
1943-0582/16©2016IEEE	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SPRING 20 16	 57

Rajeev Balasubramonian

The march toward specialized systems

any emerging workloads are con-
strained by the high cost of data

access. Innovation in the memory sys-
tem may soon be the primary driver of
the computing economy. The result will

be a memory system that is specialized, not commoditized.
This article discusses the features that can be meaningfully add-
ed to memory devices. Not only do these features execute parts
of an application, they may also take care of auxiliary operations
that maintain high efficiency, reliability, and security.

Introduction
Memory products have long been commoditized and
standardized, while the processor has remained a hot
bed of innovation for many decades. However, in the
coming decade, we can expect a reversal in roles.

Innovations to processor cores have started to taper
out, and the microarchitectures of throughput-optimized

Making the Case
for Feature-Rich
Memory Systems

Digital Object Identifier 10.1109/MSSC.2016.2546198

Date of publication: 21 June 2016

M

58	 SPRING 20 16	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

and latency-optimized general-pur-
pose cores are fairly well understood
[16]. There will be a steady trickle of
architecture innovations for general-
purpose processors, but these are
unlikely to disrupt the relatively flat
average improvement curve for large
benchmark suites. Without signifi-
cant annual improvements, computer
systems end up as commodities sold
at low margins.

What then drives the comput-
ing industry forward? What is the

motivation for hardware/architec-
ture innovation?

A shift toward specialization is
inevitable. There will likely be a sig-
nificant low-margin market for gen-
eral-purpose commodity systems
and a second significant high-mar-
gin market for specialized systems.
This is how the automobile indus-
try has operated for decades. To
some extent, this is already a real-
ity today in the computing market.
A desktop computer can be built for
around US$500; this is how we build
a cluster to do many architecture
simulations in parallel. But a single
graphics processing unit (GPU) card
can cost ten times that amount,
and this is what we use to run our
machine learning algorithms.

Two phenomena will serve as the
drivers of the computing industry
in the coming decade. The first is
the growing focus on accelerators.
The second is a shift toward fea-
ture-rich memory systems. Both of
these paths are relatively less trav-
eled, i.e., they have the potential to
uncover large benefits. Combined,
these two phenomena will form the
basis for specialized systems that
can significantly outperform previ-
ous-generation systems and com-
mand a higher price tag.

Accelerators are being actively
studied in architecture research cir-
cles. Accelerators have already been
designed for popular data-intensive
algorithms, e.g., data partitioning
[43], database queries [44], sort [26],
and machine learning [6].

As computational throughput on a
processor increases, with help from
accelerators, there is a corresponding
demand for higher memory capac-
ity and bandwidth. Enterprise-class
workloads, e.g., SAP HANA [30] and

SAS in-memory analytics [31], are well
known for demanding low-latency
access for massive data sets. This is
an increasingly prevalent phenome-
non as several industries grapple with
analytics that can convert big data
into big money.

In this era of big data processing,
a large fraction of overall time and
energy is expended in data access and
data movement. Following Amdahl’s
law, the memory/storage system is
clearly where system innovations
can have the largest impact. This is
especially true because the memory
system has not been a target of archi-
tecture innovations for the past three
decades. We are long overdue for spe-
cialized memory systems that are not
constrained by standards or by an
unwavering focus on cost per bit.

Memory system innovations can
help a vendor distinguish its prod-
ucts from the competition. The new
currency for a memory product will
therefore be features. Cost per bit is a
fine metric for the commodity general-
purpose space, but it will be a second-
ary metric for specialized systems.

So what features can one place
within the memory system? These
features may include, for example,
simple processing units, accelera-
tors, logic for reliability, security,

and compression. Such features are
compatible with most memory tech-
nologies, while some features (e.g.,
those dealing with wearout) are an
especially good fit for emerging non-
volatile memory (NVM) technologies.
While minimal amounts of logic may
be placed within memory dies, the
more significant features will likely be
placed in separate logic chips. These
logic chips can be coupled with mem-
ory dies either with through silicon
vias (TSVs) in a 3D-stacked package or
with on-board traces in a dual in-line
memory module (DIMM) form factor.
This article discusses the features that
can be meaningfully added to memory
devices and the impact they can have
on server architectures.

Memory System Features
Figure 1 summarizes the overall
approach of a feature-rich memory
system. I will classify memory sys-
tem features into two main groups:
processing features and auxiliary
features. The first group provides
logic to execute parts of the applica-
tion, and this logic can take the form
of a general-purpose processor or
an application-specific accelerator.
The second group provides logic to
perform auxiliary operations that
are independent of the application
but critical for overall system effi-
ciency. Such operations may include
wear leveling, encryption, compres-
sion, and coding.

Processing Features
For a few decades now, researchers
have considered off-loading parts of
an application to a processor embed-
ded in the memory system. The area
of processing-in-memory (PIM) was
heavily researched in the 1990s but
remained dormant for a decade after
that for a variety of reasons, most
notably, the economics of integrat-
ing logic and DRAM on a single die.

The area has now reemerged [4],
thanks to improvements in technology
[e.g., three-dimensional (3D) stacking],
the demands of emerging workloads
(e.g., big data workloads that benefit
from high memory bandwidth), and, as

For a few decades now, researchers have
considered off-loading parts of an application
to a processor embedded in the memory system.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SPRING 20 16	 59

detailed in the introduction, the need
for value additions in the memory
system. The area has also broadened
its scope—processors may be placed
in a 3D-stacked package [28], [21], on
a DIMM [27], and on solid-state drive
(SSD) devices [7]. Accordingly, the term
near data processing (NDP) is more
descriptive and accurate than PIM.
NDP research has been in the spotlight
recently, with multiple papers at top-
tier venues, a very successful series
of workshops (WoNDP) at the Interna-
tional Symposium on Microarchitec-
ture, and a special issue in IEEE Micro.
Indeed, research in this area has closely
tracked the famous Gartner hype curve
[11], with a steep rise, a steep fall,
and, hopefully now, a period of robust
enlightenment and productivity.

So why is NDP useful? Consider
an application that is searching for a
particular record in a data set. Con-
ventional architectures would move
the entire data set to the processor,
consuming all the memory bandwidth,
expending large amounts of data
movement energy and polluting the
processor caches, only to isolate a few
records of interest. This is the classic
killer app for NDP. Such a “filtering”
operation can be performed by a sim-
ple processor on the memory device.

The near-data processor enjoys both
lower latency and lower energy for
memory access and higher memory
bandwidth. Meanwhile, the processor’s
caches and memory bandwidth can be
better used for other relevant data sets
that exhibit higher locality.

Clearly, several research issues
need to be addressed to realize the
potential of NDP. Below, each of these
issues are listed, along with example
attempts to address them. While most
of this discussion uses near-DRAM pro-
cessing as a driving example, note that

similar approaches can also be used for
near-NVM and near-flash processing.

What Workloads Can
Benefit from NDP?
To answer this, we first identify the
types of computations that can be
meaningfully off-loaded to the mem-
ory device. As a strawman, consider
the generic NDP architecture in Fig
ure 2, which includes a network
of processor sockets and memory
devices, each with multiple processing
cores. This is essentially a distributed

Figure 2: A generic bandwidth model for NDP.

M M M

P P P

P P P

P P P

P P P

M M M

M M M

M M M

B/4

B/4

B/4

B/4 C/2C/2
A

Processor
Socket

Other
Processors Memory

DeviceA: Intrapackage Memory Bandwidth

B: Processor Socket External Bandwidth

C: Memory Device External Bandwidth

Bandwidth: A > B > C

In-Situ
Computations,

e.g., Dot Products for
Machine Learning

Processor

DIMMs with
Memory and Logic

Logic for Features

3D-Stacked Devices
with Memory and Logic

Processing Features Auxiliary

Fixed-Function Units
General-Purpose Cores

Accelerators
Reconfigurable Logic

Compression
Timing

Reliability
Security

Figure 1: An overview of feature-rich memory architectures.

60	 SPRING 20 16	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

computation model, with cores hav-
ing asymmetric views of memory.
A core on a memory device has a
high-bandwidth link (A) to its local
memory and a low bandwidth link
(C) to nonlocal memory. A core on
the processor socket has a collec-
tion of low-bandwidth links (B) to
an aggregation of memory devices.
In terms of bandwidth, A > B > C.
If a computation can localize its
memory accesses to data in a single
memory device, the computation is
best placed on that memory device
so it can exploit the high bandwidth
of A. If a computation has limited
locality, it must determine if it is
better to off-load to the memory
device and exploit a combination of
A and C or remain on the processor
socket and exploit B.

This is clearly a simplistic view
because it does not consider detailed
network topologies nor the quality of the
cores/caches on the processor/memory
devices. But at a high level, it conveys
the key point that a computation with
localized memory accesses is an ideal
candidate for near-data execution.

A second key component in this
analysis is parallelism. Each addi-
tional memory device adds more
memory and compute resources. If
a computation can be parallelized
across the many cores in memory
devices, it is an even better candi-
date for near-data execution.

There are a few other consider-
ations in the off-load decision.

■■ Is one of the cores or one of the
cache hierarchies especially bene-
ficial for the computation at hand?

■■ What is the cost of spawning a
task (passing code and arguments
to the memory device)?

■■ What is the cost of terminating a
task (returning results to the pro-
cessor socket)?

■■ What is the length of the off-load-
ed function?
It is nontrivial to factor in these issues

to develop an automatic hardware/soft-
ware off-load policy. It is, therefore,
an active area of research. We briefly
describe two examples here that repre-
sent opposite ends of the spectrum.

The work of Ahn et al. [2] attempts
fine-granularity off-loads with PIM-
enabled instructions (PEIs). Individual
instructions can be executed either
on the host processor or on the mem-
ory device (with a locality monitor
that helps in this decision making).
Consider the example where a single
scalar value is being added to some
word that is not currently cache resi-
dent. Without PEIs, an entire 64-B
cache line is brought to the proces-
sor, an update is performed, and the
entire 64-B cache line is sent back
to memory. With PEIs, the 8-B scalar
value is sent to the memory device
(with appropriate control bits) so the
update can be performed directly in
the memory device.

In this particular example, PEIs
yield a 16× decrease in bandwidth
requirement, the length of the off-
loaded function is one, and the cost
of task spawning and termination is
actually lower with PEIs than with-
out PEIs. Ahn et al. also extend the
instruction set architecture (ISA) so
that nontrivial functionalities can
be off-loaded to memory devices.

Meanwhile, work from our group
[28] focuses on in-memory MapRe-
duce applications that exhibit a very
high degree of locality and task-level
parallelism. Each map and reduce
task is executed on a memory device
that contains that data partition,
dubbed near data computing (NDC).
Task setup and teardown are non-
trivial efforts, especially if data shuf-
fling is required. But that overhead is
palatable because each task executes
for many thousands of cycles. The
task latency itself is highly sensitive
to memory bandwidth. The primary
source of speedup is the high band-
width within a collection of memory
devices, which is far greater than the
bandwidth into the processor socket.

The PEI approach can yield a nearly
1.5× average speedup for a range of
memory-intensive workloads that do
not exhibit cache line reuse, while the
NDC approach can yield up to 15×
speedup for a specific class of memory-
intensive workloads that have high
coarse-grained parallelism. This also

provides insight on the data access pat-
terns of workloads that benefit from
NDP. In-memory MapReduce (e.g., in
SPARK [46]) is a killer app that exhibits
localized memory access and embar-
rassing levels of coarse-grained par-
allelism [28]. In-memory MapReduce
frameworks have been shown to be
useful for a wide range of applications:
database operations, analytics, machine
learning, and graph algorithms [46].

The PEI work shows benefits for
a number of graph workloads where
data traversal is random enough that
caches are ineffective, and small com-
putations within each graph vertex
can be off-loaded to memory. They
also extend the ISA to perform hash
table probing, histogram bin indexing,
and dot products over cache lines to
accelerate data mining and machine
learning applications. Other papers
have also shown NDP benefits for
other applications, e.g., graph process-
ing [1], scientific kernels that map to
coarse-grained reconfigurable accel-
erators (CGRAs) [10], scientific work-
loads [21], signal processing [15], and
join algorithms [20].

How Should Data Be Organized
Across Memory Devices?
A natural next issue is the interleav-
ing and addressing of data across
several memory devices. Unlike con-
ventional double-data rate (DDR)
memory that stripes a single cache
line across multiple DRAM packages,
an entire cache line or even an entire
page in NDP must now be localized to
a single memory package. This allows
the core/accelerator on the memory
package to perform fine- and coarse-
grained computation without engag-
ing in complex bit-level manipulations
and without aggregating inputs from
many sources. This already appears to
be the default data mapping in emerg-
ing memory devices like the hybrid
memory cube (HMC) [18]. However,
when the same data is accessed by a
host processor socket, it may lead to
longer transfer times.

It is also important to resolve how
a memory device may potentially
access data in a different memory

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SPRING 20 16	 61

device. One popular option is to
never allow this, requiring the appli-
cation on the host processor socket
to marshall any necessary data before
spawning an NDP task (as was done
by Pugsley et al. [28]). Another option
is to simply treat every core as being
part of a full-fledged shared-memory
multiprocessor system, i.e., every
core can issue loads and stores to any
globally visible address regardless of
whether the core resides on the host
processor or on the memory device.
This entails more software/hardware
complexity because it requires the
memory device to maintain a coher-
ent translation look-aside buffer
(TLB) and serve as an originator of
memory requests.

This brings us to yet another key
and somewhat unsolved issue—how
is virtual memory handled? One solu-
tion, as suggested in the PEI work [2],
is to leave virtual memory manage-
ment entirely up to the host proces-
sor. When a task is spawned on the
memory device, it is provided the
necessary arguments as physical
addresses; the task is not allowed to
touch data beyond the cache lines (or
pages) that were provided as argu-
ments. Another solution, as suggested
by Pugsley et al. [28], is to organize
the data on a memory device into a
few large pages. This is a good fit
for many big data applications, and
it reduces the overheads associated
with page faults, large TLBs, etc.

What Microarchitecture Is Best
for Near Data Processing?
In most prior work, the cores on the
memory device have been designed
to be “wimpy.” While some propos-
als incorporate full-fledged general-
purpose wimpy cores [28], such as
the 80 mW ARM Cortex A5 cores in
NDC [28] that can execute entire gen-
eral-purpose map or reduce tasks,
others only implement custom func-
tional units or accelerators [2], [3],
[15]. In the work of Ahn et al. [2],
the functional unit is only capable
of executing a single PIM-enabled
instruction, and the most complex
functional unit handles dot-product

computations for the words in a
cache line. In another example, Akin
et al. [3] design a 178-mW functional
unit that can permute data.

In addition to these fixed-function
units, we have also seen examples of
reconfigurable accelerators, such as
the use of CGRAs by Farmahini-Fara-
hani et al. [10] and predefined accel-
erator primitives that can be chained
together to perform more complex
operations [15]. Also, there are pro-
posals to combine general-purpose
wimpy cores and accelerators, e.g.,
for in-memory MapReduce workloads,
Pugsley et al. [26] execute map and
reduce phases on Arm cores, while the
sort phase between map and reduce
is handled by a fixed-function accel-
erator. These are all compelling design
points on the classic generality versus
efficiency spectrum.

So why is it best to pursue a
“wimpy” core instead of a low-latency
out-of-order core? An argument that
is frequently cited is the reluctance
to embed a high-power core in a
3D-stacked package for fear that it
may lead to thermal issues. But this
is often a red herring. For example,
adding a few watts to a 13-W HMC
device [18] is unlikely to pose a haz-
ard, especially if some of the external
bandwidth can be eliminated [28]. A
more detailed study by Eckert et al.
[9] makes exactly that argument.

The more credible argument in
favor of wimpy cores is that it actu-
ally leads to higher performance as
it enables the creation of a through-
put-optimized compute substrate
that can leverage the high bandwidth
afforded by NDP. As mentioned ear-
lier, one of the main benefits of NDP
is that plugging in more memory
modules leads to more cores and
a large-scale parallel system. This
is most useful for tasks with high
degrees of parallelism. For such a
highly parallel task, the path to high
performance at a fixed power bud-
get is to use many low-power cores,
not a few high-power cores [28]. To
be more precise, for a highly parallel
task, we can optimize throughput at
a fixed power budget by optimizing

energy per instruction [28]. There-
fore, it is best to use cores or accel-
erators that are optimized for low
energy and not low latency. This also
enables the use of many cores or
accelerators per memory device, an
important requirement if we want to
saturate the available bandwidth.

Where Can Processors/Accelerators
Be Placed?
About two decades ago, there was
a strong push to place computa-
tion on the memory die itself. With
a potentially lower focus on cost
per bit in the future, that approach
may yet have merit. But so far, few
have chosen to revisit that direction.
A few works by Seshadri et al. [33]–
[35] have proposed small changes to
DRAM arrays to support bit manipu-
lations and efficient data movement.

The vast majority of NDP stud-
ies in the last few years have focused
on 3D-stacked memory devices. This
approach leaves the DRAM dies rela-
tively untouched, while leveraging
TSVs to support very high intrapack-
age bandwidth. By localizing the cores/
accelerators to a separate die, they can
be implemented in a superior logic
process. This approach is often touted
as the solution that offers the benefits
of NDP at relatively low cost, and that
is compatible with the natural evolu-
tion of DRAMs (3D stacking). However,
early indications are that 3D-stacked
DRAMs, especially those that include
a logic die, will not be cheap. In cer-
tain segments, the cost increase will be
well worth the higher performance.

Given the high cost of 3D-stacked
DRAM, it is worth exploring if some
(most?) of the benefits of NDP can also
be provided with conventional non-
3D-stacked DRAM? This is an area that
is relatively under studied and more
research needs to be done. One exam-
ple proposal by Pugsley et al. [27],
NDC-Module, re-designs a DIMM by
placing many simple processor chips
on the DIMM and connecting them
to their adjacent commodity DRAM
chips. The key here is that in a conven-
tional DIMM and server, the on-DIMM
buses can offer very high bandwidth

62	 SPRING 20 16	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

levels; but these buses (on multiple
DIMMs) are eventually multiplexed on
to a single shared DRAM channel that
carries data into the processor socket.
Thus, the high aggregate intra-DIMM
bandwidth isn’t entirely available to a
conventional processor. Moving com-
putational logic to the DIMM allows
the system to leverage the high intra-
DIMM bandwidth and linearly scale
available bandwidth as more DIMMs
are added to the system. In other
words, 3D-stacked TSVs are not the
only source of high bandwidth; on-
DIMM buses are a great (and cheaper)
alternative source. The NDC-module
design of Pugsley et al. [27] is opti-
mized for high-bandwidth memory
access for a parallel workload, such
as in-memory MapReduce. It is not a
good fit for applications that cannot
be easily parallelized.

Computation can be placed near
DRAM memory [27], near NVM (PCM
and memristors [36]), or near flash-
based solid-state drives [7]. Note
that the benefits of NDP are deter-
mined more by the ratio of intra-
and interpackage data bandwidths,
which can be high in most memory
technologies.

What Programming Models
Are Required?
This remains a key challenge in the
widespread adoption of NDP. Not only
does NDP require the programmer
to grapple with the usual challenges

of parallel/distributed programming
(e.g., how is data partitioned across
the compute units, what are the
semantics/synchronization for deal-
ing with shared data or serialized
critical sections), but the programmer
has to also identify the best location
(i.e., host processor or near-data pro-
cessor or near-data accelerator) for
any computation. Consider the fol-
lowing example approaches to this
challenge. The NDC proposal of Pug-
sley et al. [28] does not introduce a
new programming model—it tries to
leverage an existing infrastructure
and developer base. That architecture
is targeted at a class of workloads
that can be handled by the intuitive
MapReduce programming model.

The PEI proposal of Ahn et al. [2]
requires the application developer
or compiler to identify individual
instructions that can be mapped
to functional units on the memory
device. The burden on the devel-
oper or compiler is low because the
PEI hardware automatically decides
where that instruction is best exe-
cuted. The larger community real-
izes that we are moving in a direction
where specific computations will be
off-loaded to accelerators, whether
they are near memory or not. The evo-
lution of these programming models
and standards will likely play out over
the next five years. NDP introduces a
significant wrinkle to this evolution
because of how caches/memory are

asymmetrically exposed to the vari-
ous processors.

In-Situ Computing
I will end this section with a discus-
sion of a unique in-memory accelera-
tor, a design that leverages emerging
memristive technology and a mem-
ory array organization that not only
stores data but also performs opera-
tions on that data.

Figure 3(a) shows a memristive
crossbar array, where cells are im-
plemented as metal-oxide materi-
als between overlapping word lines
and bit lines on different metal lay-
ers. The array has no access tran-
sistors, and it can be represented
logically as a grid of resistances, as
shown in Figure 3(b). Each cell can
be individually programmed by ap-
plying the appropriate combination
of voltage pulses at the word lines
and bit lines [45]. During a read op-
eration, as depicted in Figure 3(c), a
set of voltages V1–VN are applied to
the N word lines. If the cell conduc-
tances of the first column are G1–
GN, the current emerging from the
first bit line can be represented as
V1 # G1 + V2 # G2 + … + VN # GN,
based on Kirchoff’s law. In other
words, the current in the first bit
line is the dot product of the vector
of input voltages and the vector of
cell conductances in the first col-
umn. In parallel, each of the bit lines
is now performing a dot product of

Memristor Cell
Word Line

Bit Line

Driver Circuits in Silicon Substrate

DAC

DAC

DAC

DAC

V1

G1

l1 = V1.G1

V2

G2

l2 = V2.G2

l = 11+ l2

V1.G1 + V2.G2

(b)(a) (c)

ADC

Figure 3: A memristive crossbar unit for analog dot product operations.

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SPRING 20 16	 63

the same input voltage vector and
its vector of cell conductances. The
memristive crossbar array is there-
fore a powerful analog vector-matrix
multiplier that leverages Kirchoff’s
law to perform a large number of
parallel multiply-accumulate opera-
tions. Digital-to-analog conversion is
required when providing input volt-
ages, and similarly, analog-to-digital
conversion (ADC) is required before
the outputs can be buffered.

The previously given analog
dot-product unit can be very use-
ful in accelerating applications that
involve dot products on large data
sets. Machine-learning applications
fit this bill. While noise and precision
are important concerns in analog
units, machine-learning applications
are known to be tolerant to noise.
An upcoming paper [36] shows how
a mixed analog-digital architecture,
ISAAC, can execute entire deep-learn-
ing algorithms at very high efficiency.
In-situ computing targets the biggest
bottlenecks in these algorithms—
storage, access, and compute for
many millions of parameters—with
a compact and parallel crossbar unit.
In spite of ADC overheads (which are
significant), ISAAC is able to achieve
efficiency gains of nearly 15× over a
state-of-the-art digital accelerator for
deep learning [6].

In general, any resistive-RAM cell
is a good candidate for use in such
an analog dot-product engine. HfOx-
based memristors are an especially
good fit because of their high on/off
ratio. Since memristor cells exhibit
a nonlinear I-V curve, they can
also seamlessly apply sigmoid-like
activation functions to the dot-prod-
uct operation, as is done in machine
learning algorithms. Another exam-
ple of in-situ computing is the DRAM-
based Automata Processor that can
accelerate algorithms that rely on
pattern-matching [42].

Auxiliary Features
The previous section discusses a vari-
ety of computational capabilities that
can be moved to the memory device;
these explicitly accelerate portions

of the application itself. We now turn
our attention to other useful func-
tionalities that can be executed on
the memory device; such features
can improve overall system metrics
in an application-agnostic manner.
Many of the proposals in this section
target phenomena (such as endur-
ance, iterative writes, and new error
types) that are more applicable to
emerging NVMs than to DRAM.

Compression
Memory compression was intro-
duced in commercial products over a
decade ago, e.g., IBM MXT [41]. However,
that idea didn’t catch on for a variety
of reasons.

■■ The latency of compression and
decompression added a nontrivial
penalty to memory access times.

■■ There is significant software/hard-
ware complexity in managing com-
pressed data: 1) it takes nontrivial
logic to estimate the location of a
compressed block, and 2) when a
block is modified and the new com-
pressed version turns out to be larg-
er, several other blocks may have
to be moved to make room for the
larger block.

■■ Invasive changes are required to all
parts of the operating system (OS)
that deal with memory management.
The last few years have seen sig-

nificant advancements that make
compressed memory a very attractive
choice today. First, new compression
algorithms, such as Base Delta Imme-
diate (BDI) compression [25], are able
to achieve sufficiently large compres-
sion ratios for a sufficiently large set of
applications, while consuming fewer
than a handful of nanoseconds for
compression and decompression.

Second, new compression architec-
tures [24] have been developed that,
in the common case, make it easier to
locate a compressed block, and avoid
shuffling data around when com-
pressed blocks grow in size.

Third, recent papers [37], [32]
have made the argument that it is the
greed for higher memory capacity
that increases the OS complexity from
compression. Therefore, these papers

have made the case that compression
should be used for a variety of reasons
but not to tightly pack more blocks
into a limited space. So a 64-B stor-
age area in memory is reserved for a
single 64-B data block, even though
the block may only consume a frac-
tion of that storage after compression.
This leaves the OS page management
mechanisms unchanged. There are
many other benefits of reading/writ-
ing smaller blocks [37]: lower energy,
the ability to do more reads/writes in
parallel, higher endurance for NVMs,
the ability to add more metadata for
error correction, etc. Sathish et al.
[32] exploit some of these benefits
for a GPU and GDDR5 memory, while
Shafiee et al. [37] exploit them in the
context of CPUs and DDR3. Their ap-
proaches place only one burden on the
OS: managing compression metadata
in a separate region of memory. Even
this obstacle can be scaled; a recent
paper [22] shows how error correction
code (ECC) metadata can incorporate
compression metadata.

With these new technologies in place,
compression is a feature that no longer
needs heavy involvement from the pro-
cessor or the OS. It could be a feature
that is entirely managed by logic on
memory devices, either in 3D-stacked
devices or on DIMMs, and completely
oblivious to the rest of the system.

Memory Timing
Just as the management of compres-
sion can be off-loaded to the mem-
ory devices, other low-level memory
management features can also be
off-loaded to memory. For example,
as DRAMs scale or as new NVMs
come to market, new problems might
emerge. Because of process varia-
tion, some regions of a die may be
faster than others, and some regions
may be more error prone than oth-
ers. Similarly, operations that con-
sume large amounts of current (e.g.,
writes in NVMs) will introduce static
or dynamic IR-drop and pose severe
worst-case constraints on DRAM tim-
ing parameters [38].

Rather than expose these so-called
“blemishes” or conservative worst-case

64	 SPRING 20 16	 IEEE SOLID-STATE CIRCUITS MAGAZINE	

parameters to the system, memory
devices may choose to perform low-
level timing management on their
own [23]. The processor issues read
or write commands to the memory
device, and the device figures out the
fastest sequence of commands that
can service that data. If the manufac-
turing process is highly problematic,
it leads to more complex management
circuits and higher performance than a
competitor that chooses to not provide
smart timing management.

Reliability
In many domains, error-correction
support within memory is a strong
requirement. Modern error-correction
solutions, especially those for chipkill
[8], incur significant overheads for
storage, energy, and in some cases
performance. As DRAM technologies
scale, errors may become more com-
mon. Instead of relying on the pro-
cessor socket to implement a reliable
solution over an unreliable DRAM
platform, there is value in imple-
menting a reliable DRAM platform in
the first place so that the processor
doesn’t have to worry about error cor-
rection. The advantage in implement-
ing an error correction solution in
DRAM (either in a 3D-stacked package
or on a logic chip on a DIMM or on the
DRAM die itself) is as follows: 1) the
processor need not be exposed to the
bandwidth overhead of fetching ECC
bits, 2) there is reduced data move-
ment energy, and 3) error correction
solutions can be designed that are tai-
lored to the specific vulnerabilities of
the vendor’s manufacturing process.

Reliability will be an even bigger
concern in NVMs because of wearout,
drift, the iterative nature of writes,
and other interference effects [5].
With internal mechanisms to handle
these problems, memory vendors can
make trade-off choices that would
not otherwise have been palatable.
For example, one would not design a
weaker write process if it resulted in a
high raw bit-error rate being exposed
to the outside world. But with an in-
built error correction process, a not-
so-perfect write mechanism may

yield an overall lower power con-
sumption, while also yielding a low
bit-error rate. Note that codes can
also be constructed to reduce data
transmission energy or reduce write
energy/wearout in NVMs, as is done
with data bus inversion in DDR4 or by
a few other recent papers [39], [19].

Security
It is clear that security is a metric that
will grow in prominence. A first step
in protecting sensitive information is
to encrypt data. There are good argu-
ments for performing this encryption
(and corresponding decryption) on the
processor or on the memory. If one is
paranoid about an attacker having
physical access to the hardware and,
in particular, the memory bus, then
plain text information should never
emerge out of the processor socket,
and the encryption is best performed
on the processor. By giving the pro-
cessor control over encryption, the
application can also lower overheads
by only encrypting the most sensitive
information. On the other hand, data
encryption on the memory device
makes sense if the threat model is that
someone may steal a DIMM. In such
cases, a more lazy encryption policy
can be implemented. One can also
implement an aggressive prefetch-
and-decrypt policy on the memory
device to reduce read latency; doing
this on the processor would incur a
heavy bandwidth penalty.

There exist other threat mod-
els that require more drastic secu-
rity measures. If an attacker has
physical access to hardware (e.g., a
malicious cloud operator), we have
already seen that data encryption
is an important first step. Even with
data encryption, the attacker can
still engage in replay attacks [29]
(returning the old encrypted value
of data to disrupt the application)
or gather sensitive information [13],
[17] by snooping on the address trace
(note that addresses are still sent out
in plain text). To address these vul-
nerabilities, researchers have con-
structed solutions, Merkle trees [12]
and oblivious RAM [40], respectively,

that organize memory blocks into
a logical tree structure and require
fetching all the blocks in a given
subtree. Both solutions incur a very
high penalty in terms of bandwidth.
Moving some of these solutions to
the memory device, as was done by
Gundu et al. [14], can lower the over-
heads by leveraging the high intra-
package or intra-DIMM bandwidth.

Closing Thoughts
In summary, this article has made
the argument that memory devices
can be much more than “dumb” units
that store rows of bits. They can be
augmented to perform parts of the
application or other auxiliary sys-
tem-level features. This can directly
impact overall system performance
and energy. While this approach
will no doubt increase the cost per
bit for memory devices, it offers an
opportunity for value addition in an
era where customers will likely pay
more for specialized systems.

Acknowledgments
This work was supported in part by IBM
Research, Hewlett Packard Labs, and
by National Science Foundation grants
1302663 and 1423583. This article
draws heavily on the work of students
in the Utah Arch lab (Seth Pugsley, Ali
Shafiee, Akhila Gundu, Manjunath
Shevgoor, Anirban Nag, Niladrish Chat-
terjee, Meysam Taassori, and Arjun
Deb) and collaborators (Alper Buyuk-
tosunoglu, Al Davis, Feifei Li, Naveen
Muralimanohar, Vivek Srikumar, and
Viji Srinivasan).

References
[1]	 J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K.

Choi, “A scalable processing-in-memory
accelerator for parallel graph processing,”
in Proc. ACM/IEEE 42nd Annual Int. Symp.
ISCA, Portland, OR, 2015, pp. 105–117.

[2]	 J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-
enabled instructions: A low-overhead,
locality-aware processing-in-memory
architecture,” in Proc. ACM/IEEE 42nd An-
nual Int. Symp. ISCA, Portland, OR, 2015,
pp. 336–348.

[3]	 B. Akin, F. Franchetti, and J. Hoe, “Data re-
organization in memory using 3D-stacked
DRAM,” in Proc. ACM/IEEE 42nd Annual
Int. Symp. ISCA, Portland, OR, 2015, pp.
131–143.

[4]	 R. Balasubramonian, J. Chang, T. Man-
ning, J. Moreno, R. Murphy, R. Nair, and S.
Swanson, “Near-data processing: Insight

	 	 IEEE SOLID-STATE CIRCUITS MAGAZINE	 SPRING 20 16	 65

from a workshop at MICRO-46,” IEEE Mi-
cro., vol. 34, no. 4, pp. 36–42, Aug. 2014.

[5]	 G. W. Burr, M. J. Breitwisch, M. France-
schini, D. Garetto, K. Gopalakrishnan, B.
Jackson, B. Kurdi, C. Lam, L. A. Lastras,
A. Padilla, B. Rajendran, S. Raoux, and R.
S. Shenoy. (2010). Phase change memory
technology. [Online]. Available: http://
arxiv.org/abs/1001.1164v1

[6]	 Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J.
Wang, L. Li, T. Chen, Z. Xu, N. Sun, and and
O. Temam, “DaDianNao: A machine-learn-
ing supercomputer,” in Proc. MICRO-47,
Cambridge, U.K., 2014, pp. 609–622.

[7]	 A. De, M. Gokhale, R. Gupta, and S. Swan-
son, “Minerva: Accelerating data analysis
in next-generation SSDs,” in Proc. IEEE
21st Annu. Int. Symp. Field-Programmable
Custom Computing Machines, Washing-
ton, DC, 2013, pp. 9–16.

[8]	 T. J. Dell, “A whitepaper on the benefits
of chipkill-correct ECC for PC server main
memory,” IBM Microelectronics Division,
Tech. Rep., Nov. 1997.

[9]	 Y. Eckert, N. Jayasena, and G. Loh, “Ther-
mal feasibility of die–stacked processing
in memory,” in Proc. 2nd Workshop Near
Data Processing, 2014.

[10]	A. Farmahini-Farahani, J. Ahn, K. Morrow,
and N. Kim, “NDA: Near–DRAM accelera-
tion architecture leveraging commodity
dram devices and standard memory mod-
ules,” in Proc. IEEE 21st Int. Symp. HPCA,
Burlingame, CA, 2015, pp. 283–295.

[11]	Gartner. (2015). Gartner’s 2015 hype cy-
cle for emerging technologies. [Online].
Available: http://www.gartner.com/news-
room/id/3114217

[12]	B. Gassend, G. E. Suh, D. Clarke, M. van
Dijk, and S. Devadas, “Caches and Merkle
trees for efficient memory authentica-
tion,” in Proc. 9th International Symp.
High Performance Computer Architecture,
Nov. 2003.

[13]	O. Goldreich, “Towards a theory of soft-
ware protection and simulation by oblivi-
ous RAMs,” in Proc. 19th Annu. ACM STOC,
New York, 1987, pp. 182–194.

[14]	A. Gundu, A. Shafiee, M. Shevgoor, and R.
Balasubramonian, “A case for near data
security,” in Proc. 2nd Workshop Near
Data Processing, 2014.

[15]	Q. Guo, T. Low, N. Alachiotis, B. Akin,
L. Pileggi, J. Hoe, and F. Franchetti, “En-
abling portable energy efficiency with
memory accelerated library,” in Proc. MI-
CRO-48, New York, 2015, pp. 750–761.

[16]	J. L. Hennessy and D. A. Patterson, Com-
puter Architecture: A Quantitative Ap-
proach. 5th ed. New York: Elsevier, 2011.

[17]	M. Islam, M. Kuzu, and M. Kantarcioglu,
“Access pattern disclosure on searchable
encryption: Ramification, attack, and
mitigation,” in Proc. NDSS, 2012.

[18]	 J. Jeddeloh and B. Keeth, “Hybrid memory
cube new DRAM architecture increases den-
sity and performance,” in Proc. Symp. VLSI
Technology, Honolulu, HI, 2012, pp. 87–88.

[19]	R. Maddah, S. Seyedzadeh, and R. Mel-
hem, “Cafo: Cost aware flip optimization
for asymmetric memories,” in Proc. 21st
Int. Symp. HPCA, Burlingame, CA, 2015,
pp. 320–330.

[20]	N. Mirzadeh, O. Kocberber, B. Falsafi, and
B. Grot, “Sort vs. Hash join revisited for
near-memory execution,” in Proc. Work-
shop Architectures and Systems for Big
Data, 2015.

[21]	R. Nair, S. F. Antao, C. Bertolli, P. Bose,
J. R. Brunheroto, T. Che, C. -Y. Cher, C.
H. A. Costa, J. Doi, C. Evangelinos, B. M.
Fleischer, T. W. Fox, D. S. Gallo, L. Grin-

berg, J. A. Gunnels, A. C. Jacob, P. Jacob,
H. M. Jacobson, T. Karkhanis, C. Kim, J.
H. Moreno, J. K. O’Brien, M. Ohmacht, Y.
Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M.
Siegl, K. Sugavanam, and Z. Sura. “Active
memory cube: A processing-in-memory
architecture for exascale systems,” IBM J.
Res. Dev., vol. 59, no. 2/3, pp. 17:1–17:14,
May 2014.

[22]	D. Palframan, N. Kim, and M. Lipasti, “COP:
To compress and protect main memory,”
in Proc. ACM/IEEE 42nd Int. Symp. ISCA,
Portland, OR, 2015, pp. 682–693.

[23]	T. Pawlowski, “The future of memory
technology,” in Proc. Memory Forum,
2014.

[24]	G. Pekhimenko, V. Seshadri, Y. Kim, H. Xin,
O. Mutlu, M. A. Kozuch, P. B. Gibbons, and
T. C. Mowry, “Linearly compressed pages:
A low-complexity, low-latency main mem-
ory compression framework,” in Proc. MI-
CRO-46, New York, 2013, pp. 172–184.

[25]	G. Pekhimenko, V. Seshadri, O. Mutlu, P.
B. Gibbons, M. A. Kozuch, and T. C. Mow-
ry, “Base-delta-immediate compression:
Practical data compression for on-chip
caches,” in Proc. 21st Int. Conf. PACT, New
York, 2012, pp. 377–388.

[26]	S. Pugsley, A. Deb, R. Balasubramonian,
and F. Li, “Fixed-function hardware sort-
ing accelerators for near data mapreduce
execution,” in Proc. 33rd IEEE Int. Conf.
ICCD, New York, 2015, pp. 439–442.

[27]	S. Pugsley, J. Jestes, R. Balasubramo-
nian, V. Srinivasan, A. Buyukto-sunoglu,
A. Davis, and F. Li, “Comparing different
implementations of near data computing
with in-memory mapreduce workloads,”
IEEE Micro., vol. 34, no. 4, pp. 44–52, June
2014.

[28]	S. Pugsley, J. Jestes, H. Zhang, R. Balasub-
ramonian, V. Srinivasan, A. Buyuktosuno-
glu, A. Davis, and F. Li, “NDC: Analyzing
the impact of 3D-stacked memory+logic
devices on mapreduce workloads,” in
Proc. ISPASS, 2014, pp. 190–200.

[29]	B. Rogers, S. Chhabra, Y. Sohilin, and M.
Prvulovic, “Using address independent
seed encryption and bonsai merkle trees
to make secure processors os and perfor-
mance-friendly,” in Proc. 40th Annu. IEEE/
ACM Int. Symp. MICRO, Chicago, IL, 2007,
pp. 183–196.

[30]	SAP. (2015). In-memory computing: SAP
HANA. [Online]. Available: http://scn.sap.
com/community/hana-in-memory

[31]	SAS. (2015). SAS in-memory analytics.
[Online]. Available: http://www.sas.com/
en_us/software/in-memory-analytics.
html

[32]	V. Sathish, M. J. Schulte, and N. S. Kim,
“Lossless and lossy memory I/O link com-
pression for improving performance of
gpgpu work- loads,” in Proc. 21st Int. Conf.
PACT, New York, 2012, pp. 325–334.

[33]	V. Seshadri, K. Hsieh, A. Boroumand, D.
Lee, M. Kozuch, O. Mutlu, P. Gibbons, and
T. Mowry, “Fast bulk bitwise AND and OR
in DRAM,” IEEE Comput. Archit. Lett., vol.
14, no. 2, pp. 127–131, 2015.

[34]	V. Seshadri, T. Mullins, A. Boroumand,
O. Mutlu, P. Gibbons, M. Kozuch, and T.
Mowry, “Gather-scatter dram: In-DRAM
address translation to improve the spa-
tial locality of non-unit strided accesses,”
in Proc. MICRO-48, New York, 2015, pp.
260–280.

[35]	V. Seshadri, Y. Kim, C. Fallin, D. Lee, R.
Ausavarungnirun, G. Pekhi-menko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “RowClone: Fast and energy-

efficient in-DRAM bulk data copy and ini-
tialization,” in Proc. MICRO-46, New York,
2013, pp. 185–197.

[36]	A. Shafiee, A. Nag, N. Muralimanohar,
R. Balasubramonian, J. Strachan, M. Hu,
R. Williams, and V. Srikumar, “ISAAC: A
convolutional neural network accelerator
with in-situ analog arithmetic in cross-
bars,” in Proc. ISCA, 2016.

[37]	A. Shafiee, M. Taassori, R. Balasubramo-
nian, and A. Davis, “MemZip: Exploiting
unconventional benefits from memory
compression,” in Proc. HPCA, 2014, pp.
638–649.

[38]	M. Shevgoor, J.-S. Kim, N. Chatterjee, R.
Balasubramonian, A. Davis, and A. Udipi,
“Quantifying the relationship between
the power delivery network and architec-
tural policies in a 3d-stacked memory de-
vice,” in Proc. MICRO-46, New York, 2013,
pp. 198–209.

[39]	Y. Song and E. Ipek, “More is less: Improv-
ing the energy efficiency of data move-
ment via opportunistic use of sparse
codes,” in Proc. MICRO-48, New York,
2015, pp. 242–254.

[40]	E. Stefanov, M. van Dijk, E. Shi, C. Fletcher,
L. Ren, X. Yu, and S. Devadas, “Path ORAM:
An extremely simple oblivious RAM pro-
tocol,” in Proc. CCS, New York, 2013, pp.
299–310.

[41]	R. Tremaine, P. Franaszek, J. Robinson,
C. Schulz, T. Smith, M. Wazlowski, and P.
Bland, “IBM memory expansion technol-
ogy (MXT),” IBM J. Res. Dev., vol. 45, no. 2,
pp. 287–301, 2001.

[42]	K. Wang, M. Stan, and K. Skadron, “Asso-
ciation rule mining with the micron au-
tomata processor,” in Proc. IEEE Int. IPDPS,
Hyderabad, India, 2015, pp. 689–699.

[43]	L. Wu, R. Barker, M. Kim, and K. Ross,
“Navigating big data with high-through-
put energy-efficient data partitioning,”
in Proc. 40th Annu. ISCA, New York, 2013,
pp. 249–260.

[44]	L. Wu, A. Lottarini, T. Paine, M. Kim, and
K. Ross, “Q100: The architecture and de-
sign of a database processing unit,” in
Proc. 19th Int. Conf. ASPLOS, New York,
2014, pp. 255–268.

[45]	C. Xu, D. Niu, N. Muralimanohar, R. Bala-
subramonian, T. Zhang, S. Yu, and Y. Xie,
“Overcoming the challenges of crossbar
resistive memory architectures,” in Proc.
21st Int. Symp. HPCA, Burlingame, CA,
2015, pp. 476–488.

[46]	M. Zaharia, M. Chowdhury, T. Das, A.
Dave, J. Ma, M. McCauley, M. Franklin, S.
Shenker, and I. Stoica, “Resilient distrib-
uted datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in
Proc. NSDI, Berkeley, CA, 2012. p. 2.

About the Author
Rajeev Balasubramonian is a profes-
sor in the School of Computing at the
University of Utah. His research focuses
on memory systems and intercon-
nects. He has a B.Tech. degree in com-
puter science and engineering from the
Indian Institute of Technology, Bom-
bay, and M.S. and Ph.D. degrees, both
in computer science, from the Univer-
sity of Rochester. He is a Member of
the IEEE.

�

