of

the leaf node. During decryption, the reverse operations are performed: subblocks L′x,

L′1, L′2, L′3 are decrypted to produce Lx, L1, L2, L3; L0 is then computed by performing

Lx ⊕ L1 ⊕ L2 ⊕ L3.

With the above procedure, if the attacker returns a modified subblock L′∗, it results in a

modified decrypted subblock L∗, and eventually a modified subblock L0. Since the attacker

does not know the CPU’s private key, from the perspective of the attacker, subblock L0 is

80

a random unknown subblock. As discussed above, to pull off a successful replay attack,

the attacker has to correctly guess the 71-bit counter c; since the 64 global counter bits used

to construct c are in random subblock L0, the probability of a successful attack is less than

2−64.

Note that the encryption/decryption process has been constructed to ensure that a

modified L′∗ results in an L∗ that is completely random from the perspective of the attacker.

By XORing the subblocks, we ensure that any modification to L′ results in a random global

counter value.

4.3.6 Discussion

• Capacity Overhead. Table 4.1 summarizes the capacity overhead of various techniques.

Note that SGX (Baseline) has an extremely low overhead, since EPC is a small portion of

memory (96 MB) and the eviction tree works at page granularity (Section 4.2.4).

• Compression and Encryption. Compression and encryption are frequently used to-

gether, e.g., in file systems such as NTFS [125], ZFS [66], and Apple’s HFS [115]. Com-

pression does represent a side-channel – if system behavior can be observed, an attacker

can estimate the compressibility of data. However, there are no known exploits for this

side channel and it is currently not deemed to be a critical vulnerability [96]. If such

leakage is deemed critical, compression could be performed at a coarse granularity, or

with an element of randomness.

• VAULT Implementation. The modifications that are required to implement VAULT

have to be applied at the hardware level. To implement VAULT, we have to mod-

ify the finite state machines in the MEE. A compression block is required to com-

press/decompress data blocks. The tree controller – which is responsible for main-

Table 4.1: Memory capacity overhead for different integrity techniques. Except for SGX
(Baseline), other schemes use one unified tree for the entire 16GB memory space.

Type MAC Counter Tree Total
MT 0% 12.5% 14.2% 26.7%

BMT 12.5% 1.6% 0.8% 14.9%
SGX (Unified) 12.5% 12.5% 1.6% 26.6%
SGX (Baseline) <0.3% < 0.2% ≈ 0% 0.5%

VAULT 12.5% 1.6% 0.05% 14.1%
VAULT+SMC4 3.1% 1.6% 0.05% 4.7%
VAULT+SMC8 1.6% 1.6% 0.05% 3.2%

81

taining the integrity tree – has to be modified. Two extra fields must be added to

the EPCM entries: one field containing a pointer to the page MAC values to support

the ODMA method. Second field – named SENSITIVE – which shows whether the

corresponding page is sensitive. This field enables VAULT to allocate sensitive pages

across the physical memory. Note VAULT assigns one EPCM entry to every physical

page. Like TLB entries, EPCM entries should also be cached in the cache hierarchy to

ensure that the corresponding EPCM entry is available on-chip for a TLB hit.

4.4 Methodology
To evaluate our techniques, we conduct cycle-accurate simulations with 21 workloads

from two benchmark suites: SPEC2k6 [84] and NPB [41]. These benchmarks are de-

scribed in Table 4.2, along with their working set size, the number of page faults per 50

million instructions, and compressibility with the Base-Delta-Immediate [143] algorithm.

The compressibility is defined as the percentage of blocks that can be compressed to 56

bytes or less. We generate the memory traces for these workloads with Simics [17]; these

traces are generated for 4 million memory accesses after fast-forwarding to the region of

interest and warming up the caches. These traces are then fed into cycle accurate memory

system simulations with USIMM [54]. Table 4.3 shows the assumed Simics and USIMM

parameters.

We modify USIMM to implement MT, BMT, SIT, and our proposed techniques. Every

CPU read and write request is converted to the appropriate set of data block, tree, and

Table 4.2: Benchmark’s specifications. Comp (Compressibility in percentage), WS (Work-
ing Set size in MB), and PF (average number of page faults in 50M instructions).

SPEC2k6 NPB
Name Comp. WS PF Name Comp. WS PF

GemsFDTD 99.99 3k 22K bt 0.2 2.6k 513
libquantum 0.38 672 0.1 cg 10.26 9k 2k

mcf 98.87 12k 92K ep 2.58 24 0
gromacs 53.88 48 0 lu 94.75 2.7k 346

milc 9.2 3.3k 29K ua 72.32 4.2k 685
h264ref 99.77 72 0 is 0.26 1.08k 9.5

omnetpp 65.23 19k 18k mg 76.59 15k 6.8k
astar 82.71 48 0 sp 0.25 2.7k 774
bzip2 40.20 216 0 SPEC2k6

hmmer 2.02 48 0 sjeng 89.62 264 308
lbm 0.08 1k 6k soplex 96.84 504 9.7

82

Table 4.3: Simulator parameters.

Processor
ISA UltraSPARC III ISA

size and freq. 1-core, 3.2 GHz
ROB 64 entry

Fetch, Dispatch, Maximum
Execute, and Retire 4 per cycle

Cache Hierarchy
L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 8MB/8-way, shared, 10-cycle
Protocol Snooping MESI

Hash cache 32KB per core (default)

DRAM Parameters
DDR3 Micron DDR3-1600 [16],

Baseline 1 Channel
DRAM 8 Ranks/Channel

Configuration 8 Banks/Rank
Mem. Capacity 16 GB

Mem. Frequency 800 MHz
Mem. Rd Queue 48 entries per channel

Mem. Wr Queue Size 48 entries per channel

MAC reads and writes. USIMM is augmented with a 32 KB cache per core to save most

recently accessed integrity tree nodes. Most of our results are normalized against a nonse-

cure system, showing the overhead imposed by memory integrity verification schemes.

To analyze reset overheads from local counters, we ran week-long simulations with

Simics in functional mode. We confirmed that the reset overheads had stabilized and

our statistics were not polluted by the initial simulation phase where counters were being

warmed up.

To measure the page fault rate, we ran our benchmarks for 50 billion instructions

(including 2 billion instructions for warmup) using the PIN tool [113]. We consider 96

MB memory for the EPC with the clock algorithm [51] for its page replacement policy. We

repeated this experiment for different numbers of enclaves in the EPC and resized the EPC

share for each enclave, accordingly.

4.5 Results
4.5.1 Evaluation of VAULT

We start by comparing the behavior of VAULT, against that of MT, BMT, and SIT. To

exclude the effect of page faults, these integrity trees are extended to cover the entire 16 GB

83

memory space. Figure 4.6 shows execution time for these four cases for each benchmark,

for an 8-core model, normalized against a nonsecure baseline. In all cases, VAULT incurs

a lower execution time overhead, proportional to the memory bandwidth overhead. As

shown in Figure 4.6, BMT outperforms SIT, since its counters are 8× smaller, and hence

more cacheable. For the 8-core model, VAULT reduces execution time by 34%, relative to

SIT.

The average breakdown of memory traffic for MT, BMT, SIT, and VAULT is shown in

Figure 4.7. The integrity tree fetches are the dominant contributors in the baselines, but

are sharply reduced for VAULT. The MAC fetch in VAULT is now a noticeable contributor,

and is later targeted with our SMC approach.

4.5.2 Evaluation of Reset Overhead and VAULT

As we explained in Section 4.3, shrinking the sizes of counters might cause more re-

sets. We ran separate long simulations with Simics in functional mode to analyze reset

behavior for VAUT and VAULT, both with and without compression techniques. When

using compression, there is one less bit per local counter because a bit is needed per

block to store compressibility information. So the compression-based models are more

susceptible to reset overheads. Figure 4.8 shows the 8 benchmarks most affected by reset

handling. As shown in this graph, resets can incur an average overhead of 5.6% (up to

Figure 4.6: Execution time for MT, BMT, SIT, and VAULT, normalized against a nonsecure
8-core baseline. The trees cover the entire 16GB memory space.

84

Figure 4.7: Average access breakdown for reads and writes in MT, BMT, SIT, and VAULT.

Figure 4.8: Execution time overhead introduced by counter reset handling. This graph
only shows the 8 most affected benchmarks.

16% in one benchmark) in the VAUT+compression model. The VAULT organization is

able to overcome the reset overheads. Even when using compression, VAULT has a reset

overhead of only 2%. VAULT has to deal with decryption latency on the critical path.

When assuming a decryption latency of 80 cycles [85], we see nearly zero impact in the

8-core bandwidth-constrained model.

4.5.3 Evaluation of SMC

Figure 4.9 shows how execution time for SMC varies with group size. Recall that we are

pursuing SMC to increase effective memory capacity, as summarized earlier in Table 4.1.

We see that going from VAULT to VAULT+SMC with a group size of 1 reduces execution

time by 21% in the 8-core case. This is because compression eliminates some MAC fetches.

Since the group size is 1, i.e., no sharing, this model improves bandwidth and performance,

but does not improve memory capacity. As group size is increased, the bandwidth penalty

85

Figure 4.9: Average normalized execution time after applying the SMC technique with
different group sizes, for varying core counts.

steadily increases, but has the side effect of growing memory capacity (not seen in this

graph). Our experiments indicate that, in a single core system, sharing capacity overhead

for group size of 1,2, 4, and 8 lead to 24%, 37%, 51%, and 81% performance overhead,

with respect to the nonsecure baseline, respectively. In other words, there is a capacity vs.

performance trade-off in SMC. It is worth noting that on-demand MAC allocation can help

us to use smaller group size to improve performance at a low capacity overhead.

4.5.4 Impact of Caching the Integrity Tree Nodes

We evaluate the impact of growing the sizes of the hash cache in Figure 4.10. We see

that the hash cache shows steady improvements in going from 8 KB to 32 KB to 128 KB.

The improvement increases as the number of enclaves increases.

4.5.5 Page Fault Overhead

In contrast to VAULT, SGX suffers from page faults between the EPC and non-EPC

regions. In this section, we evaluate the impact of page faults on SGX and the recently

proposed software solution, Eleos [140], and compare them with our scheme. Eleos allo-

cates two regions, one in the EPC region (called EPC++), and one in the non-EPC region

(called backing store). It emulates the SGX model in these two regions at the software level,

thus eliminating context-switches to the OS. Eleos moves pages from the backing store to

86

Figure 4.10: Normalized execution time as the size of hash cache changes from 8 KB to
128 KB per core.

the EPC++ before accessing them. Here, we consider an ideal case for Eleos. That is, we

assume that every page fault can be resolved in the software layer and the overhead is just

limited to the data transfer over the memory channel (8K cycles). For the baseline SGX,

we consider 40K cycles per page fault [140]. Note that, as mentioned in Table 4.1, SGX

and Eleos have negligible capacity overhead. Therefore, we also consider VAULT with

SMC(G4), to make a fair comparison.

Figure 4.11 shows the slowdown of SGX, Eleos, VAULT, and VAULT+SMC4 for a

single-core model, with respect to a nonsecure system. Eleos outperforms SGX by 2.3×

and VAULT+SMC4 outperforms Eleos by 1.61×. When the number of enclaves increases

Figure 4.11: Execution time for SGX, Eleos, VAULT, and VAULT+SMC4, normalized
against a nonsecure 1-enclave system.

87

(Figure 4.12), the performance gap also increases. More specifically, VAULT+SMC4 out-

performs Eleos by 1.86×, 2.1×, 2.29×, for 2, 4, and 8 enclave models, respectively. The

performance difference grows as data transfer for one core, on the shared memory channel,

stalls the other cores’ requests.

4.5.6 Summary of the Proposed Methods

In this section, we summarize the impact of each proposed method on the overheads

of data integrity verification. Figure 4.13 captures the various design points and their

trade-offs in terms of bandwidth and memory capacity overheads. Our workloads have

an average working set size of 3.6 GB, so ODMA assumes that only 23% of all blocks are

sensitive and need MACs. We see that the combination of the four proposed methods,

VAULT, shared MAC, compression, and ODMA together, e.g., VAULT+ODMA+SMC4,

yields the best performance with an affordable capacity overhead.

4.6 Conclusions
SGX incurs a significant cost when it moves a sensitive page from the non-EPC region

to the EPC. This work proposes extending the EPC to cover the entire physical memory

while allowing the EPC to accommodate nonsensitive pages. However, naively growing

Figure 4.12: Average normalized execution time for SGX, Eleos, VAULT, and
VAULT+SMC4 (shown by SMC4) when the number of enclaves varies.

88

Figure 4.13: Comparison of different proposed methods.

the EPC leads to a large integrity tree and a significant capacity overhead for MACs. We

introduce VAULT that takes advantage of split counters to increase integrity tree arity

and reduce the intergity tree storage overhead from 12.5% to 1.6%. Furthermore, we use

a combination of compression and MAC sharing to reduce the MAC capacity overhead

from 12.5% to 3.2%. We observe that sharing a MAC across 4 or 8 cache lines represents

a sweet spot. Finally, we show that allocating MACs just for sensitive pages can further

reduce MAC overhead. The combination of all these proposals outperforms SGX by 3.7×

while imposing a 4.7% capacity overhead, in a single-enclave model.

CHAPTER 5

ITESP: COMPACT LEAKAGE-FREE SUPPORT

FOR INTEGRITY AND RELIABILITY

5.1 Introduction
The memory system is vulnerable to a wide range of attacks. One class of memory sys-

tem attacks, referred to as replay attacks, tries to modify memory contents, thus disrupting

the victim program’s execution. Such attacks can be carried out by a compromised OS, by

an attacker with physical access to the hardware, by coscheduled threads, or by malicious

agents in the supply-chain. It is clear that privileged execution (by a compromised OS) or a

custom memory module can modify any memory location; even a user-level coscheduled

thread can modify the victim’s memory space with a row hammer attack [101], [160]. More

recently, it was alleged that malicious chips in the motherboard have been used to imple-

ment a man-in-the-middle attack that manipulates memory responses and disrupts how

an OS boots up [148]. Given these many attack possibilities, it is important that a secure

system verify the integrity of data being fetched from external sources. Integrity verifica-

tion has therefore also been incorporated into the Memory Encryption Engine (MEE) used

in implementations of Intel® Software Guard Extensions (Intel® SGX) [62], [82], [120].

Integrity verification incurs a significant performance penalty. For workloads with

small working sets, integrity verification in MEE can impose a penalty of 1.8×, while larger

workloads can suffer slowdowns of over 5× [36], [140], [181]. In typical implementations,

a data block is verified by checking its associated message authentication code (MAC). To

prevent the attacker from replaying an older message and an older MAC, the generation

of the MAC involves a version number or counter. A tree of hash functions is then con-

structed over the counters [82], [149] and verified on every access. Integrity verification

(including protection from replay attacks) therefore imposes the following overheads on

every data block access: Fetching the MAC, fetching the counter, and fetching the integrity

90

tree ancestors of the counter. While some of these metadata structures can be effectively

cached and the latency hidden with speculation [106], [107], [152], it is the memory band-

width overheads of these additional accesses that contribute to most of the slowdown from

integrity verification.

Recent state-of-the-art solutions include VAULT [181], Morphable Counters [151], and

Synergy [152]. In particular, Synergy makes the observation that if the system uses ECC

DIMMs, an integrated solution for reliability and integrity can offer lower overheads.

It places the MAC in the space usually reserved for ECC. This allows the MAC to be

fetched to the processor without requiring a separate memory transaction. The MAC is

also effective at detecting run-time soft and hard errors with a very high probability. To

correct any discovered errors, a separate parity field per data block is maintained. While

this parity represents a storage overhead similar to the MAC, it is only accessed when the

corresponding data block is written, not when the data block is read. Synergy thus helped

reduce the average slowdown from 2.55× in VAULT to 2.3×.

Even though Synergy provided a significant advancement for memory integrity so-

lutions, it still suffers from the following issues: (i) a single integrity tree protects the

entire physical memory, which leads to interapplication interference, (ii) every data block

write requires a parity update in memory, and (iii) the parity update requires DRAM write

masking which is not supported on all systems. We dig into each of these drawbacks next.

Our study first analyzes the nature of metadata overheads imposed by modern im-

plementations of integrity verification. When a single integrity tree is constructed for all

pages in physical memory, a node in the integrity tree has descendants that can belong to

different applications. We show that this leads to reduced locality and higher interference

in the metadata cache. We demonstrate in Section 5.3.2 that the shared resources also create

potential side channels. We solve these issues by implementing a separate integrity tree

and metadata cache for each enclave. This requires a new level of indirection, mapping

enclave pages to consecutive leaves in its tree.

While the above approach yields a lower metadata cache miss rate, our analysis shows

that metadata misses are typically correlated, i.e., we often incur a miss for both the leaf

node and the MAC, resulting in two memory fetches. To combine these memory fetches

into one, we exploit an opportunity offered by Synergy. We first reduce the parity over-

91

head in Synergy by sharing the parity among multiple data blocks in different memory

ranks. This preserves the chipkill protection of Synergy with very high probability, while

reducing the parity footprint. However, updates to the parity field now require read-

modify-writes, similar to RAID-5. Therefore, shared parity by itself is not able to improve

upon the Synergy approach. We then observe that with shared parity, its footprint is small

enough that it can be embedded in the integrity tree. A leaf node in the tree is modified so

it handles half as many counters; this creates enough room to store the shared parity for

the corresponding data blocks. Thus, a single leaf node fetch provides both counters and

parity for a data block. A neat side effect of our approach is that unlike Synergy, we do not

need DRAM write masking, which is not supported in all commercially available systems.

Our solution thus addresses all three of the problems we identified in Synergy.

We carry out a detailed exploration of the design space for the proposed Isolated Tree

with Embedded Shared Parity (ITESP), considering different baselines, address mapping

policies, integrity trees, etc. The primary contributions are:

• We show that an MEE-like shared integrity tree can lead to inefficiency and leakage in

the metadata cache.

• With a new level of indirection, we introduce isolated trees and metadata caches per en-

clave to eliminate this side channel and improve metadata cache hit rate. Such isolation

improves the performance of Synergy by 39%.

• We then augment Synergy with parity sharing and parity caching. While this signif-

icantly reduces metadata storage, it slightly degrades performance because of parity

read-modify-write operations.

• We then design ITESP by including shared parity in the integrity tree. The unified data

structure leads to a lower penalty for metadata cache misses and boosts the improve-

ment over Synergy to 64%.

• We quantify the negligible impact of ITESP on reliability. We show that it offers the

same integrity guarantees as the baseline. By avoiding write masking, ITESP is compat-

ible with more systems. We confirm significant performance and energy improvements

for a variety of system configurations for 31 benchmarks drawn from 3 suites.

92

5.2 Background
5.2.1 Threat Model

We assume a threat model and security guarantee similar to popular memory security

techniques [62], [82], [120]. As in MEE, a region of memory or an “enclave” is assigned

to an application with confidentiality and integrity guarantees. In this paper, a guarantee

of integrity includes protection from replay attacks. The application’s enclave is thus

protected from integrity attacks from a compromised OS, from coscheduled threads, and

from modified hardware components. The memory controller provides confidentiality

with encryption/decryption when accessing data in the enclave. Integrity support is more

complicated.

Integrity guarantees that the data returned from memory matches the last write to

that location. Integrity of data can be verified by confirming its MAC. If an attacker has

the ability to precisely control a block, they can engage in a replay attack, where they

feed the processor an earlier valid block/MAC combination. For software attacks that

cause random bit flips, e.g., row hammer, a MAC per block is enough to provide integrity

protection. Gueron [82] states that the MEE threat model includes physical attacks where

a malicious memory module can perform a replay attack by precisely returning an older

block/MAC; to defend against such hardware attacks, as well as similar software attacks,

an integrity tree is required.

In addition to integrity support, we introduce defenses against a limited set of side

channels. coscheduled applications on a processor share a number of resources; such shar-

ing introduces side channels and vulnerabilities, e.g., in data/instruction caches [99], [193],

branch predictors [69], coherence directories [200]. As we show later, the shared integrity

tree and metadata cache can also be exploited by a coscheduled attacker to establish a

side channel and leak sensitive information from a victim program; we defend against

this particular side channel. The many other side channels in the system will have to be

defended by other complementary techniques [145], [194], [200].

5.2.2 Integrity Verification

To support integrity, every data block is associated with a MAC, which is essentially a

keyed hash of the data block. If an attacker tampers with data, the hash on the new block

93

will likely not match the MAC retrieved from memory. To prevent replay attacks, where an

attacker returns an old version of data/MAC, every data block is associated with a version

number or counter that is used in the encryption function. An integrity tree is formed

where the counters form the leaves and every parent node is a hash of the child nodes. To

confirm that a correct counter has been returned from memory, the ancestor nodes of the

counter are fetched until a cache hit is encountered, and the hashes are confirmed.

We assume a data block size of 64 bytes, a MAC per data block of 8 bytes, and an ECC

per data block of 8 bytes. On an ECC DIMM, a 64B data fetch is accompanied by the 8B

ECC; the MAC is fetched with a separate memory transaction that brings in 8 MACs for 8

consecutive data blocks (and its ECC). Similarly, each node of the integrity tree is 64B (plus

ECC) and requires a separate memory transaction.

SGX uses a different integrity tree organization, called MEE [82], where the linkage

between parent and child node is formed by hashing the child node and a counter in the

parent node; the hash is then placed in the child node. This approach offers higher arity

and therefore a more compact tree. VAULT [181] improves upon the MEE integrity tree

organization by decomposing the counter in a node into a small local counter and a larger

shared counter (an idea also used in the BMT [149]). This further improves the arity of the

tree and shrinks its depth. Morphable Counters [151] observes locality in counter values

and adjusts the shared global counter value; this keeps the overflow rate low even for few-

bit local counters. The smaller local counter size leads to higher arity. In our analysis, we

assume baselines with integrity trees modeled after both VAULT and Morphable Counters.

Most prior work has cached parts of these additional data structures in the LLC or

separate caches [106]. The MACs exhibit limited temporal locality, i.e., if the data block

has a miss in the LLC, its MAC is also likely to miss in a MAC cache. But the MAC cache

can exploit spatial locality because a single 64-byte entry in the MAC cache accommodates

MACs for eight consecutive cache lines. Similarly, an integrity tree cache entry also ex-

ploits spatial locality. Misses for lower levels of the tree (leaf nodes) are much more likely

than misses for higher levels.

The key takeaway is that in addition to the data blocks themselves, two additional data

structures have to be managed: the MAC per block and the integrity tree. When the data

block is not found in the LLC, barring spatial locality opportunities, there is a high chance

94

that the block’s counter and MAC will also not be found on-chip, thus requiring two more

memory fetches.

5.2.3 Synergy

In the Synergy proposal, Saileshwar et al. [152] observed that enterprise systems pro-

viding integrity guarantees are also likely to provide high reliability with ECC DIMMs.

Thanks to the additional storage and bandwidth in such DIMMs, every 64-byte data block

transfer is accompanied by 8 bytes of metadata. Instead of placing ECC in the 8-byte

metadata field, Synergy places the MAC in that field. Figure 5.1 shows how data and

metadata are organized for a baseline memory system and for Synergy [152]. In the

baseline, the 8-byte metadata field accompanying every 64-byte data block is responsible

for error detection and correction, while the data block’s 8-byte MAC is stored elsewhere

in memory.

In Synergy, the 8-byte field accompanying every 64-byte data block stores the MAC.

When a block is read, integrity verification is enough to confirm with a very high prob-

ability that the block is free of soft and hard errors. When an error does occur, separate

metadata stored elsewhere in memory is required for correction. Synergy implements this

as a 64-bit parity field, as shown in Figure 5.1. The first parity bit captures the parity of

Chip

0

Chip

1

Chip

2

Chip

3

Chip

4

Chip

5

Chip

6

Chip

7

Chip

8

64 bytes of Data
64b

ECC

64b MAC

Chip

0

Chip

1

Chip

2

Chip

3

Chip

4

Chip

5

Chip

6

Chip

7

Chip

8

64 bytes of Data
64b

MAC

Elsewhere in memory

64b parity Elsewhere in memory

Pin 0
Pin 0

Pin 0
Pin 0 Pin 0

Pin 0
Pin 0

Pin 0
Pin 0

XOR

(a) Conventional system

(b) Synergy

Pin0/Beat0, Pin1/Beat0, … Pin7/Beat0

Pin0/Beat1, Pin1/Beat1, … Pin7/Beat1

…

Pin0/Beat7, Pin1/Beat7, … Pin7/Beat7

Figure 5.1: Data organization in baseline memory and Synergy.

95

pin 0 from all DRAM chips in the rank for the first beat;1 the other 63 parity bits similarly

capture other pins and/or other beats. This enables recovery for up to 8 pins, i.e., recovery

is possible for an entire×8 chip2 failure (chipkill). The correction procedure walks through

every failure possibility until the corrected block has a matching MAC. While the latency

of each correction is high, its overall impact on performance is negligible given the very

low DRAM error rates [171], [172].

When writing a block, its parity also has to be updated. This requires a separate write

to another memory location. DDR protocols allow write-masking, i.e., it is possible to only

modify 64-bits of a 64-byte line, but such a transaction requires that the memory channel be

occupied for all 8 beats, as if a 64-byte line is being written. A write in Synergy is therefore

no more efficient than the baseline which also requires an additional 64-bit write for the

MAC. Synergy’s improvement stems from its efficient reads; the MAC is included in the

72 bytes fetched on a block access, and it is used for both integrity verification and error

detection.

To provide chipkill support for the integrity tree nodes, Synergy stores the correspond-

ing parity blocks in the ECC chip along with the tree node blocks in the same memory

rank. Therefore, for read and write requests, only one memory access is required to fetch

one block of tree nodes along with its parity block. For error detection and integrity

verification, MAC values embedded inside the tree node blocks are employed; the corre-

sponding parity blocks – which are fetched along with tree node blocks – are used for error

correction. Hence, whether or not there is any mismatch in the MAC values, to provide

integrity verification and chipkill support for tree node blocks no extra memory access is

required.

The Synergy approach relies on write masking so that only the parity bits of a modified

block can be updated. Some systems [19], [29] disable write masking for ECC DIMMs,

presumably to allow a class of ECC where the data/ECC code span multiple beats. Write

masking is also disabled in DIMMs that employ ×4 chips because of restrictions on how

DIMM pins are shared [124]. Thus, while Synergy works correctly and effectively in

1A rank is the set of DRAM chips involved in accessing one data block. DDR memory systems transfer
data at both rising and falling edges of the clock. Each edge is referred to as a beat.

2A ×8 chip has 8 in/out data pins and handles 8 bits on every clock beat.

96

theory, it is not compatible with all systems. Our proposed solution does not require write

masking.

5.2.4 Motivation

A key drawback in prior work is that they implement a single integrity tree for all

physical pages, leading to interapplication interference. They also implement separate

data structures for the tree and for MAC/parity, leading to more memory accesses. We

analyze these two drawbacks here.

We first assume a VAULT baseline because it stores both MAC and tree in the metadata

caches. Details of the simulation methodology are in Section 5.4. We consider two models

here: (i) Large, where the integrity tree is constructed on the entire 128 GB physical mem-

ory and 4 programs are executed with a shared 64 KB metadata cache, and (ii) Small, where

we assume a single program mapped to 32 GB physical memory and 16 KB metadata

cache.

Figure 5.2 quantifies how metadata block utilization goes up significantly as we move

from the Large to the Small model. The left Y-axis shows the hits per metadata block for

the two configurations, while the right Y-axis shows the metadata cache hit rate for the

Large model. On average, we see that the usefulness of a metadata block is 2.1× lower

in the Large multiprogrammed model. This is because of two reasons: less spatial locality

per block because it often includes metadata from multiple programs, and conflict misses

caused by multiprogrammed interference.

Figure 5.3 shows the nature of metadata accesses triggered for every data block miss in

the LLC. For both models, a significant fraction of data misses do not trigger any metadata

accesses because of spatial locality. For another significant fraction (about 30% for both

Large and Small) of data misses, both MAC and counter are not found in the metadata

cache, i.e., these misses are usually correlated. The distribution of these correlated misses

is a little different in both models. In Large, the higher levels of the tree experience more

misses because of multiprogrammed interference (shown in Case H), whereas in Small, the

leaf node miss is usually accompanied by a miss for the parent alone (Case G), or parent

and grandparent (Case H) nodes.

We observed similar trends in Synergy as well (not shown for space reasons). This

97

Figure 5.2: Metadata block utilization while in cache in VAULT (left Y-axis) and metadata
cache hit rate (right Y-axis).

Figure 5.3: Breakdown of metadata access patterns.

analysis helps us understand the two main causes of metadata overheads. The take-home

from Figure 5.2 is that interprogram interference greatly diminishes the utility of metadata

cache entries. Figure 5.3 shows that because of multiple separate metadata structures, data

block misses often require multiple metadata memory accesses.

5.3 Isolated Tree with Embedded Shared Parity
5.3.1 Isolated Metadata

• Problem. MEE implements a single integrity tree for its Enclave Page Cache (EPC)

region of physical memory, including pages from multiple enclaves. This can lead to

inefficiency in the metadata cache because of interprogram conflict misses and because

of reduced spatial locality per node. A second problem is that shared metadata and

98

resources can be used to establish a potential side channel between two programs.

Consider the following simple covert channel established between two programs A and

B. Program A can touch a set of pages, thus bringing their counters into the metadata

cache. When Program B runs, it touches a set of pages such that their counters displace

some of A’s counters from the metadata cache.3 When A runs, it touches the same set

of pages again and uses the access latency to determine the displaced set of counters.

Depending on the fidelity of the measurements, every such exchange can transmit a few

bits of information between the two programs. In addition to using the shared metadata

cache, the shared tree can also be used to exchange information. When a local counter

in a tree node overflows, the global counter is updated, and all child nodes have to be

read and reencrypted. If A and B share counters in a node, A can issue a series of writes

to its block, triggering a local counter overflow and a reencryption process for all blocks

handled by that node, including those belonging to B. B detects this action of A when

it tries to access its block and experiences a longer than usual latency because it has to

wait for reencryption to complete. Thus, a shared tree and shared metadata cache can

both create separate side channels.

• Proposed Solution. To address the efficiency and leakage problems, we propose to

implement isolated integrity trees and metadata caches for each protected enclave in

the system. Figure 5.4 shows the tree and metadata cache for the baseline and proposed

approaches. The isolated trees only share the root node that always remains on the

processor. In the baseline system, the physical page number is used to determine the

integrity tree leaf-id for that page. Since physical pages of different enclaves are inter-

mingled, we can no longer use the physical page number to determine the page’s leaf-id.

We can also not use the virtual page number because an enclave may be composed of

multiple threads with private and shared pages, both of which can cause different forms

of aliasing. We must therefore explicitly assign leaf-ids to every physical page within

an enclave. This leaf-id assignment process is rolled into the duties of the memory

management unit; when it assigns a free physical page to an enclave, it also assigns

3Similar to prior attacks [86], this assumes that in a prior setup process, the two programs have synchro-
nized their timing and identified pages that create conflicts with each other in the metadata cache.

99

VIRTUAL PAGE PHYSICAL PAGE LEAF ID

0 592 0

… … …

39 1823 1

… … …

1431 27 2

Baseline integrity tree with

interspersed physical pages

from multiple apps .

Parent nodes and higher cover

pages from multiple apps.

Root

Isolated Integrity Trees per app

Metadata

Cache

4 Metadata

Caches

Figure 5.4: Isolated integrity tree. Baseline integrity tree and metadata cache for 4 apps
(top). Isolated integrity trees and metadata caches (bottom).

a free leaf-id to that page, which is then tracked in the page table and TLB. Since leaf-ids

are assigned in the order that pages are touched, they benefit from the locality exhibited

in their virtual addresses. When pages are reclaimed, the list of free leaf-ids is also

updated. Further, the metadata cache is partitioned into private metadata caches, one

per enclave. The enclave-id is used to access a specific partition of the metadata cache.

Depending on the integrity tree implementation and page interleaving across multiple

memory channels, the counters for the blocks in a physical page may be mapped to

multiple leaf nodes in a tree. The leaf-id is a pointer to the first such node and the page

offset is used to compute the exact location of a counter for each block in that page.

With this first extension to the baseline, we improve locality in the metadata cache, while

also eliminating two sources of side channels.

100

5.3.2 Covert Channel Demonstration

In this section, we demonstrate how a shared integrity tree can be exploited to establish

a covert channel between two colluding processes. As we describe shortly, this approach

can form the basis for a number of attacks. Our experimental platform uses an SGX v1

Intel®i5-7500 CPU at 3.4 GHz and Linux kernel version 4.15.0-54-generic.4 Other cache-

and memory-based side-channels are easier to exploit on this system. This new attack

may only become relevant if other higher-bandwidth side-channels are addressed. Thus,

this work adds to the growing list of known side channels that future secure processors

must attempt to eliminate.

In our setup, the pages of an attacker enclave and victim enclave are interleaved, i.e.,

integrity tree nodes (Level 1 and above [82]) are shared by both enclaves. The attacker

enclave first fills the metadata cache with irrelevant entries, the victim enclave then exe-

cutes, followed by the attacker enclave. If the attacker enclave experiences a low latency, it

implies that several metadata cache hits were encountered, i.e., the victim enclave touched

a number of pages and warmed up the metadata cache with entries shared by both en-

claves. This establishes a channel between the victim and attacker: a “1” is transmitted

when the victim is memory-intensive and the attacker experiences low latencies, while a

“0” is transmitted when the victim is non-memory-intensive and the attacker experiences

high latencies. This is demonstrated in Figure 5.5 and we describe the methodology details

below.

To enable different page placements within the EPC, we modify the kernel module

to initialize the free list in a specific order. Upon enclave creation, the requested pages

are then mapped to the specific intended locations within the EPC. We developed a high

resolution timer for SGX to take measurements. As shown in Figure 5.5A, the attacker

places a dummy data structure D at one end of the EPC. Accesses to D are used to clear

other relevant entries from the metadata cache. The attacker has another data structure A,

while the victim has a data structure V. The physical pages of A and V are interleaved.

Figure 5.5A shows the latencies experienced by the attacker when the victim is trans-

4Performance results are based on testing as of 2/14/2020 and may not reflect all publicly available security
updates. No product can be absolutely secure. For more complete information about performance and
benchmark results, visit www.intel.com/benchmarks.

101

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

8 16 32 64 128 256 512 1024 2048

M
e

m
o

ry
 l
a

te
n

cy
 (

cy
cl

e
s)

 f
o

r
th

e

a
tt

a
ck

e
r

w
h

e
n

 a
cc

e
ss

in
g

 X
 b

lo
ck

s.

Number of blocks touched by the victim and attacker to transmit 1 bit

Non-Memory-Intensive

Memory-intensive

EPC

Pages for D Interleaved pages for A

and V

Integrity Tree

EPC

Pages for D

Integrity Tree

Pages for A Pages for V

Example attacks where the victim code

betrays the secret through the memory

access pattern. The victim code may

naturally exhibit this leakage or its control

flow may be manipulated as in Spectre v2.

R2 secret

…

Loop R2 times

access EPC memory

(secret revealed by the duration

that victim transmits 1)

R2 secret

…

load [R2]

(secret revealed by the attacker page

that encounters a metadata cache hit)

Level 1

A. B.
C.

Victim transmitting 0

Victim transmitting 1
0

100000

200000

300000

400000

500000

600000

700000

8 16 32 64 128 256 512 1024 2048

M
e

m
o

ry
 l
a

te
n

cy
 (

cy
cl

e
s)

 f
o

r
th

e

a
tt

a
ck

e
r

w
h

e
n

 a
cc

e
ss

in
g

 X
 b

lo
ck

s.

Number of blocks touched by the victim and attacker to transmit 1 bit

Non-mem-intensive

Memory-intensive

Victim transmitting 1

Victim transmitting 0

Figure 5.5: Covert channel demonstrated on an SGX v1 system. Observed latencies by the
attacker and victim enclaves when pages are interleaved (A) or isolated (B). Two example
victim code vulnerabilities (C) are also shown.

mitting 0 (blue line) and 1 (red line). We take 10 measurements and show the range of

measured latencies. The graph also varies the number of blocks touched by the victim

and attacker on the X axis. By touching more blocks per measurement, we improve the

fidelity of the data transmission, i.e., the latency ranges are less noisy and do not overlap,

but this also reduces the covert channel bandwidth. We see that by accessing 256 blocks,

a reliable channel with 18 Kbps bandwidth can be established. This channel demonstrates

that the performance of one enclave is affected by the behavior of the other enclave when

they share the integrity tree and metadata caches.

Figure 5.5B shows how the red and blue lines effectively converge when the attacker

and victim pages are not interleaved. Of course, this is not perfect isolation because the two

enclaves will share higher level nodes of the tree. Since the OS is untrusted, we also cannot

rely on the OS to isolate each enclave’s physical pages. The previous section therefore

introduces hardware-managed leaf-ids to implement isolated trees for each enclave.

The covert channel setup is a demonstration of a leakage mechanism. To expose secrets,

a complete attack must be developed upon the leakage mechanism, and this attack can

take many forms. For example, malware within a VM can use the covert channel to

exfiltrate secrets to a coscheduled VM. Alternatively, a victim program’s memory intensity

or memory access pattern can betray the secret (see examples in Figure 5.5C). Similar to the

Spectre attacks [99], the attacker can force such leakage by causing the victim program to

speculatively jump to leaky code after the secret is loaded in a specific register. In Spectre,

the secret value is used as the address for a load; the resulting data cache miss within the

102

attacker reveals the cache index and therefore the secret value. The first example in Fig-

ure 5.5C uses a similar approach, but the attacker detects a metadata cache hit on a specific

page to learn the secret. The second example in Figure 5.5C executes a memory-intensive

loop for a duration that is a function of the secret. The attacker measures the duration that

it receives a 1 on its channel to learn the secret.

5.3.3 Caching Shared Parity

• Problem. In Synergy, the parity field is updated on every write. This separate data

structure incurs a significant overhead in terms of both memory capacity and memory

bandwidth. It also requires Write Masking.

• Parity Cache. A first approach to reducing the write overhead is to cache the parity fields

in an on-chip parity cache. In case of spatial locality, an entry of the parity cache stores

updated parity fields for consecutive blocks. When a block of parity fields is evicted

from the parity cache, a single block write to memory can update the parity fields for

up to 8 data blocks. Note that the parity cache is never updated by reads from memory,

i.e., it simply serves as a coalescing write buffer. As we show later in Section 5.5, adding

such a 16 KB parity cache to Synergy yields an improvement of 3%.

• Parity Sharing. In baseline Synergy, there is one 64-bit parity field for every 64-byte

data block. To increase the effectiveness of the parity cache, we next try to increase the

coverage of each parity field. We XOR the parity fields for N different blocks to yield

one 64-bit parity field for 64N bytes of data. This lowers the storage overhead for parity

and has the potential to improve its cacheability and degree of coalescing. The N data

blocks sharing a parity field must be from different memory ranks, i.e., they do not

share the same DRAM chip pins. With such an approach, when a block is read from

a rank and an error is detected, we can correct the error while assuming that the other

N− 1 blocks sharing the parity are error-free. The error correction fails only when two+

independent errors happen simultaneously in similar locations of different ranks, which

is a rare event. As we show with a detailed reliability analysis in Section 5.3.7, even this

impact can be mitigated.

• Parity Read-Modify-Write. Shared parity has one significant drawback. Without shar-

103

ing, the parity field for a data block being written can be directly computed. With

sharing, the new parity field requires a read-modify-write, similar to how updates are

done in RAID-3/4/5, i.e., the new parity field depends on the old parity field and the

old/new values for the data block. Therefore, the parity cache must keep track of how

a block’s parity has changed; when the parity cache entry is evicted, it must read the

old parity from memory, apply the parity diff, and then write the new parity back to

memory. As we show in our results, even the high coverage of a shared parity cache

cannot overcome the penalty of the parity read-modify-write.

5.3.4 Embedding Parity in the Integrity Tree

Shared parity requires a read-modify-write and does not reduce bandwidth overheads.

However, shared parity and its lower footprint have another benefit that we next exploit.

• Opportunity. With sharing, the storage overhead for parity very closely resembles that

for the counters. This presents an opportunity to create an effective combined data

structure. Note that in all past systems, because of their different sizes, the two data

structures (MAC/parity and counter/tree) are distinct, and separate memory fetches

are required for the MAC/parity and for the counters/tree.

• Counter+Parity. A block of counters in the VAULT baseline, shown in Figure 5.6, has

a 64-bit shared global counter, 64 6-bit local counters, and a 64-bit hash. If we reduce

the number of local counters, we can create room for a few parity fields. Figure 5.6

shows an example organization that has a 64-bit shared global counter, 32 8-bit local

counters, a 64-bit hash, and 2 64-bit parity fields. If each parity field is shared by 16 data

blocks, this metadata block contains both counter and parity information for 32 data

blocks. Another relevant organization, also shown in Figure 5.6, is one with 32 4-bit

local counters and 4 64-bit parity fields, while sharing parity among 8 blocks.

Such unification of counter and MAC/parity was not possible in prior systems where the

MAC/parity had a larger overhead than the counters. While parity sharing by itself was not

effective, it enabled a lower parity footprint and the effective unification of counter and parity

metadata, which is a significant improvement over the Synergy baseline.

• Larger Tree. The proposed change only applies to the leaf level of the tree. One down-

104

GC

GC

GC

GC

C0 C1 C2 C63 Hash

Hash C0

Hash

Hash

C0 C0 C31 PB0 PB1

C31C0 C1 PB0 PB1 PB2 PB3

C0

C0

PB0

…

…

…

VAULT

ITESP

16-rank sharing

ITESP

8-rank sharing

64-bit Global Counter

64-bit Hash

64-bit Parity Field

6-bit Local Counter

8-bit Local Counter

4-bit Local Counter

Figure 5.6: A block of counters in VAULT and ITESP.

side is that the total number of leaf nodes in the tree has doubled. In essence, the tree

has a larger footprint because it also packs in the parity information. We refer to this

larger integrity/parity tree as ITESP. While this may impact the tree’s cacheability, note

that we now only need a single larger metadata cache per enclave instead of separate

caches per enclave for counters and parity.

• Higher Arity Baselines. The proposed organization also applies to other baselines, e.g.,

Morphable Counters. Figure 5.7 summarizes a Synergy-like baseline with Morphable

Counters (SYN128) and two ITESP designs (ITESP64 and ITESP128), that introduce a

trade-off between local counter overflow and metadata cacheability, which we quantify

in Section 5.5.

5.3.5 Implementation Details

• Write Masking. Many systems [19], [29], [124] disable write masking for various

DIMMs, i.e., Synergy cannot be deployed on all systems. ITESP performs counter/parity

reads and writes at block granularity and does not require write masking.

Figure 5.7: Different integrity trees with Morphable Counters: (a) SYN128: Arity of 128
throughout; (b) ITESP 64: Arity of 64 at leaf level and 128 at other levels; (c) ITESP 128:
Arity of 128 throughout.

105

• Controller Complexity. ITESP implements a separate metadata cache per enclave.

Once shared parity is embedded in the block of counters, it is fetched into the metadata

cache, updated, and directly written into memory upon eviction. When a clean data

block (as ascertained by the tag access) is being written, the block must be first read and

“subtracted” out of its parity with an XOR operation. When a dirty data block is being

evicted, it undergoes another XOR operation so it is “added” to the parity. In short,

the parity update requires XORs involving the data block when it is first modified and

when it is evicted. Isolated trees introduce an additional field in the page tables and

TLBs to track the leaf-id for a physical page. The OS software that manages the list of

free pages must also manage the list of free leaf-ids within each tree. A malicious OS

cannot introduce a side channel through the integrity tree because the hardware uses

the enclave-id to isolate each integrity tree.

• Storage Overhead. ITESP reduces the storage requirements for metadata. Table 5.1

summarizes the metadata requirements for Synergy and ITESP. Parity sharing with

ITESP is more helpful for DIMMs with ×16 chips that need a larger parity for chipkill

protection.

• Address Mapping. With ITESP, address mapping policies can noticeably impact per-

formance. This is because the address mapping policy impacts row buffer locality,

parallelism, and metadata cache locality. To exploit metadata cache locality, consecutive

cache lines must share a global counter and parity. These consecutive cache lines must

also be mapped to different ranks to enable chipkill. This means that blocks sharing a

row buffer have a stride of N and yield a lower row buffer hit rate than the baseline. We

evaluate these trade-offs in Section 5.5 and find an address mapping policy that balances

these competing forces. In essence, four consecutive cache blocks are placed in a single

Table 5.1: Metadata memory capacity overheads.

Organization Integrity Tree MAC/Parity Total
VAULT 1.6% 12.5% 14.1%

Synergy128, ×8 chips 0.8% 12.5% 13.3%
Synergy128, ×16 chips 0.8% 25% 25.8%

ITESP64 1.6% 0 1.6%
ITESP128 0.8% 0 0.8%

106

bank and row buffer to promote row buffer hit rates. These four cache blocks must map

to different parities. But since a leaf node may contain four parities, these blocks can

share a leaf node, thus achieving a high metadata cache hit rate as well.

• Metadata Cache Partitions. In this study, we assume that the metadata cache is uni-

formly partitioned across a fixed number of enclaves. To support a dynamic number

of enclaves and varying working sets, additional hardware support similar to com-

mercially available Cache Allocation Technology [137] is required. The hardware, in

addition to tracking various metadata per enclave, must also have registers to track the

enclave’s allocated range of metadata cache indices.

5.3.6 Security Analysis

The proposed changes have no impact on the system’s integrity guarantees. Shared

parity only has an impact on error correction capabilities, which is discussed in the next

subsection. When parity is embedded in the tree, as shown in Figures 5.6 and 5.7, we are

only changing the number of counters per node (and in turn, the number of nodes) or the

size of local counters. Both of these changes impact efficiency, i.e., the metadata cache hit

rate or the overflow rate, respectively. The size of the hash is unchanged, while the size

of the overall counter remains in the 66-72 bit range, which negligibly impacts the hash

collision rate.

We will state this more formally here, assuming that counters with 66-72 bits are equally

effective at confirming hashes. Integrity is verified by confirming the following two

equations: MAC = f (Data, Counter, Key) and Hash = g(Lea f node, Parentcounter, Key′).

Relative to prior work, ITESP does not make any change to the Data, Counter, Key,

Parentcounter, and Key′ fields. It modifies the organization of the Lea f node by removing

neighbor Counter elements and adding Parity fields. Because the Lea f node includes the

block’s Counter value (as in the baseline), the probability of identifying a replay attack

is nearly identical to that of the baseline, i.e., any unexpected/malicious change to the

Counter will result in a highly likely Hash mismatch. The Parity field within the Lea f node

plays no role in detecting integrity violations; it can be viewed as padding before the

Lea f node is sent through the hash function.

As described earlier, when an integrity tree includes interspersed pages from multiple

107

enclaves, a tree node has counters influenced by multiple enclaves. When one enclave

accesses its data, a tree node (shared by multiple enclaves) may be brought to the metadata

cache or may have to handle a local counter overflow. This affects the latency for another

enclave that is also handled by the same node. The latency for an enclave’s memory access

is a function of (i) hits in its metadata cache, (ii) counter values in its own integrity tree, and

(iii) contention at the memory controller. Isolation of the metadata cache and tree removes

any leakage between enclaves from the first two sources. A shared memory controller is a

separate potential leakage source (with or without integrity support) and will have to be

eliminated with complementary techniques [71], [162], [189], [191], [192].

5.3.7 Reliability Analysis

Next, we evaluate the impact of shared parity on system reliability. When multiple

blocks share parity, if the blocks are from the same rank, the parity function will involve

multiple bits from each DRAM chip, thus preventing reconstruction when a chip fails.

Therefore, the multiple blocks must be from different ranks. If we assume that only a single

chip can have an error (either hard or soft) at a time, the supported reliability is exactly the

same as the baseline Synergy. When errors happen concurrently and independently on

at least two different chips in a single rank, Synergy is unable to correct that error. The

proposed ITESP approach also fails when errors happen concurrently and independently

on at least two different chips in the entire memory. We are thus offering weaker reliability

than Synergy in the case where at least two different chips in different ranks have concur-

rent and independent errors. Note that the probability of multiple independent errors is

relatively small; further, if there is a background scrubbing process [158] that detects and

corrects errors every few minutes, the probability of independent errors happening within

a few minutes is even smaller. This is what we quantify in Table 5.2.

Error detection in ITESP and in baseline Synergy rely on the same MAC, so error

detection capabilities are unaffected. Since multiple different blocks can hash to the same

MAC (a conflict), there is a small probability of an error going undetected, leading to silent

data corruption (SDC). Since the SDC rate of ITESP is the same as that of Synergy, we refer

readers to the SDC analysis in the Synergy paper. To eliminate SDC for the common 1-bit

error case, we can employ a 63-bit MAC and a 1-bit parity.

108

Table 5.2: Summary of SDC and DUE rates per billion hours for Synergy and ITESP.

Case Synergy ITESP

Case 1: SDC Rate 10−15 10−15

Case 2: SDC Rate 10−20 10−18

Case 3: DUE Rate 10−14 10−14

Case 4: DUE Rate 10−2 1

The analysis below assumes a scrub rate of 1 hour, i.e., concurrent independent errors

are possible only when they manifest within the same hour. We base our DRAM failure

rates on the empirical study of Sridharan and Liberty [171].

• Case 1: SDC: A corrupted block with matching MAC during detection. The proba-

bility of a MAC conflict is 2−64, i.e., less than 10−19. A DRAM device has a FIT rate of

66.1 [171]. Assuming 288 DRAM devices in a memory system, this leads to an SDC rate

of 288× 66.1× 2−64, i.e., less than 10−15 in every billion hours of operation. This rate is

the same in both Synergy and ITESP.

• Case 2: SDC: A corrupted block with matching MAC during correction. This happens

when independent errors happen in two devices, the error is detected, and correction

is declared a success because a matching MAC is found. For Synergy, the rate for

a concurrent multidevice error in a rank is 288 × 8 × 66.12 × 10−9 per billion hours,

assuming a 9-device rank. The probability of a MAC conflict is 9× 2−64 (since 9 MACs

are computed during correction). The SDC rate would therefore be less than 10−20 in

every billion hours of operation in Synergy. With ITESP, the probability of a multidevice

error scales up linearly with the number of devices involved in correction. Assuming

288 devices in the memory system, the SDC rate would be less than 10−18 in every billion

hours of operation.

• Case 3: DUE: Multiple valid MACs during single error correction. When a single

device fails, correction should be possible, but if more than one of the nine MAC checks

succeeds, it is not possible to isolate the erroneous device and the error goes uncorrected.

The rate for this occurrence is 288× 66× 8× 2−64, i.e., less than 10−14 per billion hours

of operation. This is the same for Synergy and ITESP.

109

• Case 4: DUE: multichip error and no matching MACs. This is the common case during

a multichip error, where all 9 MAC check attempts fail. The occurrence rate is that of two

independent concurrent errors in the same rank in Synergy, i.e., 288× 66× 66× 10−9× 8,

less than 10−2 per billion hours. In ITESP, the two independent errors can happen in

any two chips, for an occurrence rate of 288× 66× 66× 10−9× 287, less than 1 per billion

hours of operation.

Thus, Case 4 is the only noticeable degradation in reliability. While a single DUE per

billion hours of operation for a memory system is already very low, it would be helpful to

add more features that can reduce the error rate by two orders of magnitude, in line with

that offered by baseline Synergy. One way to achieve that lower error rate is to trigger a

scrub operation as soon as any error is detected (and likely corrected). Since every rank

is typically accessed within a microsecond window, a chip-level failure will be detected

within that window, triggering a correction and subsequent scrub. This would shrink

the window for multierror incidence from an hour to a few seconds, thus lowering its

probability by three orders of magnitude.

5.4 Methodology
We evaluate our techniques on 31 workloads, including 15 from SPEC2017 [49], 6

from GAP [45], and 10 from NAS [41]. We use Pin [113] to generate virtual address

traces for these workloads; we use page table dumps to convert these virtual address

traces into physical address traces so we accurately capture how multiprogrammed work-

loads have interspersed physical pages in the baseline. For most of our analysis, we

focus on 4-program executions, where we execute 4 instances of the same program. After

fast-forwarding to the region of interest and warming up the caches, we collect traces

for five million memory reads and writes per program. The generated traces are fed to

USIMM [54], a trace-based cycle-accurate memory simulator. Tables 5.3 and 5.4 show

the specifications of our simulator and our benchmarks, respectively. We also identify the

15 most memory-intensive benchmarks in Table 5.4 that are the target of our proposed

techniques. For a 128-arity tree, a local counter overflow incurs an overhead of 4K cycles.

For our energy evaluation, we use Micron power calculator [9] to estimate the power of

each memory chip. System energy is estimated with similar assumptions as the Memory

110

Table 5.3: Simulator parameters.

Pin Traces 4 cores, filtered by 8MB LLC
Simulation ROB/width 64 entry/4-wide
MAC/parity/counter $ 64KB shared by 4 cores

DDR3 Micron DDR3-1600 [16],
Baseline DRAM 64GB, 1 Channel, 16 ranks

Mem. Rd/Wr Queue 48/48 entries per channel
DRAM tRC = 39, tRCD = 11, tRAS = 28,
timing tFAW = 20, tWR = 12, tRP = 11,

Parameters tRTRS = 2, tCAS = 11, tRTP = 6,
(DRAM cycles) tCCD = 4, tWTR = 6, tRRD = 5,

tREFI = 7.8µs, tRFC = 640 ns

Table 5.4: Benchmark specifications. The 15 most memory-intensive benchmarks are
shown in bold font.

SPEC2017 GAP
Name Working

Set
(MB)

Name Working
Set

(MB)
perlbench 48 bc 12654

gcc 6425 bfs 8179
bwaves 10763 cc 6326

mcf 1760 sssp 1884
cactuBSSN 6476 pr 6530

namd 239 tc 9746
lbm 42 NAS

omnetpp 3210 bt 2.6K
xalancbmk 156 cg 9K

cam4 168 ep 24
deepsjeng 6976 lu 2.7K

imagick 3245 ua 4.2K
fotonik3d 310 is 1K

roms 76 mg 15K
xz 7370 sp 2.7K

ft 137
dc 100

Scheduling Championship that factor in CPU/memory utilization. Most of our results are

for a 4-core system and a single memory channel. We also show a sensitivity analysis for a

number of parameters: core count, channel count, metadata cache organizations, address

mapping, etc.

For the baseline, we assume 64 KB for a shared security/reliability metadata cache

total for 4 cores; ITESP uses 16 KB metadata cache per core; we also perform a sensi-

111

tivity analysis for the metadata cache size. Note that prior work has already shown that

separate metadata caches work better than placing metadata in a larger LLC [152]. In

the secure baseline (VAULT [181]), a 32 KB cache is used to store counters and integrity

tree nodes, while a second 32 KB cache stores the most recently accessed MACs. In this

configuration, reliability metadata is transferred along with data and stored in the 9th chip

of an ECC DIMM. Baseline Synergy assumes a single 64 KB cache to store most-recently

used counters and integrity tree nodes. When we augment Synergy with a parity cache,

the metadata cache is split into two 32 KB caches, one for parity and one for counter/tree

nodes. The parity cache is not filled by blocks read from memory; it simply stores 64-bit

parities for recently written blocks; this helps coalesce multiple parity writes into a single

parity block write when the block is evicted from the parity cache; this cache needs 8 valid

bits per block to indicate dirty parity words per block. When a block is evicted from the

parity cache, we use Masked Write Transfer (MWT) [8] to write only the updated portions

back to the memory. In the proposed ITESP organization, a 16 KB metadata cache per

enclave is used to store metadata blocks that include both counters and parity.

5.5 Results
In Section 5.5.1, we first examine performance and energy improvements for a baseline

that integrates the Synergy and ITESP techniques into an integrity tree modeled after

VAULT [181], i.e., an integrity tree with variable arity (arity of 64 for leaf level, 32 for

parent level, and 16 for grandparent level). We then discuss performance and energy for a

baseline that integrates the Synergy and ITESP techniques into an integrity tree modeled

with Morphable counters [151], i.e., a tree with even higher arity (64 and 128) and small

local counters susceptible to high overflow rates.

5.5.1 ITESP for VAULT and Synergy Baselines

Figure 5.8 shows the execution time for the most relevant systems, all normalized

against a nonsecure baseline. For completeness, we show results for all 31 benchmarks, but

for most of our discussion, we will report improvements for our 15 most memory-intensive

benchmarks, indicated in Table 5.4. The integrity trees in this analysis are similar to

VAULT, with arity of 64, 32, and 16 for the three lowest levels. To explain these results,

112

Figure 5.8: Execution time for the secure VAULT baseline, Vault with isolated trees and
metadata caches (ITVAULT), VAULT+Synergy baseline (SYNERGY), VAULT and Synergy
with isolation (ITSYNERGY), ITSYNERGY with a parity cache, ITSYNERGY with shared
parity (no parity cache), ITSYNERGY with shared parity and a parity cache, and the
proposed ITESP, all normalized to the nonsecure baseline. Assumes 4 cores and 1 memory
channel. The benchmarks are organized by the suite.

Figure 5.9 shows the metadata overhead imposed by the most relevant models on every

memory read and write. We confirm that similar to prior work, the Synergy baseline is

13.5% better than the VAULT baseline (Figure 5.8), with 20% lower metadata overhead

(Figure 5.9). Note that the parity write traffic in baseline Synergy is high because it isn’t

cached.

It is worth mentioning that the average execution time for the VAULT technique –

shown in Figure 5.8 – is slightly higher than what we have reported in Subsection 4.5.

The reason is that the applications examined in the ITESP experiments are more memory-

intensive compared with the ones used in Subsection 4.5, which leads to higher overhead

for security features. The differences become wider when the ITESP results for the 15 most

memory-intensive benchmarks are considered.

Adding isolation to both VAULT and Synergy has a significant performance impact,

yielding performance improvements of 46% and 45%, respectively. This is primarily be-

113

Figure 5.9: Breakdown of data+metadata accesses for each read and write operation.
Averages are reported for the top-15 memory-intensive benchmarks.

cause the metadata cache miss rate and metadata overhead are roughly halved (2.8 meta-

data blocks per data miss in Synergy is reduced to 1.4 with isolation, Figure 5.9) by avoid-

ing interprogram interference. We observed that most of the benefit was because of tree

isolation, i.e., it enabled higher-level tree nodes to capture metadata for a localized set of

pages from one application, instead of scattered pages from multiple applications. Meta-

data cache partitioning had a very minor impact on cache hit rates, but is vital for leakage

elimination.

The fifth bar in Figure 5.8 then incorporates a parity cache in Isolated Synergy to

coalesce parity writes when spatial locality is observed in the write stream. We observe

that such write coalescing improves performance by 3% because it reduces the parity write

traffic by 49%. We then introduce parity sharing (the next two bars, without and with a

parity cache). Unfortunately, parity sharing increases execution time because of the need to

perform read-modify-writes on parity; even with a parity cache, execution time on average

is similar to ITSYNERGY. Parity sharing does improve the effectiveness of the parity cache;

on average, the hit rate of the parity cache improves from 45% to 60% with sharing across

16 blocks.

Finally, we embed parity information into the tree with ITESP. This model yields

performance that is 64% higher than the Synergy baseline (execution time reduction of

39%), 19% higher than ITSYNERGY, and 13% higher than ITSYNERGY with a parity cache.

As shown in Figure 5.9, ITESP eliminates accesses to the separate MAC/parity data

structure (0.46 per read/write in ITSYNERGY), but slightly increases accesses to the tree

114

data structure (from 0.93 per read/write in ITSYNERGY to 1.0 in ITESP). Thus, every

read/write memory operation in ITESP either requires (i) no additional memory accesses

(if the leaf node is in the metadata cache), (ii) one additional memory access (if the leaf node

is not in the metadata cache, but its parents are in the metadata cache), and (iii) more than

one additional memory accesses (if leaf and its ancestors are not in the metadata cache).

Figure 5.10 shows memory energy results and system energy delay product. The mem-

ory energy reductions follow the same trend as the metadata traffic reductions. For the

top-15 benchmarks, ITESP reduces memory energy by 45% and system EDP by 45%,

relative to the Synergy baseline.

5.5.2 Sensitivity Analysis

• Core Count. To understand the impact of executing a larger number of applications,

Figure 5.11 summarizes the normalized execution times, memory energy, and system

EDP for Synergy, and for ITESP, with 4 and 8 copies of the program. We execute the

4-core model with a single memory channel, while the 8-core model uses two memory

channels. We observe that the baseline Synergy has a higher slowdown with higher core

count even with more memory channels. This is primarily because of higher metadata

cache misses from a greater degree of interprogram interference. The improvements

from ITESP are therefore higher in the 8-core case. For the top-15 benchmarks, the

performance improvement, memory energy reduction, and system EDP reduction go

from 64%, 44%, 44% with 4 cores to 82%, 48%, and 73% with 8 cores, respectively.

Figure 5.10: Normalized memory energy (on the left) and normalized average system
energy delay product (EDP, on the right) for the same models described in Figure 5.8.

115

Figure 5.11: Execution time, memory energy, and system EDP for a 4-core model with 1
channel and an 8-core model with 2 channels, normalized against a nonsecure baseline.

• Size of Metadata cache. Figure 5.12 depicts a similar sensitivity analysis for the meta-

data cache size per core. Larger metadata caches improve the key metrics for all con-

figurations by similar amounts. With larger metadata caches, memory accesses are

slightly lower, thus slightly reducing the benefits of ITESP. In terms of performance, the

improvement with ITESP is 59% with 32 KB metadata caches per core, and 52% with

64 KB metadata caches. Note that metadata caches in commercial systems are typically

small; another perspective is that innovations like ITESP are helpful in achieving high

performance levels with limited metadata cache space.

5.5.3 Address Mapping Policies.

We next explore the design space of address mapping policies. Because parity is shared

by blocks in different ranks, how consecutive blocks are interleaved can impact metadata

cache miss rates and row buffer hit rates. Below, we identify address mapping policies

Figure 5.12: Execution time, memory energy, and system EDP for various metadata cache
sizes, normalized against a nonsecure baseline. The bars represent averages over top-15
memory-intensive benchmarks.

116

that can balance the two. Figure 5.13 summarizes 4 relevant address mapping policies.

Figure 5.14 summarizes the performance improvement, metadata cache miss rate, and

row buffer hit rate for ITESP for each of these address mapping policies (for top-15 bench-

marks). The performance improvement is relative to Synergy, with its best address map-

ping policy.

The first policy, Column, places consecutive cache lines in a single row buffer. It there-

fore yields a high row buffer hit rate. But because these consecutive cache lines are mapped

to different shared parity blocks in ITESP, they suffer from a high metadata cache miss

rate, i.e., the address mapping policy that was best for Synergy is highly suboptimal for

ITESP. The Rank address mapping policy places consecutive cache lines in different ranks;

it thus lowers metadata cache miss rate in ITESP, but also offers a very low row buffer

hit rate. To alleviate these problems, we introduce the 2-row buffer hit and 4-row buffer

hit policies. In the latter, 4 consecutive cache lines are placed in the same row buffer,

thus promoting row buffer hit rates. Even though these 4 consecutive cache lines map

to different shared parities, because a leaf node has 4 different shared parities, they can

map to a single leaf node. Such a mapping therefore promotes row buffer hit rates without

compromising metadata cache miss rate.

Figure 5.13: Address mapping policies for a 1-channel config.

Figure 5.14: Impact of address mapping policies on performance, metadata cache miss
rate, and row buffer hit rate (assuming 4 cores and 1 channel).

117

5.5.4 ITESP with Morphable Counter Baseline

Finally, we show that ITESP is also compatible with innovations [151] that exploit

counter value locality to increase tree arity. Recall the three configurations described in

Figure 5.7, one (SYN128) that resembles a Synergy-like baseline with Morphable Coun-

ters, and two (ITESP 64 and ITESP 128) that integrate ITESP and Morphable Counters.

Figure 5.15 quantifies the execution time impacts of these models for an 8-core 2-channel

configuration. These results also include the overheads incurred when dealing with lo-

cal counter overflows, given the small sizes for local counters. This is estimated with

a separate long Pin-based simulation that does not model per-cycle effects, but models

counter values. The overflow rate is directly related to the local counter size – 2 bits for

ITESP 128, 3 bits for Synergy, and 5 bits for ITESP 64. We see that ITESP 64 is the best

organization by a small margin, i.e., its lower overflow rate overcomes its lower metadata

cacheability. It achieves an improvement of 27% over Synergy, 12.4% over ITSynergy, and

1.4% over ITESP 128. With higher arity trees, most metadata cache misses are localized to

the leaf nodes of the tree. This reduces the benefit from isolation (which primarily targets

interference in higher levels of the tree), but increases the benefit from embedded shared

parity (which targets the organization of the leaf node).

5.6 Conclusions
This work first isolates each enclave’s integrity tree to reduce negative interference and

eliminate two potential side channels. We then build on Synergy by observing that parities

Figure 5.15: Normalized execution time (incl. local counter overflows) for Synergy and
Morphable Counters (Synergy128), Synergy128 with Isolation, and ITESP with Mor-
phable Counters (ITESP 64 and ITESP 128). Assumes 8 cores with 2 channels.

118

can be shared by multiple blocks, thus bringing parity overhead on par with counter

overhead. This enables placing both parity and counters in a single node of the integrity

tree. Isolation improves performance of Synergy by 39% and the unified data structure

boosts this improvement to 64%. Parity sharing has a negligible impact on reliability,

primarily causing new DUEs in the unlikely event of independent memory chip failure

in different ranks within a short window. The proposed approach does not require write

masking and therefore offers broader system compatibility.

CHAPTER 6

CONCLUSION

This dissertation introduces several new structures along with multiple techniques to

alleviate the overhead of metadata maintenance in a trusted environment. We state that

there are two major problems with the current implementation of integrity verification

techniques, which significantly impact their efficiency and security. First, they maintain

a couple of large metadata structures, which imposes substantial bandwidth and storage

overheads on the system. Second, these metadata infrastructures leak information. In this

thesis, we addressed both issues.

We propose a shorter and more cacheable integrity tree to improve its memory band-

width overhead. We also introduce a more compact structure to store MACs, which re-

duces its storage overhead significantly, and as a result, improves its bandwidth overhead

as well. We notice that significant metadata overhead forces a trusted environment to curb

the size of the secure memory region – as the PRM size in Intel® SGX is 128 MB. This size

restriction leads to other problems; if the sensitive information of an application does not

fit into the given secure memory, the secure pages have to be swapped between the secure

and nonsecure memory regions. This process has a significant performance overhead be-

cause it requires an OS system call, context switching, page copying, security checks, and

metadata updating. In Chapter 4, we propose VAULT, a low overhead TEE that overcomes

this issue. VAULT provides sensitive applications with a scalable, low-overhead, secure

memory, where the overhead does not grow dramatically as the applications’ working set

size increases.

We notice that Synergy, the state-of-the-art technique that has a combination of error-

correction and integrity metadata to provide both reliability and security at lower over-

head, still suffers from maintaining two relatively large metadata structures. We take

one step forward in Chapter 5 to further improve the metadata overhead by sharing a

120

reliability metadata block across multiple data blocks to lower its footprint. This technique

enables us to embed the reliability metadata into the integrity tree. Therefore, we propose

a metadata structure, which provides all required metadata to support reliability and

integrity at lower bandwidth and storage overheads relative to Synergy.

Moreover, we isolate applications by separating their metadata structures, which not

only improves performance due to the higher cacheability, but also eliminates potential

information leakage. Altogether, we proposed ITESP, a leakage-free, unified, and low-

overhead metadata structure to provide integrity and reliability.

Before diving into our contributions in this dissertation, we briefly explain multiple

basic concepts in the security field, including “Trusted Execution Environments (TEE)” in

Chapter 2. Since in different parts of this thesis, Intel® SGX is chosen as the baseline to

compare with our proposals, we also elaborate on various aspects of this commercial TEE.

Furthermore, we take a look at other proposals in the literature, which try to reduce the

overhead of reliability, security, and security along with reliability support (Chapter 3).

6.1 Future Work
There are still multiple challenges to tackle and transform into opportunities to further

improve our secure systems. In this section, we discuss some of these lines of research,

which can be performed as follow-up studies to this thesis.

• Emerging Memory Systems. New DRAM families continue to be scaled down, which

makes them more error-prone. To address this issue, the memory manufacturers place

on-chip ECC codes and increase the number of error correction chips on the DIMM. Con-

sidering these new features, we can design a more efficient system to provide integrity

verification and reliability.

New High Bandwidth Memory (HBM), i.e., HBMv2, and HBMv2e, have become

cheaper and denser with higher capacity and bandwidth, and as a result, more common-

place in computer systems, especially in current graphics cards. Plenty of bandwidth

available in the new generations of HBM memory makes them more suitable as the

last level cache (L4). Due to their layout on the board – HBMs are placed on the same

package substrate with CPUs/GPUs, stacked on top of the interposer – providing

security features for HBM memory systems imposes lower overheads. Using this

121

new and large cache memory allows engineers to implement security features more

efficiently.

HBMv31 may have a logic layer underneath the DRAM stack. This logic layer allows se-

curity designers to move security primitives closer to the memory, reducing the memory

bandwidth overhead. Exploiting this new smart and large LLC to design more efficient,

secure processors should be a new line of research in the security field. For example, an

SGX-enabled CPU augmented with HBM memories can establish its entire 128MB PRM

– or even larger than that – on the HBM memory. Therefore, during execution time,

security checks for PRM accesses will be performed at a lower cost.

• Flexible TEEs. Almost all commercial TEEs, except for Intel® SGX, are vulnerable

against physical attacks. On the other hand, SGX does not allow users to opt out of

physical attack protection. Moreover, none of them provide obliviousness for applica-

tions. Current off-the-shelf TEEs provide a fixed number of security features, which

gives customers two extreme options: full-fledged security features, which imposes a

significant overhead on the application, or opt-out of the all security primitives, which

may lead to a serious security/privacy threat. Due to the fact that different applications,

even different data structures in one application, have different security requirements,

these two options do not suffice for customers. A TEE needs to provide applications

with a range of security features, such that developers can define different features

for different data structures in their applications. If a commercial TEE such as SGX is

intended to provide different security levels, what extra instructions are required? What

advantages and disadvantages will this flexibility create? And what is its overhead on

the hardware of TEEs?

• Low Overhead, Industry-Friendly Integrity Tree. In this thesis, we introduced two new

structures for integrity trees to enhance bandwidth overhead. However, there are other

techniques that can further improve the bandwidth overhead of integrity verification.

For example, during execution time, the working set size of applications may change,

and at each time window, they may access part of this working set more frequently. It is

1The industry standards of this generation of HBM are not yet officially available

122

quite reasonable to dynamically update the integrity tree during execution time, based

on the current working set of applications. Therefore, as the working set size shrinks,

the integrity tree size will decrease, its cachability will increase, and the bandwidth

overhead of integrity verification will reduce proportionally.

In the state-of-the-art integrity trees, including the proposals in this thesis, counters are

split into global and private counters, where a private counter may overflow, causing

other counters in the same block to get reset, which increases the bandwidth overhead.

Overflow overhead evaluations in Chapters 4 (Subsection 4.5.2) and 5 (Subsection 5.5.4)

show that this overhead for the benchmarks examined in this dissertation, is trivial.

However, industry prefers not to add more uncertainty to the design. Hence, they still

use a large counter – e.g., SGX uses a 56-bit counter for each data block – to ensure

that overflow never occurs. A solution where the width of counters grows dynamically

during execution to avoid overflow does not seem practical. Designing an integrity tree

resilient against counter overflow, while its overhead is still in check, is a real industrial

need to improve commercial TEEs.

• Low Overhead Obliviousness. We discussed the research opportunities in the security

field created by a large last level cache, provided by HBM memories, previously. How-

ever, for obliviousness, enlarging the client storage – in the CPU-memory model, the

client storage means the CPU cache, such as the HBM memory – can play a special role

in alleviating the bandwidth overhead of Oblivious RAM (ORAM). It is well-known

that Path-ORAM [175] has the best bandwidth overhead when the client (CPU) stor-

age is small. The question is if the size of storage in the CPU side grows, is Path

ORAM still the winner among different oblivious RAMs? Square Root ORAM [76] is

a hierarchical ORAM with O(1) online bandwidth overhead, while it has a significant

offline bandwidth overhead for shuffling. In hierarchical ORAMs, the size of client

storage, the memory in the CPU side, can reduce the overall overhead of shuffling;

besides, Stefano et al. [173], [174] proposed some optimizations to improve the shuffling

overhead, reducing the bandwidth cost significantly. Considering the growing size of

HBM relative to the external memory, in addition to proposed optimizations, which

technique has the lower bandwidth overhead, Path ORAM, or hierarchical ORAM?

123

Also, what is the lower bound for shuffling overhead? What if we exploit in-memory

computation on the DIMM to implement shuffling in the memory side? Combining

these ideas, what would be the lowest bandwidth overhead we can achieve to provide

obliviousness?

• Programmable TEEs. There are multiple hash algorithms: e.g., MD5, SHA-0, SHA-1,

SHA-2, or SHA-3; there are multiple algorithms to compute MAC: e.g., CMAC, PMAC,

HMAC, UMAC, or VMAC. We can choose a different length for MAC tags, or hash

values: e.g., 64b MAC vs. 128b MAC. There are multiple encryption/decryption algo-

rithms: e.g., RSA, DES, or AES, combined with counter-mode encryption. As mentioned

above, based on the size of the LLC, we can choose different ORAM algorithms to

achieve a lower cost: e.g., Path ORAM vs. hierarchical ORAM. In an integrity tree, the

counters’ width can be chosen according to the application, and the number of potential

overflows the counters may encounter. In memory safety checks, the number of buffers

that contain the bound for different pointers can vary according to the application.

Programmability is a solution that enables the security engine to support this vast range

of choices. Therefore, we can have a programmable engine for security purposes that

can be customized based on applications’ requirements. To that end, we can design

a special-purpose processor with a limited, domain-specific ISA, which can be pro-

grammed and customized for different security purposes.

• Designing a More Efficient Metadata Cache. Our results have shown that caching

is an effective technique to reduce the bandwidth overhead of security features. A

study can be focused on designing a more effective cache for security purposes. Can a

mixture of cache and scratch-pad configuration outperform a pure cache configuration?

Cache and scratch-pad configuration is the structure in which a part of the metadata

cache works as a scratch-pad, where contains The largest possible level of the integrity

tree; the other part still performs as a conventional cache. Therefore, no request for

any integrity nodes beyond the level residing in the scratch pad will be issued to the

memory system. It is well-known that the replacement policy impacts the cache hit rate.

Designing a replacement policy that suits metadata caches the best can improve cache

efficiency. Some types of metadata – counters, MAC, and integrity nodes – may show

124

poor reusability, polluting the metadata cache, which hurts the cache hit rate. Therefore,

choosing to cache some types of metadata, while others opt-out may improve metadata

cache performance. It is also possible to store victim blocks from the metadata cache

in the LLC. It should be studied whether or not the mixture of the LLC and metadata

caches can outperform the pure metadata cache configuration.

REFERENCES

[1] AMD64 architecture programmer’s manual, AMD Technology. Volume 2, Technical
report, 2020, https://www.amd.com/system/files/TechDocs/24593.pdf.

[2] AMD64 technology indirect branch control extension, Advanced Micro Device (AMD).
White paper, Revision 4.10.18, 2018, https://developer.amd.com/wp-content/r
esources/Architecture Guidelines Update Indirect Branch Control.pdf.

[3] ARM security technology building a secure system using trustzone technology, ARM
Limited. 2009. Reference no. PRD29-GENC-009492C.

[4] Cachegrab, nccgroup. https://github.com/nccgroup/cachegrab.

[5] Cloud security solutions forecast, 2018 to 2023 (global), Forrester analytics. https://ww
w.forrester.com/report/Forrester+Analytics+Cloud+Security+Solution

s+Forecast+2018+To+2023+Global/-/E-RES148715#.

[6] Intel® digital random number digital random number generator(DRNG). Rev. 1.1, 2012.

[7] Intel® software guard extensions programming reference, Intel® Corporation. 2014.

[8] Masked write transfer. https://www.jedec.org/standards-documents/dictionary
/terms/masked-write-transfer-mwt.

[9] Micron system power calculator. http://www.micron.com/products/support/powe

r-calc.

[10] Secure encrypted virtualization API, Advanced Micro Devices (AMD). Version 0.24,
Revision 3.24, 2020.

[11] Security tip, understanding denial-of-service attacks, Cybersecurity and Infrastructure
security agency. https://us-cert.cisa.gov/ncas/tips/ST04-015.

[12] SGX security, Systems Software and Security Lab. https://sgx101.gitbook.io/sg
x101/sgx-bootstrap/overview.

[13] Take control of protecting your data, Intel® SGX. https://www.intel.com/content/ww
w/us/en/architecture-and-technology/software-guard-extensions.html.

[14] The treacherous 12, cloud computing top threads in 2016, Cloud Security Alliance. http
s://downloads.cloudsecurityalliance.org/assets/research/top-threats/Tr

eacherous-12 Cloud-Computing Top-Threats.pdf.

[15] U.S. charges Russian hacker with stealing LinkedIn data, RadioFreeEurope RadioLibrary.
https://www.rferl.org/a/us-charges-russian-hacker-nikulin-linkedin-s

an-francisco-dropbox.

https://www.amd.com/system/files/TechDocs/24593.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://github.com/nccgroup/cachegrab
https://www.forrester.com/report/Forrester+Analytics+Cloud+Security+Solutions+Forecast+2018+To+2023+Global/-/E-RES148715#
https://www.forrester.com/report/Forrester+Analytics+Cloud+Security+Solutions+Forecast+2018+To+2023+Global/-/E-RES148715#
https://www.forrester.com/report/Forrester+Analytics+Cloud+Security+Solutions+Forecast+2018+To+2023+Global/-/E-RES148715#
https://www.jedec.org/standards-documents/dictionary/terms/masked-write-transfer-mwt
https://www.jedec.org/standards-documents/dictionary/terms/masked-write-transfer-mwt
http://www.micron.com/products/support/power-calc
http://www.micron.com/products/support/power-calc
https://us-cert.cisa.gov/ncas/tips/ST04-015
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/overview
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/overview
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
https://www.rferl.org/a/us-charges-russian-hacker-nikulin-linkedin-san-francisco-dropbox
https://www.rferl.org/a/us-charges-russian-hacker-nikulin-linkedin-san-francisco-dropbox

126

[16] DDR3 SDRAM part MT41J256M8 datasheet, 2006. https://datasheetspdf.com/pd
f/720199/Micon/MT41J256M8/1.

[17] Wind River Simics full system simulator, 2007. http://www.windriver.com/products
/simics/.

[18] Top threads to cloud computing v1.0, Cloud Security Alliance, 2010. 2010, https://cl
oudsecurityalliance.org/topthreats/csathreats.v1.0.pdf.

[19] DDR3 ECC with data mask, 2013. https://forums.xilinx.com/t5/Other-FPGA-Ar
chitectures/ddr3-ecc-with-data-mask/td-p/570028.

[20] Yahoo! data breaches, Wikipedia, 2014. https://en.wikipedia.org/wiki/Yahoo! d
ata breaches.

[21] Product change notification, Intel® Corporation, 2015. https://qdms.intel.com/dm/
i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf.

[22] Intel® SGX tutorial, Intel® Corporation, 2015. https://software.intel.com/sites
/default/files/332680-002.pdf.

[23] Cloudbleed: Big web brands “leaked crypto keys, personal secrets” thanks to cloudflare bug,
2017. https://www.theregister.com/2017/02/24/cloudbleed buffer overflo

w bug spaffs personal data/.

[24] Intel® software guard extensions (SGX) developer guide, Intel® Developer Zone, 2017.
https://software.intel.com/content/www/us/en/develop/documentation/sgx

-developer-guide/top.html.

[25] Security in an ARMv8 system, ARM, 2017. Reference no. ARM 100935 0100 en, .htt
ps://static.docs.arm.com/100935/0100/security in an armv8 system 10093

5 0100 en.pdf.

[26] Top threats to cloud computing+industry insights, Cloud Security Alliance, 2017. https:
//downloads.cloudsecurityalliance.org/assets/research/top-threats/trea

cherous-12-top-threats.pdf.

[27] Extending secure encrypted virtualization with SEV-ES, 2018. https://events19.lin

uxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted

-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf.

[28] Top threads to cloud computing, deep dive, Cloud Security Alliance, 2018. https://cl

oudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-dee

p-dive/.

[29] HBM interface intel® FPGA IP user guide, 2019. https://www.intel.com/content/

www/us/en/programmable/documentation/mhi1462215825912.html.

[30] AMD SEV-SNP: Strengthening VM isolation with integrity protection and more, Ad-
vanced Micro Device(AMD), 2020. https://www.amd.com/system/files/Tec

hDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-a

nd-more.pdf.

https://datasheetspdf.com/pdf/720199/Micon/MT41J256M8/1
https://datasheetspdf.com/pdf/720199/Micon/MT41J256M8/1
http://www.windriver.com/products/simics/
http://www.windriver.com/products/simics/
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
https://forums.xilinx.com/t5/Other-FPGA-Architectures/ddr3-ecc-with-data-mask/td-p/570028
https://forums.xilinx.com/t5/Other-FPGA-Architectures/ddr3-ecc-with-data-mask/td-p/570028
https://en.wikipedia.org/wiki/Yahoo!_data_breaches
https://en.wikipedia.org/wiki/Yahoo!_data_breaches
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://www.theregister.com/2017/02/24/cloudbleed_buffer_overflow_bug_spaffs_personal_data/
https://www.theregister.com/2017/02/24/cloudbleed_buffer_overflow_bug_spaffs_personal_data/
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
. https: //static.docs.arm.com/100935/0100/security_in_an_armv8_system_100935_0100_en.pdf
. https: //static.docs.arm.com/100935/0100/security_in_an_armv8_system_100935_0100_en.pdf
. https: //static.docs.arm.com/100935/0100/security_in_an_armv8_system_100935_0100_en.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/treacherous-12-top-threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/treacherous-12-top-threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/treacherous-12-top-threats.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/
https://cloudsecurityalliance.org/artifacts/top-threats-to-cloud-computing-deep-dive/
https://www.intel.com/content/www/us/en/programmable/documentation/mhi1462215825912.html
https://www.intel.com/content/www/us/en/programmable/documentation/mhi1462215825912.html
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

127

[31] Top threads to cloud computing in 2020, Cloud Security Alliance, 2020. https://clou
dsecurityalliance.org/.

[32] S. Aga and S. Narayanasamy, Invisipage: Oblivious demand paging for secure enclaves,
in ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA), 2019, pp. 372–384.

[33] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, Innovative technology for
cpu based attestation and sealing. 2013, https://software.intel.com/content/www
/us/en/develop/articles/innovative-technology-for-cpu-based-attestat

ion-and-sealing.html.

[34] F. Armknecht, A. R. Sadeghi, S. Schulz, and C. Wachsmann, A security frame-
work for the analysis and design of software attestation. ACM SIGSAC Conference on
Computer & Communications Security (CCS), 2013, pp. 1-12.

[35] S. Arnautov and C. Fetzer, Controlfreak: Signature chaining to counter control flow
attacks, in IEEE 34th Symposium on Reliable Distributed Systems (SRDS), 2015,
pp. 84–93.

[36] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,

D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,

R. Kapitza, P. Pietzuch, and C. Fetzer, SCONE: Secure linux containers with intel®

SGX., in OSDI, 2016, pp. 689–703.

[37] J. P. Aumasson and L. Merino, SGX secure enclaves in practice security and crypto
review. https://www.blackhat.com/us-16-Aumasson-SGX-Secure-Enclaves-In
-Practice-Security-And-Crypto-Review.pdf.

[38] A. Awad, Y. Wang, D. Shands, and Y. Solihin, ObfusMem: A low-overhead access ob-
fuscation for trusted memories, in International Symposium on Computer Architecture
(ISCA), 2017, pp. 107-119.

[39] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, Medrec: Using blockchain for
medical data access and permission management, in 2nd International Conference on
Open and Big Data (OBD), 2016, pp. 25–30.

[40] C. Babcock, 93 million mexican voter database exposed on amazon cloud. 2016, https:
//www.informationweek.com/cloud/infrastructure-as-a-service/93-million

-mexicanvoter-database-exposed-on-amazon-cloud/d/d-id/1325259.

[41] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga, The NAS parallel benchmarks, The
International Journal of Supercomputer Applications, (1994), pp. 63–73.

[42] R. Barry and D. Volz, Ghosts in the clouds: Inside China’s major corporate hack. https:
//www.wsj.com/articles/ghosts-in-the-clouds-inside-chinas-major-corp

orate-hack-11577729061.

[43] A. Baumann, M. Peinado, and G. Hunt, Shielding applications from an untrusted
cloud with haven. 11th USENIX Symposium on Operating Systems Design and
Implementation, 2014.

https://cloudsecurityalliance.org/
https://cloudsecurityalliance.org/
https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://software.intel.com/content/www/us/en/develop/articles/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.blackhat.com/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://www.blackhat.com/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://www.informationweek.com/cloud/infrastructure-as-a-service/93-million-mexicanvoter-database-exposed-on-amazon-cloud/d/d-id/1325259
https://www.informationweek.com/cloud/infrastructure-as-a-service/93-million-mexicanvoter-database-exposed-on-amazon-cloud/d/d-id/1325259
https://www.informationweek.com/cloud/infrastructure-as-a-service/93-million-mexicanvoter-database-exposed-on-amazon-cloud/d/d-id/1325259
https://www.wsj.com/articles/ghosts-in-the-clouds-inside-chinas-major-corporate-hack-11577729061
https://www.wsj.com/articles/ghosts-in-the-clouds-inside-chinas-major-corporate-hack-11577729061
https://www.wsj.com/articles/ghosts-in-the-clouds-inside-chinas-major-corporate-hack-11577729061

128

[44] A. Baumann, M. Peinado, and G. Hunt, Shielding applications from an untrusted
cloud with haven, in 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), 2014, pp. 267–283.

[45] S. Beamer, K. Asanović, and D. Patterson, The gap benchmark suite, 2017. https:
//arxiv.org/abs/1508.03619.

[46] M. Benchoufi and P. R. Raphael Porcher, Blockchain protocols in clinical trials:
Transparency and traceability of consent, 2017. https://pubmed.ncbi.nlm.nih.go

v/29167732/.

[47] D. Boneh, R. A. Demillo, and R. J. Lipton, On the importance of checking computa-
tions (extended abstract), 1996.

[48] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A. Sadeghi,
Software grand exposure: SGX cache attacks are practical, 2017. https://arxiv.org/ab
s/1702.07521.

[49] J. Bucek, K. Lange, and J. V. Kistowski, SPEC CPU2017: Next-generation compute
benchmark, in ACM/SPEC International Conference on Performance Engineering,
2018, pp. 41–42.

[50] J. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx, Telling your
secrets without page faults: Stealthy page table-based attacks on enclaved execution, in 26th
USENIX Security Symposium (USENIX Security 17), Vancouver, BC, 2017, USENIX
Association, pp. 1041–1056.

[51] R. W. Carr and J. L. Hennessy, WSCLOCK: A simple and effective algorithm for virtual
memory management, in Proceedings of the Eighth ACM Symposium on Operating
Systems Principles(SOSP), 1981, pp. 87–95.

[52] D. Champagne, R. Elbaz, and R. B. Lee, The reduced address space (RAS) for appli-
cation memory authentication, in Proceedings of the 11th International Conference on
Information Security (ISC), 2008, pp. 47–63.

[53] D. Champagne and R. Lee, Scalable architectural support for trusted software, in Pro-
ceedings of HPCA, 2010, pp. 1–12.

[54] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,

A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, USIMM: The Utah simulated
memory module, 2012. University of Utah.

[55] S. Checkoway and H. Shacham, Iago attacks: Why the system call API is a bad untrusted
rpc interface, in Proceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 253–264.

[56] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, SGXPectre: Stealing
intel® secrets from SGX enclaves via speculative execution, in IEEE European Symposium
on Security and Privacy (EuroS&P), 2019, pp. 142–157.

https://arxiv.org/abs/1508.03619
https://arxiv.org/abs/1508.03619
https://pubmed.ncbi.nlm.nih.gov/29167732/
https://pubmed.ncbi.nlm.nih.gov/29167732/
https://arxiv.org/abs/1702.07521
https://arxiv.org/abs/1702.07521

129

[57] H.-M. Chen, C.-J. Wu, T. Mudge, and C. Chakrabarti, RATT-ECC: Rate adaptive
two-tiered error correction codes for reliable 3d die-stacked memory, in ACM Transaction
in Architecture Code Optimization, 2016, pp. 1–24.

[58] S. Chen, X. Zhang, M. Reiter, and Y. Zhang, Detecting privileged side-channel attacks
in shielded execution with déjá vu, in Proceedings of ACM on Asia Conference on
Computer and Communications Security, 2017, pp. 7–18.

[59] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic, SecureME: A Hardware-
Software Approach to Full System Security, in Proceedings of the International Confer-
ence on Supercomputing, ACM, 2011, pp. 108–119.

[60] D. Clarke, S. Devadas, M. Van Dijk, B. Gassend, and G. E. Suh, Incremental
multiset hash functions and their application to memory integrity checking, in International
Conference on the Theory and Application of Cryptology and Information Security,
Springer, 2003, pp. 188–207.

[61] N. Confessore, Cambridge Analytica and Facebook: The scandal and the fallout so far,
2020. The New York Times. ISSN 0362-4331, https://www.nytimes.com/2018/04/
04/us/politics/cambridge-analytica-scandal-fallout.html.

[62] V. Costan and S. Devadas, Intel® SGX explained, 2016. https://eprint.iacr.or

g/2016/086.pdf.

[63] V. Costan, I. Lebedev, and S. Devadas, Sanctum: Minimal hardware extensions for
strong software isolation, in 25th USENIX Security Symposium (USENIX Security 16),
2016, pp. 857–874.

[64] H. Dai, H. P. Young, T. J. Durant, G. Gong, M. Kang, H. M. Krumholz, W. L.

Schulz, and L. Jiang, Trialchain: A blockchain-based platform to validate data integrity
in large, biomedical research studies, 2018. arXiv, eprint 1807.03662.

[65] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, Authentic third-party data
publication, in Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual Working
Conference on Database Security: Data and Application Security, Development and
Directions, 2001, pp. 101–112.

[66] T. Dierks and E. Rescorla., The transport layer security (TLS) protocol version 1.2.
RFC 5246 (proposed standard), 2008.

[67] M. Dworkin, Recommendation for block cipher modes of operation: The CMAC mode for
authentication. Federal Information Processing Standards (FIPS) Special Publications
(SP), NIST Special Publication 800-38A, 2005.

[68] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and P. Guillemin,
TEC-Tree: A low-cost, parallelizable tree for efficient defense against memory replay attacks,
in Cryptographic Hardware and Embedded Systems (CHES), 2007, pp. 289–302.

[69] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, BranchScope: A
new side-channel attack on directional branch predictor, in Proceedings of ASPLOS, 2018,
pp. 693–707.

https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf

130

[70] C. Farivar, Zynga sues 2 former employees over alleged massive data heist. 2016, https:
//arstechnica.com/tech-policy/2016/11/zynga-sues-2-former-employees-

over-alleged-massive-data-heist/.

[71] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E. Suh, Lattice priority
scheduling: Low-overhead timing channel protection for a shared memory controller, in
Proceedings of HPCA, 2016, pp. 1–12.

[72] C. W. Fletcher, M. v. Dijk, and S. Devadas, A secure processor architecture for
encrypted computation on untrusted programs, in Proceedings of the Seventh ACM
Workshop on Scalable Trusted Computing, 2012, pp. 3–8.

[73] J. Fruhlinger, Equifax data breach faq: What happened, who was affected, what was the
impact? https://www.csoonline.com/article/3444488/equifax-data-breach-

faq-what-happened-who-was-affected-what-was-the-impact.html.

[74] M. Garriga, S. D. Palma, M. Arias, A. D. Renzis, R. Pareschi, and D. A.

Tamburri, Blockchain and cryptocurrencies: A classification and comparison of architecture
drivers, 2020. arXiv, eprint 12283, https://doi.org/10.1002/cpe.5992.

[75] B. Gassend, G. E. Suh, D. E. Clarke, M. van Dijk, and S. Devadas, Caches and hash
trees for efficient memory integrity verification, in Proceedings of the Ninth International
Symposium on High-Performance Computer Architecture (HPCA), 2003, pp. 295–
306.

[76] O. Goldreich and R. Ostrovsky, Software protection and simulation on oblivious
RAMs, in J. ACM, Vol. 43, 1996, pp. 431–473.

[77] S.-L. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, DUO: Exposing
On-Chip Redundancy to Rank-Level ECC for High Reliability, in Proceedings of HPCA,
2018, pp. 683–695.

[78] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, Cache attacks on intel® SGX,
in Proceedings of the 10th European Workshop on Systems Security, Association for
Computing Machinery, 2017.

[79] J. Graham-Cumming, Incident report on memory leak caused by cloudflare parser bug,
2017. https://blog.cloudflare.com/incident-report-on-memory-leak-cause
d-by-cloudflare-parser-bug/.

[80] D. Gruss, C. Maurice, and S. M. gard, Rowhammer. js: A remote software-induced
fault attack in javascript. CoRR, abs/1507.06955, 2015.

[81] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, Flush+ flush: a fast and stealthy
cache attack, in International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Springer, 2016, pp. 279–299.

[82] S. Gueron, A memory encryption engine suitable for general purpose processors. Cryptol-
ogy ePrint Archive, Report 2016/204, 2016. https://eprint.iacr.org/2016/204.

[83] E. Hall and C. S. Jutla, Parallelizable authentication trees, in the 12th International
Conference on Selected Areas in Cryptography, 2006, pp. 95—-109.

https://arstechnica.com/tech-policy/2016/11/zynga-sues-2-former-employees-over-alleged-massive-data-heist/
https://arstechnica.com/tech-policy/2016/11/zynga-sues-2-former-employees-over-alleged-massive-data-heist/
https://arstechnica.com/tech-policy/2016/11/zynga-sues-2-former-employees-over-alleged-massive-data-heist/
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://www.csoonline.com/article/3444488/equifax-data-breach-faq-what-happened-who-was-affected-what-was-the-impact.html
https://doi.org/10.1002/cpe.5992
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://eprint.iacr.org/2016/204

131

[84] J. L. Henning, SPEC CPU2006 benchmark descriptions, in Proceedings of ACM
SIGARCH Computer Architecture News, 2005, pp. 1–17.

[85] R. Huang and G. Suh, IVEC: Off-chip memory integrity protection for both security and
reliability, in Proceedings of ISCA, 2010, pp. 395–406.

[86] C. Hunger, M. Kazdagli, A. Rawat, S. Vishwanath, A. Dimakis, and M. Tiwari,
Understanding contention-driven covert channels and using them for defense, in Proceed-
ings of HPCA, pp. 639–650.

[87] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, Ryoan: A distributed sandbox for
untrusted computation on secret data, in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI, 2016, pp. 533–549.

[88] J. Jeddeloh and B. Keeth, Hybrid Memory Cube (HMC) – new dram architecture
increases density and performance, in Symposium on VLSI Technology, 2012, pp. 87–88.

[89] J.-H. Jeng and T.-K. Truong, On decoding of both errors and erasures of a reed-solomon
code using an inverse-free berlekamp-massey algorithm, in IEEE Transactions on Commu-
nications, vol. 47, 1999, pp. 1488–1494.

[90] H. Jeon, G. H. Loh, and M. Annavaram, Efficient RAS support for die-stacked DRAM,
in 2014 International Test Conference, 2014, pp. 1–10.

[91] X. Jian, H. Duwe, J. Sartori, V. Sridharan, and R. Kumar, Low-power, low-
storage-overhead chipkill correct via multi-line error correction, in Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), 2013, pp. 1–12.

[92] X. Jian and R. Kumar, ECC Parity: A technique for efficient memory error resilience
for multi-channel memory systems, in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis (SC), 2014,
pp. 1035–1046.

[93] J.Rodrigues, I.Torre, G.Fernandez, and M.Lopez-Coronado, Analysis of the secu-
rity and privacy requirements of cloud-based electronic health records systems, in Journal
of Medical Internet Research, vol. 15, 2013.

[94] J.Szefer and S. Biedermann, Towards fast hardware memory integrity checking with
skewed merkle trees, in Proceedings of HASP, 2014, pp. 1–8.

[95] D. Kaplan, Protecting VM register state with SEV-ES. White paper, 2017, https:
//www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State

%20with%20SEV-ES.pdf.

[96] J. Kelsey and V. Rijmen, Compression and information leakage of plaintext, in Fast
Software Encryption, 2002, pp. 263–276.

[97] J. Kim, M. Sullivan, and M. Erez, Bamboo ECC: Strong, safe, and flexible codes for
reliable computer memory, in the Proceedings of HPCA, 2015, pp. 1–12.

https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf
https://www.amd.com/system/files/TechDocs/Protecting%20VM%20Register%20State%20with%20SEV-ES.pdf

132

[98] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,

and O. Mutlu, Flipping bits in memory without accessing them: An experimental study
of dram disturbance errors, in Proceeding of the 41st annual International Symposium
on Computer Architecture (ISCA), 2014, pp. 361–372.

[99] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, Spectre attacks: Exploiting speculative
execution, 2018. https://spectreattack.com/spectre.pdf.

[100] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and

C. Fetzer, SGXBOUNDS: Memory safety for shielded execution, in Proceedings of the
Twelfth European Conference on Computer Systems, EuroSys, 2017, pp. 205–221.

[101] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, RAMBleed: Reading bits in memory
without accessing them, in 41st IEEE Symposium on Security and Privacy (S&P), 2020,
pp. 695–711.

[102] B. Lapid and A. Wool, Cache-attacks on the arm trustzone implementations of AES-256
and AES-256-GCM via GPU-based analysis. Cryptology ePrint Archive, 2018. https:
//eprint.iacr.org/2018/621.

[103] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa, An off-chip attack on
hardware enclaves via the memory bus, in IEEE Symposium on Security and Privacy
(SP), 2020, pp. 1–18.

[104] R. B. Lee, Security basics for computer architects, synthesis lectures on computer architec-
ture. Morgan Claypool, 2013.

[105] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Zhenghong Wang,
Architecture for protecting critical secrets in microprocessors, in 32nd International Sym-
posium on Computer Architecture (ISCA), 2005, pp. 2–13.

[106] T. Lehman, A. Hilton, and B. Lee, MAPS: Understanding metadata access patterns
in secure memory, in Proceedings of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2018, pp. 33–43.

[107] T. S. Lehman, A. D. Hilton, and B. C. Lee, Poisonivy: Safe speculation for secure
memory, in Proceedings of MICRO, 2016, pp. 1–13.

[108] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz, Architectural support for copy and tamper resistant software, in Pro-
ceedings of International Conference on Architecture Support for Programming
Languages and OS(ASPLOS-IX), 2000, pp. 168–177.

[109] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, Armageddon: Cache
attacks on mobile devices. In USENIX Security conference, pages 549–564, 2016. https:
//www.usenix.org/system/files/conference/usenixsecurity16/sec16 paper

lipp.pdf.

[110] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,

D. Genkin, Y. Yarom, and M. Hamburg, Meltdown, 2018. https://meltdownatta
ck.com/meltdown.pdf.

https://spectreattack.com/spectre.pdf
https://eprint.iacr.org/2018/621
https://eprint.iacr.org/2018/621
https://www.usenix.org/system/files/conference/ usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/system/files/conference/ usenixsecurity16/sec16_paper_lipp.pdf
https://www.usenix.org/system/files/conference/ usenixsecurity16/sec16_paper_lipp.pdf
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf

133

[111] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, Last-level cache side-channel
attacks are practical, in 2015 IEEE Symposium on Security and Privacy, 2015, pp. 605–
622.

[112] Logsign Blog, The biggest cyber-attacks in 2019. https://blog.logsign.com/the-b
iggest-cyber-attacks-in-2019/.

[113] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood, Pin: Building customized program analysis tools with
dynamic instrumentation, in Proceedings of ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2005, pp. 190–200.

[114] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowic,

and D. Song, PHANTOM: Practical oblivious computation in a secure processor, in
Proceedings of CCS, 2013, pp. 311–324.

[115] MACJournals, The HFS primer, 2003. http://macjournal.com/~mwj/mwj samples

/MWJ 20030525.pdf.

[116] A. Malek, E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, Odd-
ECC: On-demand dram error correcting codes, in Proceedings of MEMSYS, 2017, pp. 96–
111.

[117] G. Mappouras, A. Vahid, R. Calderbank, D. R. Hower, and D. J. Sorin, Jenga:
Efficient fault tolerance for stacked DRAM, in IEEE International Conference on Com-
puter Design (ICCD), 2017, pp. 361–368.

[118] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stub-

blebine, A general model for authenticated data structures. Springer, 2004, https:
//doi.org/10.1007/s00453-003-1076-8.

[119] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd,

and C. Rozas, Intel® software guard extensions (intel® SGX) support for dynamic mem-
ory management inside an enclave. Proceedings of the Hardware and Architectural
Support for Security and Privacy, 2016.

[120] F. McKeen, I. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue,

and U. Savagaonkar, Innovative instructions and software model for isolated execution,
in Proceedings of HASP Workshop, in conjunction with ISCA-40, 2013.

[121] MDS: Microarchitectural Data Sampling, Attacks on the newly-disclosed “MDS”
hardware vulnerabilities in Intel® CPUs. https://mdsattacks.com/.

[122] J. Melnick, Cloud security risks and concerns in 2018. https://blog.netwrix.com/2
018/01/23/cloud-security-risks-and-concerns-in-2018/.

[123] R. C. Merkle, Protocols for public key cryptosystems, in IEEE Symposium on Security
and Privacy, 1980, pp. 122–134.

[124] Micron, DDR4 SDRAM RDIMM, 2013. Product datasheet, https://www.micron.c
om/-/media/client/global/documents/products/data-sheet/modules/parit

y rdimm/asf9c512x72pz.pdf.

https://blog.logsign.com/the-biggest-cyber-attacks-in-2019/
https://blog.logsign.com/the-biggest-cyber-attacks-in-2019/
http://macjournal.com/~mwj/mwj_samples/MWJ_20030525.pdf
http://macjournal.com/~mwj/mwj_samples/MWJ_20030525.pdf
https://doi.org/10.1007/s00453-003-1076-8
https://doi.org/10.1007/s00453-003-1076-8
https://mdsattacks.com/
https://blog.netwrix.com/2018/01/23/cloud-security-risks-and-concerns-in-2018/
https://blog.netwrix.com/2018/01/23/cloud-security-risks-and-concerns-in-2018/
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/modules/parity_rdimm/asf9c512x72pz.pdf

134

[125] Microsoft, How NTFS Works, 2003. https://technet.microsoft.com/en-us/li

brary/cc781134(v=ws.10).aspx.

[126] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck, D. Genkin, D. Gruss,

F. Piessens, B. Sunar, and Y. Yarom, Fallout: Reading kernel writes from user space,
in arXiv preprint arXiv:1905.12701, 2019.

[127] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, Oblix: An efficient
oblivious search index, in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,
2018, pp. 279–296.

[128] A. Moghimi, G. Irazoqui, and T. Eisenbarth, Cachezoom: How SGX amplifies the
power of cache attacks, in International Conference on Cryptographic Hardware and
Embedded Systems, Springer, 2017, pp. 69–90.

[129] T. Moscibroda and O. Mutlu, A case for bufferless routing in on-chip networks, in
Proceedings of ISCA, 2009, pp. 196–207.

[130] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss, and F. Piessens,
Plundervolt: Software-based fault injection attacks against intel® SGX, in Proceedings of
the 41st IEEE Symposium on Security and Privacy (S&P’20), 2020, pp. 1466–1482.

[131] E. Mykletun, M. Narasimha, and G. Tsudik, Authentication and integrity in out-
sourced databases, in ACM Transaction on Storage, 2006, pp. 107–138.

[132] P. Nair, V. Sridharan, and M. Qureshi, XED: Exposing on-die error detection infor-
mation for strong memory reliability, in Proceedings of ISCA, 2016, pp. 341–353.

[133] P. J. Nair, D. A. Roberts, and M. K. Qureshi, Citadel: Efficiently protecting stacked
memory from tsv and large granularity failures, in 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 51–62.

[134] M. Narasimha and G. Tsudik, Authentication of outsourced databases using signature
aggregation and chaining, in ACM Transaction on Storage, 2006, pp. 107–138.

[135] M. Neve and K. Tiri, On the complexity of side-channel attacks on AES-256 – methodol-
ogy and quantitative results on cache attacks, 2007. Technical report, https://eprint.i
acr.org/2007/318.

[136] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin, Trustzone explained:
Architectural features and use cases, in 2016 IEEE 2nd International Conference on
Collaboration and Internet Computing (CIC), 2016, pp. 445–451.

[137] K. Nguyen, Introduction to cache allocation technology in the Intel® Xeon processor e5 v4
family, 2016. https://software.intel.com/en-us/articles/introduction-to-
cache-allocation-technology.

[138] U. G. A. Office, Data protection: Actions taken by Equifax and federal agencies in response
to the 2017 breach. https://www.gao.gov/products/GAO-18-559,2018.

[139] D. Okeeffe, D. Muthukumaran, P. Aublin, F. Kelbert, C. Priebe, J. Lind, H. Zhu,

and P. Pietzuch, Spectre attack against SGX enclave. https://github.com/lsds/sp
ectre-attack-sgx.

https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc781134(v=ws.10).aspx
https://eprint.iacr.org/2007/318
https://eprint.iacr.org/2007/318
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://www.gao.gov/products/GAO-18-559, 2018
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx

135

[140] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, Eleos: Exitless os services
for SGX enclaves, in EuroSys, 2017, pp. 238–253.

[141] D. Palframan, N. Kim, and M. Lipasti, COP: To compress and protect main memory,
in Proceedings of ISCA, 2015, pp. 682–693.

[142] H. H. Pang and K. L. Tan, Authenticating query results in edge computing, in Proceed-
ings of 20th International Conference on Data Engineering, 2004, pp. 560–571.

[143] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.

Mowry, Base-delta-immediate compression: Practical data compression for on-chip caches,
in Proceedings of PACT, 2012, pp. 377–388.

[144] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, DRAMA: Exploiting
dram addressing for cross-cpu attacks, in Proceedings of USENIX Security Symposium,
2016, pp. 565–581.

[145] M. Qureshi, CEASER: Mitigating conflict-based cache attacks via encrypted-address and
remapping, in Proceedings of MICRO, 2018, pp. 775–787.

[146] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas, Design space exploration
and optimization of path oblivious RAM in secure processors, in Proceedings of ISCA,
2013, pp. 571–582.

[147] Intel® Corporation, Intel® software developer’s manual. 2015. Reference no. 325462-
056US.

[148] J. Robertson and M. Riley, The big hack: How China used a tiny chip to infiltrate u.s.
companies, 2018. Bloomberg Businessweek, https://www.bloomberg.com/news/fea
tures/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltra

te-america-s-top-companies.

[149] B. Rogers, S. Chhabra, Y. Solihin, and M. Prvulovic, Using address independent
seed encryption and bonsai merkle trees to make secure processors os- and performance-
friendly, in Proceedings of MICRO, 2007, pp. 183–196.

[150] M. Sabt, M. Achemlal, and A. Bouabdallah, Trusted execution environment: What
it is, and what it is not, in IEEE Trustcom/BigDataSE/ISPA, 2015, pp. 57–64.

[151] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, J. Joao, and M. Qureshi,
Morphable counters: Enabling compact integrity trees for low-overhead secure memories, in
Proceedings of MICRO, 2018, pp. 416–427.

[152] G. Saileshwar, P. Nair, P. Ramrakhyani, W. Elsasser, and M. Qureshi, SYN-
ERGY: Rethinking secure-memory design for error-correcting memories, in Proceedings of
HPCA, 2018, pp. 454–465.

[153] J. Salowey, A. Choudhury, and D. McGrew, AES Galois Counter Mode (GCM) cipher
suites for TLS, 2008. https://tools.ietf.org/html/rfc5288.

[154] S. Sasy, S. Gorbunov, and C. W. Fletcher, Zerotrace : Oblivious memory primitives
from Intel® SGX, in 25th Annual Network and Distributed System Security Sympo-
sium (NDSS), 2018, pp. 1–15.

https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://tools.ietf.org/html/rfc5288

136

[155] A. Saxena and B. Soh, Authenticating mobile agent platforms using signature chaining
without trusted third parties, in 2005 IEEE International Conference on e-Technology,
e-Commerce and e-Service, 2005, pp. 282–285.

[156] A. Saxena and B. Soh, One-way signature chaining: A new paradigm for group
cryptosystems, in International Journal of Information and Computer Security, 2008,
pp. 268–296.

[157] E. Sayegh, More cloud, more hacks: 2020 cyber threats. https://www.forbes.com/sit
es/emilsayegh/2020/02/12/more-cloud-more-hacks-pt-2,2020.

[158] B. Schroeder, E. Pinheiro, and W. D. Weber, DRAM errors in the wild: A large-scale
field study, in Proceedings of SIGMETRICS, 2009, pp. 100–107.

[159] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, Malware guard
extension: Using SGX to conceal cache attacks, in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer, 2017, pp. 3–24.

[160] M. Seaborn and T. Dullien, Exploiting the DRAM rowhammer bug to gain kernel
privileges, 2015. http://googleprojectzero.blogspot.com/2015/03/exploit

ing-dram-rowhammer-bug-to-gain.html.

[161] A. Shafiee, R. Balasubramonian, M. Tiwari, and F. Li, Secure DIMM: Moving oram
primitives closer to memory, in Proceedings of HPCA, 2018, pp. 428–440.

[162] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and M. Tiwari, Avoid-
ing information leakage in the memory controller with fixed service policies, in Proceedings
of MICRO, 2015, pp. 89–101.

[163] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis, MemZip: Exploit-
ing unconventional benefits from memory compression, in Proceedings of HPCA, 2014,
pp. 638–649.

[164] A. Shaizeen and N. Satish, Invisimem: Smart memory for trusted computing, in Inter-
national Symposium on Computer Architecture (ISCA), 2017, pp. 94–106.

[165] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, and Y. Xia, Occlum: Secure
and efficient multitasking inside a single enclave of intel® SGX, 2001. https://arxiv.or
g/abs/2001.07450.

[166] Y. Shi, K. Zhang, and Q. Li, A new data integrity verification mechanism for SaaS, in
Web Information Systems and Mining, Springer Berlin Heidelberg, 2010, pp. 236–
243.

[167] M. Shih, S. Lee, T. Kim, and M. Peinado, T-SGX: Eradicating controlled-channel
attacks against enclave programs, in NDSS Symposium, 2017, pp. 640–656.

[168] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, Preventing page faults from
telling your secrets, in Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, ACM, 2016, pp. 317–328.

[169] R. Sinha, S. Rajamani, and S. Seshia, A compiler and verifier for page access obliv-
ious computation, in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, 2017, pp. 649–660.

https://www.forbes.com/sites/emilsayegh/2020/02/12/more-cloud-more-hacks-pt-2,2020
https://www.forbes.com/sites/emilsayegh/2020/02/12/more-cloud-more-hacks-pt-2,2020
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://arxiv.org/abs/2001.07450
https://arxiv.org/abs/2001.07450

137

[170] R. Spreitzer and T. Plos, Cache-access pattern attack on disaligned aes t-tables, in
International Workshop on Constructive Side-Channel Analysis and Secure Design,
Springer, 2013., pp. 200–214.

[171] V. Sridharan and D. Liberty, A study of dram failures in the field, in Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), 2013, pp. 1–11.

[172] V. Sridharan, N.DeBardeleben, S. Blanchard, K. Ferreira, J. Stearley,

J. Shalf, and S. Gurumurthi, Memory errors in memory systems: The good, the bad,
and the ugly, in Proceedings of ASPLOS, 2015, pp. 297–310.

[173] E. Stefanov and E. Shi, Oblivistore: High performance oblivious cloud storage, in
Proceedings of IEEE S&P, 2013, pp. 253–267.

[174] E. Stefanov, E. Shi, and D. Song, Towards practical oblivious RAM. arXiv preprint
arXiv:1106.3652, 2011, https://arxiv.org/abs/1106.3652.

[175] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas,
Path ORAM: An extremely simple oblivious ram protocol, in Proceedings of CCS, 2013,
pp. 1–26.

[176] G. E. Suh, D. Clarke, B. Gassend, M. v. Dijk, and S. Devadas, Efficient memory
integrity verification and encryption for secure processors, in Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003, pp. 1–12.

[177] G. E. Suh and S. Devadas, Design and implementation of the AEGIS single-chip secure
processor using physical random functions, in Proceedings of ISCA, 2005, pp. 570–580.

[178] P. Szalachowski, D. Reijsbergen, I. Homoliak, and S. Sun, Strongchain: Trans-
parent and collaborative proof-of-work consensus, in 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA, Aug. 2019, USENIX Association, pp. 819–
836.

[179] J. Szefer and M. Martonosi, Principles of secure processor architecture design. Morgan
Claypool, 2018.

[180] M. Taassori, A. Nag, K. Hodgson, A. Shafiee, and R. Balasubramonian, Memory:
The dominant bottleneck in genomic workloads, in Proceedings of AACBB Workshop, in
conjunction with HPCA-24, 2018.

[181] M. Taassori, A. Shafiee, and R. Balasubramonian, VAULT: Reducing paging over-
heads in SGX with efficient integrity verification structures, in Proceedings of ASPLOS,
2018, pp. 665–678.

[182] H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv, and N. Milshten,
Switchless calls made practical in intel® SGX, in Proceedings of the 3rd Workshop on
System Software for Trusted Execution, 2018, pp. 22–27.

[183] H. Tian, Y. Zhang, C. Xing, and S. Yan, Sgxkernel: A library operating system
optimized for intel® SGX, in Proceedings of the Computing Frontiers Conference,
2017, pp. 35–44.

https://arxiv.org/abs/1106.3652

138

[184] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalodner,

V. Kulkarni, D. Oliveira, and D. E. Porter, Cooperation and security isolation
of library oses for multi-process applications, in Proceedings of the Ninth European
Conference on Computer Systems, 2014, pp. 1–14.

[185] C.-C. Tsai, D. E. Porter, and M. Vij, Graphene-SGX: A practical library os for un-
modified applications on SGX, in 2017 USENIX Annual Technical Conference (USENIX
ATC), 2017, pp. 645–658.

[186] A. N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. Jouppi,
LOT-ECC: Localized and tiered reliability mechanisms for commodity memory systems, in
Proceedings of ISCA, 2012, pp. 285–296.

[187] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Sil-

berstein, T. F. Wenisch, Y. Yarom, and R. Strackx, Foreshadow: Extracting the
keys to the intel® SGX kingdom with transient out-of-order execution, in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 991–1008.

[188] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K. Razavi,

H. Bos, and C. Giuffrida, Ridl: Rogue in-flight data load, in 2019 IEEE Symposium
on Security and Privacy (SP), IEEE, 2019, pp. 88–105.

[189] A. Vuong, A. Shafiee, M. Taassori, and R. Balasubramonian, An MLP-Aware
leakage-free memory controller, in Proceedings of HASP Workshop, in conjunction with
ISCA-45, 2018, pp. 1–7.

[190] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,

and C. Gunter, Leaky cauldron on the dark land: Understanding memory side-channel
hazards in SGX, in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017, pp. 2421–2434.

[191] Y. Wang, A. Ferraiuolo, and G. E. Suh, Timing channel protection for a shared memory
controller, in HPCA, 2014, pp. 225–236.

[192] Y. Wang, B. Wu, and G. Suh, Secure dynamic memory scheduling against timing channel
attacks, in Proceedings of HPCA, 2017, pp. 301–312.

[193] Z. Wang and R. B. Lee, New cache designs for thwarting software cache-based side
channel attacks, in Proceedings of ISCA, 2007, pp. 494–505.

[194] , A novel cache architecture with enhanced performance and security, in Proceedings
of MICRO, 2008, pp. 83–93.

[195] Wangyuan Zhang and Tao Li, Microarchitecture soft error vulnerability characterization
and mitigation under 3d integration technology, in 2008 41st IEEE/ACM International
Symposium on Microarchitecture, 2008, pp. 435–446.

[196] M. N. Wegman and J. Carter, Universal classes of hash functions, in Journal of
Computer and System Sciences, Vol. 18, 1979, pp. 143–154.

[197] M. N. Wegman and J. lawerence, New hash functions and their use in authentication
and set equality, in Journal of Computer and System Sciences, 1981, pp. 265–279.

[198] O. Weisse, V. Bertacco, and T. Austin, Regaining lost cycles with hotcalls: A fast
interface for SGX secure enclaves, in Proceedings of the 44th Annual International
Symposium on Computer Architecture, ACM, 2017, pp. 81–93.

[199] Y. Xu, W. Cui, and M. Peinado, Controlled-channel attacks: Deterministic side channels
for untrusted operating systems, in Proceedings of IEEE Symp. on Security and Privacy
(S&P Oakland), 2015, pp. 640–656.

[200] M. Yan, J.-Y. Wen, C. Fletcher, and J. Torrellas, SecDir: A secure directory to
defeat directory side-channel attacks, in Proceedings of ISCA, 2019, pp. 332–345.

[201] Y. Yarom and K. Falkner, Flush+Reload: A high resolution, low noise, l3 cache side-
channel attack, in the 23rd USENIX Security Symposium, 2014, pp. 719–732.

[202] M. Ye, C. Hughes, and A. Awad, Osiris: A low-cost mechanism to enable restoration of
secure non-volatile memories, in Proceedings of MICRO, 2018, pp. 403–415.

[203] D. Yoon and M. Erez, Memory mapped ECC: Low-cost error protection for last level
caches, in Proceedings of ISCA, 2009, pp. 116–127.

[204] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, Truspy: Cache side-channel
information leakage from the secure world on arm devices. IACR Cryptology ePrint
Archive, 2016.

[205] Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff, Camouflage: Memory traffic shaping
to mitigate timing attacks, in High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on, IEEE, 2017, pp. 337–348.

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	[0.95][l]CHAPTERS
	=10000=10000=0 Introduction
	Trusted Execution Environments Challenges
	Dissertation Overview
	Thesis Statement
	Contributions
	VAULT: A Low Overhead Trusted Execution Environment
	Compact Leakage-Free Support for Integrity and Reliability

	Thesis Organization

	=10000=10000=0 Background
	Security Concepts
	Trusted Execution Environment (TEE)
	Introduction to TEEs
	Academic TEEs
	Commercial TEEs
	ARM TrustZone
	Intel® SGX
	AMD SEV

	Software Guard Extensions (Intel® SGX)
	Threat Model
	SGX Memory Organization
	Control Data Structures in SGX
	Attestation
	Sealing
	Enclave's Life Cycle
	Paging in SGX
	SGX Memory Access Protection
	SGX Memory Encryption Engine (MEE)

	Attacks
	Passive Attacks
	Active Attacks
	Physical Attacks
	Software Attacks
	Address Translation Attack
	Cache Attacks
	DRAM Timing Side-Channel Attack
	DRAM Access Pattern Attack
	Denial of Service Attack (DoS)
	Man-in-the-Middle Attack
	Iago Attack

	=10000=10000=0 Related Work
	Memory Integrity Verification
	Memory Reliability
	Unified Integrity and Reliability
	Smart Memories for Security
	SGX Performance Enhancements
	Side-Channel Attacks in SGX

	=10000=10000=0 VAULT: A Low Overhead Trusted Execution Environment
	Introduction
	Background
	Threat Model
	Merkle Trees
	Bonsai Merkle Trees
	Intel® SGX Baseline

	Proposed Techniques
	Unifying the EPC and Non-EPC Regions
	Variable Arity Unified Encrypted-Leaf Tree (VAULT)
	Shared MAC with Compression (SMC)
	On-Demand MAC Allocation (ODMA)
	Security Analysis
	Discussion

	Methodology
	Results
	Evaluation of VAULT
	Evaluation of Reset Overhead and VAULT
	Evaluation of SMC
	Impact of Caching the Integrity Tree Nodes
	Page Fault Overhead
	Summary of the Proposed Methods

	Conclusions

	=10000=10000=0 ITESP: Compact Leakage-Free support for Integrity and Reliability
	Introduction
	Background
	Threat Model
	Integrity Verification
	Synergy
	Motivation

	Isolated Tree with Embedded Shared Parity
	Isolated Metadata
	Covert Channel Demonstration
	Caching Shared Parity
	Embedding Parity in the Integrity Tree
	Implementation Details
	Security Analysis
	Reliability Analysis

	Methodology
	Results
	ITESP for VAULT and Synergy Baselines
	Sensitivity Analysis
	Address Mapping Policies.
	ITESP with Morphable Counter Baseline

	Conclusions

	=10000=10000=0 Conclusion
	Future Work

	REFERENCES

