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The march toward specialized systems 

any emerging workloads are con-
strained by the high cost of data 

access. Innovation in the memory sys-
tem may soon be the primary driver of 
the computing economy. The result will 

be a memory system that is specialized, not commoditized. 
This article discusses the features that can be meaningfully add-
ed to memory devices. Not only do these features execute parts 
of an application, they may also take care of auxiliary operations 
that maintain high efficiency, reliability, and security.

Introduction
Memory products have long been commoditized and 
standardized, while the processor has remained a hot  
bed of innovation for many decades. However, in the 
coming decade, we can expect a reversal in roles.

Innovations to processor cores have started to taper 
out, and the microarchitectures of throughput-optimized 
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and latency-optimized general-pur-
pose cores are fairly well understood 
[16]. There will be a steady trickle of 
architecture innovations for general-
purpose processors, but these are 
unlikely to disrupt the relatively flat 
average improvement curve for large 
benchmark suites. Without signifi-
cant annual improvements, computer 
systems end up as commodities sold 
at low margins.

What then drives the comput-
ing industry forward? What is the 

motivation for hardware/architec-
ture innovation?

A shift toward specialization is 
inevitable. There will likely be a sig-
nificant low-margin market for gen-
eral-purpose commodity systems 
and a second significant high-mar-
gin market for specialized systems. 
This is how the automobile indus-
try has operated for decades. To 
some extent, this is already a real-
ity today in the computing market. 
A desktop computer can be built for 
around US$500; this is how we build 
a cluster to do many architecture 
simulations in parallel. But a single 
graphics processing unit (GPU) card 
can cost ten times that amount, 
and this is what we use to run our 
machine learning algorithms.

Two phenomena will serve as the 
drivers of the computing industry 
in the coming decade. The first is 
the growing focus on accelerators. 
The second is a shift toward fea-
ture-rich memory systems. Both of 
these paths are relatively less trav-
eled, i.e., they have the potential to 
uncover large benefits. Combined, 
these two phenomena will form the 
basis for specialized systems that 
can significantly outperform previ-
ous-generation systems and com-
mand a higher price tag.

Accelerators are being actively 
studied in architecture research cir-
cles. Accelerators have already been 
designed for popular data-intensive 
algorithms, e.g., data partitioning 
[43], database queries [44], sort [26], 
and machine learning [6].

As computational throughput on a 
processor increases, with help from 
accelerators, there is a corresponding 
demand for higher memory capac-
ity and bandwidth. Enterprise-class 
workloads, e.g., SAP HANA [30] and 

SAS in-memory analytics [31], are well 
known for demanding low-latency 
access for massive data sets. This is 
an increasingly prevalent phenome-
non as several industries grapple with 
analytics that can convert big data 
into big money.

In this era of big data processing, 
a large fraction of overall time and 
energy is expended in data access and 
data movement. Following Amdahl’s 
law, the memory/storage system is 
clearly where system innovations 
can have the largest impact. This is 
especially true because the memory 
system has not been a target of archi-
tecture innovations for the past three 
decades. We are long overdue for spe-
cialized memory systems that are not 
constrained by standards or by an 
unwavering focus on cost per bit.

Memory system innovations can 
help a vendor distinguish its prod-
ucts from the competition. The new 
currency for a memory product will 
therefore be features. Cost per bit is a 
fine metric for the commodity general-
purpose space, but it will be a second-
ary metric for specialized systems.

So what features can one place 
within the memory system? These 
features may include, for example, 
simple processing units, accelera-
tors, logic for reliability, security, 

and compression. Such features are 
compatible with most memory tech-
nologies, while some features (e.g., 
those dealing with wearout) are an 
especially good fit for emerging non-
volatile memory (NVM) technologies. 
While minimal amounts of logic may 
be placed within memory dies, the 
more significant features will likely be 
placed in separate logic chips. These 
logic chips can be coupled with mem-
ory dies either with through silicon 
vias (TSVs) in a 3D-stacked package or 
with on-board traces in a dual in-line 
memory module (DIMM) form factor. 
This article discusses the features that 
can be meaningfully added to memory 
devices and the impact they can have 
on server architectures.

Memory System Features
Figure 1 summarizes the overall 
approach of a feature-rich memory 
system. I will classify memory sys-
tem features into two main groups: 
processing features and auxiliary 
features. The first group provides 
logic to execute parts of the applica-
tion, and this logic can take the form 
of a general-purpose processor or 
an application-specific accelerator. 
The second group provides logic to 
perform auxiliary operations that 
are independent of the application 
but critical for overall system effi-
ciency. Such operations may include 
wear leveling, encryption, compres-
sion, and coding.

Processing Features
For a few decades now, researchers 
have considered off-loading parts of 
an application to a processor embed-
ded in the memory system. The area 
of processing-in-memory (PIM) was 
heavily researched in the 1990s but 
remained dormant for a decade after 
that for a variety of reasons, most 
notably, the economics of integrat-
ing logic and DRAM on a single die.

The area has now reemerged [4], 
thanks to improvements in technology 
[e.g., three-dimensional (3D) stacking], 
the demands of emerging workloads 
(e.g., big data workloads that benefit 
from high memory bandwidth), and, as 

For a few decades now, researchers have 
considered off-loading parts of an application  
to a processor embedded in the memory system.
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detailed in the introduction, the need 
for value additions in the memory 
system. The area has also broadened 
its scope—processors may be placed 
in a 3D-stacked package [28], [21], on 
a DIMM [27], and on solid-state drive 
(SSD) devices [7]. Accordingly, the term 
near data processing (NDP) is more 
descriptive and accurate than PIM. 
NDP research has been in the spotlight 
recently, with multiple papers at top-
tier venues, a very successful series 
of workshops (WoNDP) at the Interna-
tional Symposium on Microarchitec-
ture, and a special issue in IEEE Micro. 
Indeed, research in this area has closely 
tracked the famous Gartner hype curve 
[11], with a steep rise, a steep fall, 
and, hopefully now, a period of robust 
enlightenment and productivity.

So why is NDP useful? Consider 
an application that is searching for a 
particular record in a data set. Con-
ventional architectures would move 
the entire data set to the processor, 
consuming all the memory bandwidth, 
expending large amounts of data 
movement energy and polluting the 
processor caches, only to isolate a few 
records of interest. This is the classic 
killer app for NDP. Such a “filtering” 
operation can be performed by a sim-
ple processor on the memory device. 

The near-data processor enjoys both 
lower latency and lower energy for 
memory access and higher memory 
bandwidth. Meanwhile, the processor’s 
caches and memory bandwidth can be 
better used for other relevant data sets 
that exhibit higher locality.

Clearly, several research issues 
need to be addressed to realize the 
potential of NDP. Below, each of these 
issues are listed, along with  example 
attempts to address them. While most 
of this discussion uses near-DRAM pro-
cessing as a driving example, note that 

similar approaches can also be used for 
near-NVM and near-flash processing.

What Workloads Can  
Benefit from NDP?
To answer this, we first identify the 
types of computations that can be 
meaningfully off-loaded to the mem-
ory device. As a strawman, consider  
the generic NDP architecture in Fig
ure 2, which includes a network 
of processor sockets and memory 
devices, each with multiple processing 
cores. This is essentially a distributed 

Figure 2: A generic bandwidth model for NDP.
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computation model, with cores hav-
ing asymmetric views of memory. 
A core on a memory device has a 
high-bandwidth link (A) to its local 
memory and a low bandwidth link 
(C) to nonlocal memory. A core on 
the processor socket has a collec-
tion of low-bandwidth links (B) to 
an aggregation of memory devices. 
In terms of bandwidth, A > B > C. 
If a computation can localize its 
memory accesses to data in a single 
memory device, the computation is 
best placed on that memory device 
so it can exploit the high bandwidth 
of A. If a computation has limited 
locality, it must determine if it is 
better to off-load to the memory 
device and exploit a combination of 
A and C or remain on the processor 
socket and exploit B. 

This is clearly a simplistic view 
because it does not consider detailed 
network topologies nor the quality of the 
cores/caches on the processor/memory 
devices. But at a high level, it conveys 
the key point that a computation with 
localized memory accesses is an ideal 
candidate for near-data execution.

A second key component in this 
analysis is parallelism. Each addi-
tional memory device adds more 
memory and compute resources. If 
a computation can be parallelized 
across the many cores in memory 
devices, it is an even better candi-
date for near-data execution.

There are a few other consider-
ations in the off-load decision. 

■■ Is one of the cores or one of the 
cache hierarchies especially bene-
ficial for the computation at hand? 

■■ What is the cost of spawning a 
task (passing code and arguments 
to the memory device)? 

■■ What is the cost of terminating a 
task (returning results to the pro-
cessor socket)? 

■■ What is the length of the off-load-
ed function?
It is nontrivial to factor in these issues 

to develop an automatic hardware/soft-
ware off-load policy. It is, therefore, 
an active area of research. We briefly 
describe two examples here that repre-
sent opposite ends of the spectrum.

The work of Ahn et al. [2] attempts 
fine-granularity off-loads with PIM-
enabled instructions (PEIs). Individual 
instructions can be executed either 
on the host processor or on the mem-
ory device (with a locality monitor 
that helps in this decision making). 
Consider the example where a single 
scalar value is being added to some 
word that is not currently cache resi-
dent. Without PEIs, an entire 64-B 
cache line is brought to the proces-
sor, an update is performed, and the 
entire 64-B cache line is sent back 
to memory. With PEIs, the 8-B scalar 
value is sent to the memory device 
(with appropriate control bits) so the 
update can be performed directly in 
the memory device. 

In this particular example, PEIs 
yield a 16× decrease in bandwidth 
requirement, the length of the off-
loaded function is one, and the cost 
of task spawning and termination is 
actually lower with PEIs than with-
out PEIs. Ahn et al. also extend the 
instruction set architecture (ISA) so 
that nontrivial functionalities can 
be off-loaded to memory devices.

Meanwhile, work from our group 
[28] focuses on in-memory MapRe-
duce applications that exhibit a very 
high degree of locality and task-level 
parallelism. Each map and reduce 
task is executed on a memory device 
that contains that data partition, 
dubbed near data computing (NDC). 
Task setup and teardown are non-
trivial efforts, especially if data shuf-
fling is required. But that overhead is 
palatable because each task executes 
for many thousands of cycles. The 
task latency itself is highly sensitive 
to memory bandwidth. The primary 
source of speedup is the high band-
width within a collection of memory 
devices, which is far greater than the 
bandwidth into the processor socket.

The PEI approach can yield a nearly 
1.5× average speedup for a range of 
memory-intensive workloads that do 
not exhibit cache line reuse, while the 
NDC approach can yield up to 15× 
speedup for a specific class of memory-
intensive workloads that have high 
coarse-grained parallelism. This also  

provides insight on the data access pat-
terns of workloads that benefit from 
NDP. In-memory MapReduce (e.g., in 
SPARK [46]) is a killer app that exhibits 
localized memory access and embar-
rassing levels of coarse-grained par-
allelism [28]. In-memory MapReduce 
frameworks have been shown to be 
useful for a wide range of applications: 
database operations, analytics, machine 
learning, and graph algorithms [46].

The PEI work shows benefits for 
a number of graph workloads where 
data traversal is random enough that 
caches are ineffective, and small com-
putations within each graph vertex 
can be off-loaded to memory. They 
also extend the ISA to perform hash 
table probing, histogram bin indexing, 
and dot products over cache lines to 
accelerate data mining and machine 
learning applications. Other papers 
have also shown NDP benefits for 
other applications, e.g., graph process-
ing [1], scientific kernels that map to 
coarse-grained reconfigurable accel-
erators (CGRAs) [10], scientific work-
loads [21], signal processing [15], and 
join algorithms [20].

How Should Data Be Organized 
Across Memory Devices?
A natural next issue is the interleav-
ing and addressing of data across 
several memory devices. Unlike con-
ventional double-data rate (DDR) 
memory that stripes a single cache 
line across multiple DRAM packages, 
an entire cache line or even an entire 
page in NDP must now be localized to 
a single memory package. This allows 
the core/accelerator on the memory 
package to perform fine- and coarse-
grained computation without engag-
ing in complex bit-level manipulations 
and without aggregating inputs from 
many sources. This already appears to 
be the default data mapping in emerg-
ing memory devices like the hybrid 
memory cube (HMC) [18]. However, 
when the same data is accessed by a 
host processor socket, it may lead to 
longer transfer times.

It is also important to resolve how 
a memory device may potentially 
access data in a different memory 
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device. One popular option is to 
never allow this, requiring the appli-
cation on the host processor socket 
to marshall any necessary data before 
spawning an NDP task (as was done 
by Pugsley et al. [28]). Another option 
is to simply treat every core as being 
part of a full-fledged shared-memory 
multiprocessor system, i.e., every 
core can issue loads and stores to any 
globally visible address regardless of 
whether the core resides on the host 
processor or on the memory device. 
This entails more software/hardware 
complexity because it requires the 
memory device to maintain a coher-
ent translation look-aside buffer 
(TLB) and serve as an originator of 
memory requests.

This brings us to yet another key 
and somewhat unsolved issue—how 
is virtual memory handled? One solu-
tion, as suggested in the PEI work [2], 
is to leave virtual memory manage-
ment entirely up to the host proces-
sor. When a task is spawned on the 
memory device, it is provided the 
necessary arguments as physical 
addresses; the task is not allowed to 
touch data beyond the cache lines (or 
pages) that were provided as argu-
ments. Another solution, as suggested 
by Pugsley et al. [28], is to organize 
the data on a memory device into a 
few large pages. This is a good fit 
for many big data applications, and 
it reduces the overheads associated 
with page faults, large TLBs, etc.

What Microarchitecture Is Best  
for Near Data Processing?
In most prior work, the cores on the 
memory device have been designed 
to be “wimpy.” While some propos-
als incorporate full-fledged general-
purpose wimpy cores [28], such as 
the 80 mW ARM Cortex A5 cores in 
NDC [28] that can execute entire gen-
eral-purpose map or reduce tasks, 
others only implement custom func-
tional units or accelerators [2], [3],   
[15]. In the work of Ahn et al. [2], 
the functional unit is only capable 
of executing a single PIM-enabled 
instruction, and the most complex 
functional unit handles dot-product 

computations for the words in a 
cache line. In another example, Akin 
et al. [3] design a 178-mW functional 
unit that can permute data. 

In addition to these fixed-function 
units, we have also seen examples of 
reconfigurable accelerators, such as 
the use of  CGRAs by Farmahini-Fara-
hani et al. [10] and predefined accel-
erator primitives that can be chained 
together to perform more complex 
operations [15]. Also, there are pro-
posals to combine general-purpose 
wimpy cores and accelerators, e.g., 
for in-memory MapReduce workloads, 
Pugsley et al. [26] execute map and 
reduce phases on Arm cores, while the 
sort phase between map and reduce 
is handled by a fixed-function accel-
erator. These are all compelling design 
points on the classic generality versus 
efficiency spectrum.

So why is it best to pursue a 
“wimpy” core instead of a low-latency 
out-of-order core? An argument that 
is frequently cited is the reluctance 
to embed a high-power core in a 
3D-stacked package for fear that it 
may lead to thermal issues. But this 
is often a red herring. For example, 
adding a few watts to a 13-W HMC 
device [18] is unlikely to pose a haz-
ard, especially if some of the external 
bandwidth can be eliminated [28]. A 
more detailed study by Eckert et al. 
[9] makes exactly that argument.

The more credible argument in 
favor of wimpy cores is that it actu-
ally leads to higher performance as 
it enables the creation of a through-
put-optimized compute substrate 
that can leverage the high bandwidth 
afforded by NDP. As mentioned ear-
lier, one of the main benefits of NDP 
is that plugging in more memory 
modules leads to more cores and 
a large-scale parallel system. This 
is most useful for tasks with high 
degrees of parallelism. For such a 
highly parallel task, the path to high 
performance at a fixed power bud-
get is to use many low-power cores, 
not a few high-power cores [28]. To 
be more precise, for a highly parallel 
task, we can optimize throughput at 
a fixed power budget by optimizing 

energy per instruction [28]. There-
fore, it is best to use cores or accel-
erators that are optimized for low 
energy and not low latency. This also 
enables the use of many cores or 
accelerators per memory device, an 
important requirement if we want to 
saturate the available bandwidth.

Where Can Processors/Accelerators 
Be Placed?
About two decades ago, there was 
a strong push to place computa-
tion on the memory die itself. With 
a potentially lower focus on cost 
per bit in the future, that approach 
may yet have merit. But so far, few 
have chosen to revisit that direction. 
A few works by Seshadri et al. [33]–
[35] have proposed small changes to 
DRAM arrays to support bit manipu-
lations and efficient data movement.

The vast majority of NDP stud-
ies in the last few years have focused 
on 3D-stacked memory devices. This 
approach leaves the DRAM dies rela-
tively untouched, while leveraging 
TSVs to support very high intrapack-
age bandwidth. By localizing the cores/
accelerators to a separate die, they can 
be implemented in a superior logic 
process. This approach is often touted 
as the solution that offers the benefits 
of NDP at relatively low cost, and that 
is compatible with the natural evolu-
tion of DRAMs (3D stacking). However, 
early indications are that 3D-stacked 
DRAMs, especially those that include 
a logic die, will not be cheap. In cer-
tain segments, the cost increase will be 
well worth the higher performance.

Given the high cost of 3D-stacked 
DRAM, it is worth exploring if some 
(most?) of the benefits of NDP can also 
be provided with conventional non-
3D-stacked DRAM? This is an area that 
is relatively under studied and more 
research needs to be done. One exam-
ple proposal by Pugsley et al. [27], 
NDC-Module, re-designs a DIMM by 
placing many simple processor chips 
on the DIMM and connecting them 
to their adjacent commodity DRAM 
chips. The key here is that in a conven-
tional DIMM and server, the on-DIMM 
buses can offer very high bandwidth 
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levels; but these buses (on multiple 
DIMMs) are eventually multiplexed on 
to a single shared DRAM channel that 
carries data into the processor socket. 
Thus, the high aggregate intra-DIMM 
bandwidth isn’t entirely available to a 
conventional processor. Moving com-
putational logic to the DIMM allows 
the system to leverage the high intra-
DIMM bandwidth and linearly scale 
available bandwidth as more DIMMs 
are added to the system. In other 
words, 3D-stacked TSVs are not the 
only source of high bandwidth; on-
DIMM buses are a great (and cheaper) 
alternative source. The NDC-module 
design of Pugsley et al. [27] is opti-
mized for high-bandwidth memory 
access for a parallel workload, such 
as in-memory MapReduce. It is not a 
good fit for applications that cannot 
be easily parallelized.

Computation can be placed near 
DRAM memory [27], near NVM (PCM 
and  memristors [36]), or near flash-
based solid-state drives [7]. Note 
that the benefits of NDP are deter-
mined more by the ratio of intra-
and interpackage data bandwidths, 
which can be high in most memory 
technologies.

What Programming Models  
Are Required?
This remains a key challenge in the 
widespread adoption of NDP. Not only 
does NDP require the programmer 
to grapple with the usual challenges 

of parallel/distributed programming 
(e.g., how is data partitioned across 
the compute units, what are the 
semantics/synchronization for deal-
ing with shared data or serialized 
critical sections), but the programmer 
has to also identify the best location 
(i.e., host processor or near-data pro-
cessor or near-data accelerator) for 
any computation. Consider the fol-
lowing example approaches to this 
challenge. The NDC proposal of Pug-
sley et al. [28] does not introduce a 
new programming model—it tries to 
leverage an existing infrastructure 
and developer base. That architecture 
is targeted at a class of workloads 
that can be handled by the intuitive 
MapReduce programming model. 

The PEI proposal of Ahn et al. [2] 
requires the application developer 
or compiler to identify individual 
instructions that can be mapped 
to functional units on the memory 
device. The burden on the devel-
oper or compiler is low because the 
PEI hardware automatically decides 
where that instruction is best exe-
cuted. The larger community real-
izes that we are moving in a direction 
where specific computations will be 
off-loaded to accelerators, whether 
they are near memory or not. The evo-
lution of these programming models 
and standards will likely play out over 
the next five years. NDP introduces a 
significant wrinkle to this evolution 
because of how caches/memory are 

asymmetrically exposed to the vari-
ous processors.

In-Situ Computing
I will end this section with a discus-
sion of a unique in-memory accelera-
tor, a design that leverages emerging 
memristive technology and a mem-
ory array organization that not only 
stores data but also performs opera-
tions on that data.

Figure 3(a) shows a memristive  
crossbar array, where cells are im-
plemented as metal-oxide materi-
als between overlapping word lines 
and bit lines on different metal lay-
ers. The array has no access tran-
sistors, and it can be represented 
logically as a grid of resistances, as 
shown in Figure 3(b). Each cell can 
be individually programmed by ap-
plying the appropriate combination 
of voltage pulses at the word lines 
and bit lines [45]. During a read op-
eration, as depicted in Figure 3(c), a 
set of voltages V1–VN are applied to 
the N word lines. If the cell conduc-
tances of the first column are G1–
GN, the current emerging from the 
first bit line can be represented as 
V1 # G1 +  V2 # G2 +  … +  VN # GN, 
based on Kirchoff’s law. In other 
words, the current in the first bit 
line is the dot product of the vector 
of input voltages and the vector of 
cell conductances in the first col-
umn. In parallel, each of the bit lines 
is now performing a dot product of 
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Figure 3: A memristive crossbar unit for analog dot product operations.
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the same input voltage vector and 
its vector of cell conductances. The 
memristive crossbar array is there-
fore a powerful analog vector-matrix 
multiplier that leverages Kirchoff’s 
law to perform a large number of 
parallel multiply-accumulate opera-
tions. Digital-to-analog conversion is 
required when providing input volt-
ages, and similarly, analog-to-digital 
conversion (ADC) is required before 
the outputs can be buffered.

The previously given analog 
dot-product unit can be very use-
ful in accelerating applications that 
involve dot products on large data 
sets. Machine-learning applications 
fit this bill. While noise and precision 
are important concerns in analog 
units, machine-learning applications 
are known to be tolerant to noise. 
An upcoming paper [36] shows how 
a mixed analog-digital architecture, 
ISAAC, can execute entire deep-learn-
ing algorithms at very high efficiency. 
In-situ computing targets the biggest 
bottlenecks in these algorithms—
storage, access, and compute for 
many millions of parameters—with 
a compact and parallel crossbar unit. 
In spite of ADC overheads (which are 
significant), ISAAC is able to achieve 
efficiency gains of nearly 15× over a 
state-of-the-art digital accelerator for 
deep learning [6].

In general, any resistive-RAM cell 
is a good candidate for use in such 
an analog dot-product engine. HfOx-
based memristors are an especially 
good fit because of their high on/off 
ratio. Since memristor cells exhibit 
a nonlinear I-V curve, they can 
also seamlessly apply sigmoid-like 
activation functions to the dot-prod-
uct operation, as is done in machine 
learning algorithms. Another exam-
ple of in-situ computing is the DRAM-
based Automata Processor that can 
accelerate algorithms that rely on 
pattern-matching [42].

Auxiliary Features
The previous section discusses a vari-
ety of computational capabilities that 
can be moved to the memory device; 
these explicitly accelerate portions 

of the application itself. We now turn 
our attention to other useful func-
tionalities that can be executed on 
the memory device; such features 
can improve overall system metrics 
in an application-agnostic manner. 
Many of the proposals in this section 
target phenomena (such as endur-
ance, iterative writes, and new error 
types) that are more applicable to 
emerging NVMs than to DRAM.

Compression
Memory compression was intro-
duced in commercial products over a 
decade ago, e.g., IBM MXT [41]. However, 
that idea didn’t catch on for a variety  
of reasons. 

■■ The latency of compression and 
decompression added a nontrivial 
penalty to memory access times. 

■■ There is significant software/hard-
ware complexity in managing com-
pressed data: 1) it takes nontrivial 
logic to estimate the location of a 
compressed block, and 2) when a 
block is modified and the new com-
pressed version turns out to be larg-
er, several other blocks may have 
to be moved to make room for the 
larger block. 

■■ Invasive changes are required to all 
parts of the operating system (OS) 
that deal with memory management.
The last few years have seen sig-

nificant advancements that make 
compressed memory a very attractive 
choice today. First, new compression 
algorithms, such as Base Delta Imme-
diate (BDI) compression [25], are able 
to achieve sufficiently large compres-
sion ratios for a sufficiently large set of 
applications, while consuming fewer 
than a handful of nanoseconds for 
compression and decompression.

Second, new compression architec-
tures [24] have been developed that, 
in the common case, make it easier to 
locate a compressed block, and avoid 
shuffling data around when com-
pressed blocks grow in size.

Third, recent papers [37], [32] 
have made the argument that it is the 
greed for higher memory capacity 
that increases the OS complexity from 
compression. Therefore, these papers 

have made the case that compression 
should be used for a variety of reasons 
but not to tightly pack more blocks 
into a limited space. So a 64-B stor-
age area in memory is reserved for a 
single 64-B data block, even though 
the block may only consume a frac-
tion of that storage after compression. 
This leaves the OS page management 
mechanisms unchanged. There are 
many other benefits of reading/writ-
ing smaller blocks [37]: lower energy, 
the ability to do more reads/writes in 
parallel, higher endurance for NVMs, 
the ability to add more metadata for 
error correction, etc. Sathish et al. 
[32] exploit some of these benefits 
for a GPU and GDDR5 memory, while 
Shafiee et al. [37] exploit them in the 
context of CPUs and DDR3. Their ap-
proaches place only one burden on the 
OS: managing compression metadata 
in a separate region of memory. Even 
this obstacle can be scaled; a recent 
paper [22] shows how error correction 
code (ECC) metadata can incorporate 
compression metadata.

With these new technologies in place, 
compression is a feature that no longer 
needs heavy involvement from the pro-
cessor or the OS. It could be a feature 
that is entirely managed by logic on 
memory devices, either in 3D-stacked 
devices or on DIMMs, and completely 
oblivious to the rest of the system. 

Memory Timing
Just as the management of compres-
sion can be off-loaded to the mem-
ory devices, other low-level memory 
management features can also be 
off-loaded to memory. For example, 
as DRAMs scale or as new NVMs 
come to market, new problems might 
emerge. Because of process varia-
tion, some regions of a die may be 
faster than others, and some regions 
may be more error prone than oth-
ers. Similarly, operations that con-
sume large amounts of current (e.g., 
writes in NVMs) will introduce static 
or dynamic IR-drop and pose severe 
worst-case constraints on DRAM tim-
ing parameters [38]. 

Rather than expose these so-called 
“blemishes” or conservative worst-case 
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parameters to the system, memory 
devices may choose to perform low-
level timing management on their 
own [23]. The processor issues read 
or write commands to the memory 
device, and the device figures out the 
fastest sequence of commands that 
can service that data. If the manufac-
turing process is highly problematic, 
it leads to more complex management 
circuits and higher performance than a 
competitor that chooses to not provide 
smart timing management.

Reliability
In many domains, error-correction 
support within memory is a strong 
requirement. Modern error-correction 
solutions, especially those for chipkill 
[8], incur significant overheads for 
storage, energy, and in some cases 
performance. As DRAM technologies 
scale, errors may become more com-
mon. Instead of relying on the pro-
cessor socket to implement a reliable 
solution over an unreliable DRAM 
platform, there is value in imple-
menting a reliable DRAM platform in 
the first place so that the processor 
doesn’t have to worry about error cor-
rection. The advantage in implement-
ing an error correction solution in 
DRAM (either in a 3D-stacked package 
or on a logic chip on a DIMM or on the 
DRAM die itself) is as follows: 1) the 
processor need not be exposed to the 
bandwidth overhead of fetching ECC 
bits, 2) there is reduced data move-
ment energy, and 3) error correction 
solutions can be designed that are tai-
lored to the specific vulnerabilities of 
the vendor’s manufacturing process. 

Reliability will be an even bigger 
concern in NVMs because of wearout, 
drift, the iterative nature of writes, 
and other interference effects [5]. 
With internal mechanisms to handle 
these problems, memory vendors can 
make trade-off choices that would 
not otherwise have been palatable. 
For example, one would not design a 
weaker write process if it resulted in a 
high raw bit-error rate being exposed 
to the outside world. But with an in-
built error correction process, a not-
so-perfect write mechanism may 

yield an overall lower power con-
sumption, while also yielding a low 
bit-error rate. Note that codes can 
also be constructed to reduce data 
transmission energy or reduce write 
energy/wearout in NVMs, as is done 
with data bus inversion in DDR4 or by 
a few other recent papers [39], [19].

Security
It is clear that security is a metric that 
will grow in prominence. A first step 
in protecting sensitive information is 
to encrypt data. There are good argu-
ments for performing this encryption 
(and corresponding decryption) on the 
processor or on the memory. If one is 
paranoid about an attacker having 
physical access to the hardware and, 
in particular, the memory bus, then 
plain text information should never 
emerge out of the processor socket, 
and the encryption is best performed 
on the processor. By giving the pro-
cessor control over encryption, the 
application can also lower overheads 
by only encrypting the most sensitive 
information. On the other hand, data 
encryption on the memory device 
makes sense if the threat model is that 
someone may steal a DIMM. In such 
cases, a more lazy encryption policy 
can be implemented. One can also 
implement an aggressive prefetch-
and-decrypt policy on the memory 
device to reduce read latency; doing 
this on the processor would incur a 
heavy bandwidth penalty.

There exist other threat mod-
els that require more drastic secu-
rity measures. If an attacker has 
physical access to hardware (e.g., a 
malicious cloud operator), we have 
already seen that data encryption 
is an important first step. Even with 
data encryption, the attacker can 
still engage in replay attacks [29] 
(returning the old encrypted value 
of data to disrupt the application) 
or gather sensitive information [13],  
[17] by snooping on the address trace 
(note that addresses are still sent out 
in plain text). To address these vul-
nerabilities, researchers have con-
structed solutions, Merkle trees [12] 
and oblivious RAM [40], respectively, 

that organize memory blocks into 
a logical tree structure and require 
fetching all the blocks in a given 
subtree. Both solutions incur a very 
high penalty in terms of bandwidth. 
Moving some of these solutions to 
the memory device, as was done by 
Gundu et al. [14], can lower the over-
heads by leveraging the high intra-
package or intra-DIMM bandwidth.

Closing Thoughts
In summary, this article has made 
the argument that memory devices 
can be much more than “dumb” units 
that store rows of bits. They can be 
augmented to perform parts of the 
application or other auxiliary sys-
tem-level features. This can directly 
impact overall system performance 
and energy. While this approach 
will no doubt increase the cost per 
bit for memory devices, it offers an 
opportunity for value addition in an 
era where customers will likely pay 
more for specialized systems.
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