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Abstract—Real-time phase detection enables dynamic adap-
tation of systems based on different program behavior. Many
phase detection techniques have been proposed, with the most
successful relating the phases back to application code. In the
scope of online phase detection, techniques employ sampling to
mitigate the overheads of the phase detection framework. When
phase intervals are long enough, sampling approaches perform
well.

We reopen the question of phase interval length by performing
in-depth analysis on the trade-offs between overhead and phase
detector performance. We present a new metric which captures
the statistical trade-off between phase interval length, phase
stability, and the number of phases. We find that while shorter
phases perform best in the context of online optimization,
existing implementations suffer from performance degradation
and overhead at shorter interval sizes.

To address this gap, we present the Precise Online Phase (POP)
detector. The POP detector utilizes performance counters to build
signatures, which are virtually lossless at finer granularity. As a
second order, the simplicity of the detector reduces the runtime
overhead to just 1.35% and 0.09% at 10M and 100M instruction
intervals, respectively.

I. INTRODUCTION

Programs exhibit time-varying behavior and move between
phases. This means that at any time, a system may not be
optimally configured for the requirements of that phase. In
response, architects have and will continue to develop adaptive
systems that can better respond to specific application phases
and conditions. At the lowest level, hardware features such
as branch predictors and data prefetchers constantly monitor
changing instruction and data streams to update their heuristic
predictors. These online learning agents employ lightweight
algorithms that can not only detect changing behavior within
a matter of cycles, but also update their response within
hundreds of cycles.

In particular, the update rules for these agents must be
chosen through careful analysis across many workloads. One
analysis technique is to generate an S-Curve, a graph which
encapsulates the effects of changing a feature across many
workloads. The high level goal is simple: maximize the
speedup across all workloads. The S-Curve helps to identify
outliers that may be skewing the average. In Figure 1, we
utilize the S-Curve to show the effects of disabling the L2
spatial prefetcher on an Intel® system. On average, we find

that the speedup is near one, but the S-Curve reveals both
positive and negative outliers. On the left-hand side a number
of workloads suffer from disabling the prefetcher, whereas
on the right side a number of workloads prefer the change.
A simple approach would be to tune the feature on a per-
workload basis.

However, such an approach would ignore the dynamic
behavior of a program during execution. Thus, we plot an
additional S-Curve for the individual program phases of lbm s
from Spec2017 [1] in Figure 2. From a global perspective,
lbm s demonstrates a marginal performance improvement
with the spatial prefetcher enabled. However, on a per-phase
basis we see that this same program has both positive and
negative outliers, motivating the need to adapt during particular
intervals, or phases, of a program.

Fig. 1. Spec2017 performance change by disabling spatial L2 prefetcher,
using training dataset.

Much work has been done to address this need for dynamic
optimization, ranging from careful offline phase analysis
techniques, to lightweight online phase detectors, and more
recently control theory [2]–[6]. Each of these approaches
has merit. Basic block vectors (BBVs), for example, have
proved to be an excellent baseline that has stood the test of
time for phase detection. Yet, this algorithm requires a large
amount of data making it infeasible for online algorithms. As
such, multiple prior works have attempted approximation of
BBVs, originally through theoretical hardware support and
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Fig. 2. The lbm s performance change (denoted by the S-Curve) per phase
via disabling spatial L2 prefetcher, with respective phase weights denoted by
bars. The phase weight refers to the amount of time the program spends in
a particular phase, relative to the program as whole. As a result, the sum of
phase weights is always 1.

more recently on a real-system using Precise Event-Based
Sampling (PEBS) [3], [4]. Ultimately, the goal remains to
understand individual phases and optimize features on a per
phase basis, which can be defined as a set of requirements.

Functionally, any phase detector must produce phases of
similar, repeating behavior. However, using program phases for
online performance optimization necessitates a number of re-
quirements for a successful phase detection algorithm. Firstly,
the phase detector must operate independently of performance
changes. For a phase detector to enable analysis of differ-
ent hardware configurations, program phases should remain
unchanged with different configurations. In other words, the
phase detector should remain invariant to performance knobs,
i.e., phase A is still labeled phase A even after a change in
a performance knob. Since both SimPoint and ScarPhase are
based on code execution, they both satisfy this requirement.

From a feasibility perspective, a phase detection technique
should be feasible in commodity hardware with minimal
program and system perturbation. Collecting BBVs, the input
for SimPoint, is infeasible in real-time. As such, detectors
like ScarPhase employ sampling to mitigate this overhead.
However, we find that even at large 100M instruction intervals,
the overhead of such a technique is more than 3%, and if finer
granularity is required, the overhead increases exponentially.
This overhead is undesirable in the scope of online perfor-
mance optimization.

In this work, we present the POP detector which drastically
reduces phase detection overheads to as little as 0.09%, while
performing competitively with existing state-of-the-art phase
detection performance. Specifically, we outline our contribu-
tions as follows:

• We propose a new phase detector metric, Statistical Time
Analyzing Baseline (STAB) which captures the trade-offs
of phase interval length, phase stability, and the number
of phases.

• We introduce the Precise Online Phase (POP) detector,

a real-time phase detection algorithm which leverages
performance counters for accurate, fine-grain phase de-
tection with significantly lower overhead than existing
approaches.

• We perform a detailed competitive analysis between the
POP detector and the state-of-the-art ScarPhase detector,
using existing metrics as well as our proposed metric.

We organize our paper as follows. In Section II, we discuss
the different phase detection algorithms discussed throughout
the paper, including the POP detector. The key distinguishing
factor of the POP detector is the specific performance counters
selected, which we detail in Section III. In Section IV, we
describe the metrics for evaluating phase detection algorithms
including our new metric, STAB. We then perform a case study
regarding phase interval size in Section V, before performing
extensive analysis between ScarPhase and the POP detector in
Section VI. Finally, we provide a brief survey of related work
in Section VII and conclude in Section VIII.

II. PHASE DETECTION ALGORITHMS

We briefly describe the phase detection algorithms used
throughout the paper, including our proposed POP detection
algorithm.

A. SimPoint: Offline Baseline

SimPoint traces code execution in order to classify a pro-
gram into phases [7]. The original work stems from the notion
of a basic block: a region of code with exactly one entry and
one exit. A Basic Block Vector (BBV) is generated by profiling
the number of instructions executed within each basic block
for a period of time. SimPoint performs approximate K-Means
clustering on the BBVs, and utilizes the Bayesian Information
Criterion (BIC) to select the optimal number of phases for a
program. It then outputs a number of BBVs which serve as
simulation points. We treat each simulation point as a cluster
center, which allows us to label each interval of execution
according to the closest simulation point.

B. ScarPhase: Online Baseline

ScarPhase samples conditional branch instruction pointers
(IPs) to detect program phases [3]. The framework is built
utilizing the Linux perf subsystem and operates as a user-
space program. Intel®’s Precise Event-Based Sampling (PEBS)
enables sampling IPs directly at a granularity of up to once
per 25K instructions. The branch IP’s are hashed into a vector
to construct a signature for each interval. The signature is fed
to an online leader-follower clustering algorithm to identify
program phases. In order to mitigate the overhead, ScarPhase
makes use of a buffer in which the kernel writes directly that
allows processing only at interval granularity. Additionally,
ScarPhase employs a dynamic sampling frequency methodol-
ogy which reduces the sample rate during stable phases of
execution. As the dynamic sample rate is itself predictive, it
slightly degrades phase detection accuracy in favor of lower
overhead. All data reported relative to ScarPhase uses the
authors’ original code, available on GitHub [8].
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C. The POP Detector

The POP detector was motivated by the non-trivial over-
head associated with ScarPhase, as well as its performance
degradation when using a phase length of less than 100M
instructions. To address this, the POP detector utilizes only
performance counters to detect program phases. The rationale
for using performance counters is two fold. Firstly, interrupts
are required only at the end of the interval to collect perfor-
mance counts. This drastically reduces overhead, as we will
show. Secondly, the counts are true measurements rather than
samples. This means that when performing increasingly fine-
grained phase detection, the underlying data does not incur
additional loss.

The quality of phase detection using performance counters
relies on selecting specific counters which capture code ex-
ecution paths rather than performance related metrics. If the
counters are related to performance, they create a feedback
loop. Consider the prefetcher example, where the goal is to
choose whether to enable or disable the feature. If one of the
counters used to generate the signature was the number of
cache misses, disabling the prefetcher would likely affect the
cache miss count. As a result, the signature would change,
and potentially trigger a false phase change. Therefore, the
performance counters must relate specifically back to code
execution paths in order to be agnostic to system changes.
We dedicate Section III to our novel approach which targets
optimal counter selection via machine learning.

Using this key set of performance counters, the POP detec-
tor periodically measures counter values. Similar to ScarPhase,
this is done by leveraging the Linux perf subsystem in a user-
space program. The counter values are treated as the interval’s
signature, and fed as input into an online leader-follower
clustering algorithm. This lightweight online algorithm takes
just 10,000 cycles, or about 5µs at 2GHz, to cluster a new
point. The leader-follower algorithm automatically generates
new clusters when the similarity between the newest data point
and existing cluster centers is too large. We measure distance
using average percentage difference, and set the similarity
threshold to 20% (the same as ScarPhase). We allow the POP
detector to track up to 32 unique phases simultaneously. If
a new cluster is detected after 32 unique phases have been
detected, we employ an LRU replacement policy to remove a
cluster.

III. PERFORMANCE COUNTER SELECTION

In this section we describe our process for selecting key
performance counters which are able to capture program
phases which relate back to repeating segments of code, rather
than repeating behavior. Our two-step approach examines over
200 candidate counters, and ultimately provides a subset of
just 8 through the use of machine learning techniques and a
ground truth of SimPoint phases.

A. Performance Counter Collection

Other than limiting our search to per-core events, we offer
no domain expertise to try to reduce the set of performance

Counter Normalized Score
UOPS RETIRED.RETIRE SLOTS 100
UOPS RETIRED.ALL 93.28
BR INST RETIRED.ALL BRANCHES 79.29
BR INST RETIRED.NOT TAKEN 77.16
MEM UOPS RETIRED.ALL STORES 74.58
BR INST RETIRED.NEAR TAKEN 69.17
MEM UOPS RETIRED.ALL LOADS 64.75
UOPS EXECUTED.CYCLES GE 4 UOPS EXEC 64.60

TABLE I
THE HIGHEST RANKED COUNTERS USING THE GINI IMPURITY METRIC.

counters. This results in a list of over two hundred performance
counters to profile for our Haswell-based Intel® system. Be-
cause the hardware offers only 8 events to be simultaneously
collected, the most common approach is to group events
and use time-multiplexing to approximate counts. However,
because the goal of our study is to avoid sampling error, we
instead collect over 50 separate traces, each with real counter
values to eliminate the possibility of sampling error.

B. Ensuring Counter Invariance

Our first pass is to remove performance counters which
correlate to system behavior rather than program execution.
At first glance this may not seem intuitive, as similar system
behavior implies similar code execution. While this is true,
it is best to think of the program’s instructions as the input,
and the system’s behavior as a result. A good phase detector
correlates intervals which have similar inputs. This enables
analysis of the output, including performance, in different
system configurations. In other words, we seek to eliminate
any performance counters which relate to performance.

To find a set of performance counters which relates back to
code execution rather than system behavior, we perform a test
to measure change as a result of system reconfiguration. Our
system has four hardware prefetchers which can be enabled or
disabled through a Model Specific Register (MSR) [9]. The de-
fault configuration, prefetch MSR = 0, enables all prefetchers,
while the disabled configuration, prefetch MSR = 15, disables
all prefetchers. We measure the average percentage difference
of each performance counter on a per interval basis. For a run
of N intervals, we measure the difference by comparing the
counts on interval i in prefetcher configurations 0 (ci,0) and
15 (ci,15):

Avg % Diff =
1

N

N∑
i=1

|Ci,0 − Ci,15|
(1/2)(Ci,0 + Ci,15)

Figure 3 shows a ranking of the top 50 performance counters
which responded least to changes in prefetcher configuration,
making them potential candidates. Many of the low variance
counters relate back to instruction mix, as expected. In order
for a program counter to advance to our next stage, we require
less than 1% average percentage difference due to prefetcher
reconfiguration.
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Fig. 3. Interval-to-Interval average percentage difference from varying prefetchers. Data collected using Spec2006 benchmarks.

C. Counter Pruning

Our final step ranks program counters by their ability
to accurately predict phases based on code execution. We
collect Basic Block Vectors (BBVs) and use SimPoint to
determine ground truth program phases. A naive approach
would be to train a series of predictors using every possible
combination of eight counters, and select the counters with the
best prediction accuracy. Unfortunately, this is infeasible from
a compute perspective as choosing eight counters from just the
20 best candidates involves testing over 125,000 combinations.
Moreover, such a method provides no insight as to a ranking
of the counters.

Thus, we employ a decision forest classifier to predict the
SimPoint phases. After training the decision forest, we can
view the importance associated with each variable, measured
using the Gini impurity metric [10]. Using this approach across
Spec2006 benchmarks [11], we rank the variables as shown
in Table I.

Lastly, we validate that the counters do in fact capture
data similar to that of basic block vectors by performing a
distance visualization experiment. Motivated by the original
work by Sherwood et al. [12], we measure similarity between
signatures at different intervals to find repeating patterns. A
darker color indicates greater similarity, with black being an
exact match. Similarly, white is a complete mismatch. The
results for mcf workload are shown in Figure 4. Note that this
figure captures only signature similarity over the course of
program execution, and include no notion of program phase.

By examining the mcf visualization, it is obvious that
performance counters capture the same pattern as BBVs.
However, while BBVs can indicate complete mismatch, per-
formance counters always retain some element of similarity
(indicated by the gray in place of the white). As a result, the
phases given by the performance counter signatures are more
generalized than BBV phases. While the difference may seem
significant, we will later show in the results section that the
difference only results in slightly worse stability compared to
IP-based approaches.

IV. PHASE DETECTION EVALUATION

In this section we present a number of metrics used for
evaluating phase detection algorithms. We utilize CPI as the
basis to compute all metrics. For example, µi refers to the
standard deviation of CPI among all intervals labeled as i.
Note that all computations presented are done post-execution
as a means to compare program phase detectors. Many of such
metrics could be adapted to be computed online, but to remain
consistent with prior art and for a fair competitive analysis, we
utilize these metrics a posteriori.

A. Phase Stability

A method for measuring the quality of a phase detection
algorithm is to look at the stability (a percentage). Stability is
a statistically grounded metric, which measures the Coefficient
of Variation (CoV) within each phase. CoV is simply a
normalized method to compute variance, more formally,

CoV =
σ

µ

The stability metric also factors duration of the program spent
in each phase, or the phase’s weight. For N phases, the
stability can then be computed as:

Stability = 1−
N∑
i=1

CoVi ∗Weighti

However, a naive phase detection algorithm could classify
each interval as a unique phase, pushing the stability to 100%.
To correct this, Sembrant et al. [3] proposed the Corrected
Coefficient of Variation (CCoV). CCoV penalizes algorithms
for detecting more unique phases by adjusting the basic CoV
computation. CCoV places all phases which are dissimilar to
their neighbors as part of a virtual phase. All samples in the
virtual phase are given the CoV of the program as a whole.
This gives the desirable property that in both trivial cases, a
single phase or all unique phases, the CCoV will converge to
the same value.
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Counter Similarity Matrix mcf
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BBV Similarity Matrix mcf
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Fig. 4. Similarity matrices show the similarity between interval signatures,
where the diagonal of the matrix represents the program’s execution. A darker
color indicates greater similarity, as measured by percentage distance. We
show the similarity matrix for counters (top) and BBVs (bottom) for the
Spec2006 mcf benchmark.

B. Phase Interval Length

The previous metric may be affected by phase interval
length, but do not use it as a weighting metric to favor smaller
or larger intervals. As such, we propose a new metric: Statis-
tical Time Analyzing Baseline (STAB). This metric examines
the balance between number of phases, stability, and phase
interval length. STAB is a metric with the application of phase
detection algorithms for real-time optimization in mind.

In order to dynamically tune a system, performance must
be assessed in a given configuration. Consider an algorithm
which must choose between the default configuration A and
a new configuration B. In order for the algorithm to move

to configuration B, the performance difference must exceed
measurement error for the change to be reasonable. Thus, we
may need to sample both configuration A and B multiple
times to establish a small enough margin of error with enough
confidence.

For clarity, we describe a specific example. Consider that a
program has 3× more stability at 100M instruction intervals
versus 10M instruction intervals. There exists a quadratic rela-
tionship between stability and the number of samples required
to establish a given confidence interval and a particular error
tolerance [13]. Given that, we can compute that at 100M
instruction intervals, x2 samples are required, whereas at 10M
instruction intervals, (3x)2 samples are required. This means
for the 100M instruction intervals, we would spend 100x2

instructions establishing a baseline, but for 10M instruction
intervals, we would only spend 90x2 instructions. As we show
in the results sections, this leads to some non-linear trade-offs
with shorter phases.

We begin the formulation of STAB by computing the
number of samples needed for a given confidence interval and
error tolerance by the formula:

Num Samples =
(
Z ∗ CoV
Error

)2

where Z is a factor related to the confidence interval (e.g.
95% confidence interval Z-value is 1.96) [13]. STAB calculates
the number of samples required for a given confidence require-
ment and error tolerance on per-phase basis. These samples are
then summed for each phase seen to give the total number of
samples required to establish a performance baseline. Thus for
a program with N phases:

Baseline Samples =
N∑
i=1

(
Z ∗ CoVi
Error

)2

Next, we account for phase interval size, to determine the
total number of instructions the program would need to spend
establishing this baseline. This is simply baseline samples
multiplied by the phase interval size. Finally, the Statistical
Time spent Analyzing a Baseline (STAB) can be computed as
a ratio:

STAB =
Baseline Samples ∗ Interval Size

Total Instructions
The result of this computation is an intuitive ratio: how

many instructions (as a percentage) would be spent establish-
ing a confidence interval with a given error margin. However,
this ratio is affected by the total duration of the program,
an undesirable artifact. For instance, Spec2017 omnetpp has
just one phase, and requires 50 samples to establish baseline
performance using either the training or reference dataset1.
However, because the training set is smaller and has fewer
instructions than the reference set, the unnormalized version

1This measurement was performed using ScarPhase with 100M instruction
intervals and dynamic sampling enabled.
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Fig. 5. Trade off between CoV and STAB using various interval sizes.
While CoV suffers at smaller intervals, many more intervals are available
for analysis. As a result, the STAB overhead reduces at smaller intervals.

of STAB is 7.3% for the training dataset, but just 0.91%
for the reference dataset. Thus, we choose to normalize by
a fixed number of instructions so that the total run length of
the program does not affect STAB.

STABnorm =
Interval Size ∗ Baseline Samples

100B Instructions
Using this formulation, omnetpp has a STABnorm of 5%

with either the training or reference datasets. For the remainder
of the paper, we utilize the normalized version of STAB with
100B instructions as the normalization factor. This choice is
arbitrary and has no bearing on the final results as it only
linearly scales the values. We report normalized STAB for a
given confidence interval c and error tolerance e as STABc,e.
For example a confidence interval of 95% and error tolerance
of 5% would be STAB95,5.

V. CASE STUDY: INTERVAL SIZE

Utilizing our STAB metric, we perform an analysis to
understand the trade-offs of phase detection at various interval
sizes. To create a fair baseline, which does not lose information
or incur overhead, we perform trace-based analysis using
SimPoint, as described in section II-A. We utilize QEMU [14],
a full-system emulator, to collect accurate, complete traces of
long-running programs. Once an instruction trace is collected,
we can generate BBVs and corresponding phase labels for any
desired interval size.

To perform analysis with CoV and STAB we require
performance data, specifically the IPC for each interval. We
collect 50 performance traces per workload and average the per
interval data to mitigate run-to-run error. Using 19 Spec2006
workloads with the training dataset, we perform the SimPoint
analysis at instruction intervals ranging from 1M to 128M.
The results are shown in Figure 5.

Firstly, note that both CoV and STAB are lower-is-better
metrics. As expected, the smaller intervals have an increas-
ingly high CoV. However, this is non-linear in respect to
the number of intervals available for analysis. While COV

Fig. 6. Wall-clock Overhead comparison. Results averaged across Spec2017
benchmarks using the training dataset.

increases from 4.5% to over 15%, the number of intervals
available increases by 128×. As a result, the STAB95,5 metric
decreases from 10% at 128M instruction intervals, to just 1.9%
at 1M instruction intervals.

While the STAB metric conveys the benefits of utilizing
smaller granularity phases, it neglects to consider overhead.
We define overhead as the additional time required for the
program to execute with a phase detection framework versus
without any monitoring framework. We analyze the overhead
of both ScarPhase and the POP phase detector at 1M, 10M,
and 100M instruction interval sizes utilizing wall-clock time
and plot the results in Figure 6. At 100M instruction intervals,
we measured ScarPhase to incur 3.19% overhead on average
across Spec2017 speed benchmarks, whereas the POP detector
incurs just 0.09% overhead. At 10M instruction intervals this
overhead rises to an undesirable 16.12% for ScarPhase, but just
1.35% for the POP detector. While the STAB metric continued
to improve at smaller intervals, even the more efficient POP
detector causes a 9.65% increase in execution time at 1M
instruction intervals. Because the goal of the POP detector
is low overhead, we do not present 1M instruction interval
results in the following section.

VI. RESULTS

A. Methodology

To assess the proposed POP detector, we compare it to the
prior art, ScarPhase, utilizing the Spec2017 benchmark suite
on an Intel® system2. Both phase detectors are configured with
a similarity threshold of 20% for their clustering algorithm,
the default specification for ScarPhase. To obtain consistent,
repeatable results we evaluate single-threaded applications
via speed benchmarks. It is also known that single threaded
applications typically have more phase variability, making
them more applicable to our analysis [4]. Furthermore, we
apply a few command line boot parameters to ensure that
results are not skewed. Table II details each of our Intel®

Haswell evaluation node’s specifications.
Note that both the POP detector and ScarPhase are im-

plemented as user-space programs which tap into the Linux

2Performance results are based on testing as of February 13, 2019 and may
not reflect all publicly available security updates.
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Base Board Intel® Server Board S2600WT2
CPU 2x Intel® Xeon® CPU E5-2699 v3 @ 2.30GHz
BIOS SE5C610.86B.01.01.0027.071020182329
DRAM 24x 16G DDR4 ECC DIMM @ 1600 MHz
OS CentOS 7.5 w/ Linux 4.14.58
Kernel Cmdline nmi watchdog=0 transparent hugepages=never

cpuidle.off=1 intel idle.max state=0 cpufreq.off=1
intel pstate=disable procesor.max state=0
isolcpus=0,1 rcu nocbs=0,1 rcu nocb poll
nohz full=0,1 skew tick=1

Hyperthreading Off
TABLE II

EVALUATION SYSTEM

perf subsystem, allowing them to collect counter and branch
IP information. This means that no super-user privileges are
required to run either detector. While kernel-module imple-
mentations can offer superior performance, the user space
implementation allows us to perform a fair comparison to the
prior art. As Sembrant et al. [3] mention, context switches to
this user space implementation can incur significant overhead
at smaller time scales but is often more desirable for system
administrators.

B. Phase Detector Performance

We perform an in-depth comparison of ScarPhase and the
POP detector. As discussed in Section II-B, ScarPhase has
an optional dynamic sampling mode which reduces overhead
while slightly degrading phase detection performance. To
remain succinct and capture ScarPhase’s optimal phase detec-
tion ability, we focus our discussion of results on ScarPhase
without dynamic sampling. We report results for both 100M
and 10M instruction intervals, the smallest granularity possible
without significant overhead. We include all speed benchmarks
in the Spec2017 benchmark suite, which includes some out-
liers. As such, we utilize the geometric mean to draw final
conclusions for various metrics. Note that when we use the
term “average”, we are referring to the geometric mean unless
otherwise stated.

a) Stability: We begin by examining phase stability in
Figure 7. The POP detector finds 0.51% more stable phases
at 100M instruction intervals. In particular, POP performs
significantly better on lbm and fotonik3d, where its stability
is more than 10% higher than ScarPhase at 100M instruction
intervals. These programs are among the most variable with
respect to IPC changes in the Spec2017 benchmark suite, but
ScarPhase inadequately separates the phases. In the case of
fotonik3d at 100M instruction intervals, ScarPhase generates
112 unique phases, but more than 85% of intervals reside in
just 3 phases. As a result, the phases are poorly separated and
phase stability is just 80.5%.

At 10M instruction intervals, ScarPhase is able to identify
phases which are 0.52% more stable compared to the POP
detector. Nevertheless, for half of the benchmarks tested the
POP detector is within a 2% margin compared to ScarPhase,
and never performs more than 7% worse than ScarPhase.
Also worth emphasizing is that this result is with ScarPhase’s
dynamic sampling mode disabled. Enabling dynamic sampling

mode nets a 2% decrease in average stability for ScarPhase,
placing it behind the POP detector in terms of phase stability.

b) Number of Phases: While the two detectors perform
similarly from a phase stability standpoint, they begin to
diverge when analyzing the number of phases detected, as
shown in Figure 8. At 100M instruction intervals, ScarPhase
detects 13.7 phases compared to 18.5 with the POP detector.
Yet the reverse is true at 10M instruction intervals, where
ScarPhase detects 214 unique phases compared to POP’s
86, a reduction of nearly 60%. Specifically, for 12 of the
20 benchmarks tested, ScarPhase finds more than 100 unique
phases. While more unique phases at finer granularity is intu-
itive, the divergence of ScarPhase and the POP detector can be
traced back to the fundamental difference of sampling versus
measurement. ScarPhase’s signature vector is more susceptible
to noise in the case of finer granularity due to its lack of
sufficient samples. This result is particularly prominent in x264
and wrf, where the number of phases detected increases by
more than an order of magnitude.

c) CCoV: Sembrant et al. proposed the “Corrected”
Coefficient of Variation as a means to account for the intrinsic
trade-off between number of phases and stability. We compute
the CCoV and report the results in Figure 9. The CCoV metric
most emphasizes the effectiveness of the POP detector at
smaller phase intervals. ScarPhase’s CCoV degrades by 83% at
finer granularity due to the large number of phases detected.
The lower-is-better metric increases from 8.12% to 14.93%
when moving from 100M to 10M instruction intervals using
ScarPhase. By comparison, the POP detector experiences
negligible deviation in CCoV, improving from 8.65% to 8.49%
when moving from 100M to 10M instruction intervals.

d) STAB: While CCoV balances number of phases and
stability, the STAB metric applies statistics to also balance
phase interval size. We report the normalized STAB metric
using a 95% confidence interval and 5% error tolerance in Fig-
ure 10. The overall winner here is the POP phase detector with
10M instruction intervals. ScarPhase’s optimal configuration
using 100M instruction windows boasts a STAB95,5 of 26.5%,
2.1× worse than the POP detector’s 12.5% STAB95,5 with
10M instruction intervals. Based on our statistically grounded
metric, this means use of the POP detection framework would
net significantly quicker analysis to enable better online opti-
mization.

C. Summary of Results

We provide a summary of results in Table III to highlight the
key takeaways of the POP detector compared to the existing
state-of-the-art, ScarPhase. All values reflect the geomean
across all benchmarks tested; the same data is presented in
Figures 6, 7, 8, 9, and 10. While the two phase detection
frameworks are closely matched in the traditional phase detec-
tion metrics, the two parameters that apply most directly to the
success of deploying an online phase detection algorithm are
execution overhead and STAB. For any potential performance
gain, the optimization will have to overcome the overhead of
the phase detection framework. Our experiments concluded
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Fig. 7. Phase Stability metric for Spec2017 Speed benchmarks, Reference Dataset.

Fig. 8. Number of Phases detected for Spec2017 Speed benchmarks, Reference Dataset.

Fig. 9. Corrected Coefficient of Variation (CCoV) metric for Spec2017 Speed benchmarks, Reference Dataset.

Fig. 10. Normalized STAB95,5 metric for Spec2017 Speed benchmarks, Reference Dataset.
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that even in the most optimistic scenario with dynamic sam-
pling enabled and larger 100M instruction intervals, ScarPhase
still incurs a 3.19% overhead. POP detection incurs just 1.35%
execution overhead at shorter 10M instruction intervals, and
just 0.09% with 100M instruction intervals.

In addition to overhead, an adaptive system must adequately
analyze performance before applying a final configuration.
Motivated by this, we propose the STAB metric to statically
quantify the amount of time an adaptive system must spend
analyzing behavior to gain a particular level of confidence with
a given error tolerance. This metric captures trade-offs of phase
stability, number of phases, and phase interval size. STAB
quantifies that POP detection enables 2.1× faster performance
analysis compared to ScarPhase.

Geomean Overhead Stability Phases CCoV STAB
POP 10M 1.35% 89.99% 85.8 8.49% 12.53%
Scar-D 10M 16.12% 88.39% 195.2 16.72% 53.30%
Scar 10M 17.85% 90.51% 213.9 14.93% 31.98%
POP 100M 0.09% 90.45% 18.5 8.49% 31.18%
Scar-D 100M 3.19% 88.62% 12.7 9.57% 35.04%
Scar 100M 9.01% 89.94% 13.7 8.12% 26.53%

TABLE III
SUMMARY OF RESULTS FOR PHASE DETECTORS AT BOTH 10M AND 100M
INSTRUCTION WINDOW SIZES. SCARPHASE WITH DYNAMIC SAMPLING IS

LISTED AS Scar-D, WHILE WITH FIXED SAMPLING AS JUST Scar.
OVERHEAD IS REPORTED IN WALL-CLOCK EXECUTION TIME, AND THE

STAB METRIC REFERS TO 100B INSTRUCTION NORMALIZED STAB WITH A
CONFIDENCE INTERVAL OF 95% AND ERROR TOLERANCE OF 5%, AS

DESCRIBED IN IV-B.

VII. RELATED WORK

Sherwood et al. began to define the standards for program
phase detection in their early work which utilized basic blocks.
Their initial work did an in-depth dive to understanding the
cyclical behavior of a program via frequency analysis [12].
They later expanded this work to SimPoint, which attempts
to cluster basic vectors to define phases [15]. SimPoint’s
main objective is to speed up simulation work by drastically
reducing the amount of a program that must be simulated to
gain an accurate representation. SimPoint identifies phases and
their respective weights such that a sample from each phase
can can be used for simulation. More than a decade later, this
technique is still proven to be effective as shown in [16].

While random projections and approximate K-means clus-
tering help to speed up SimPoint, the fundamental idea still
hinged on collecting basic blocks which are expensive to pro-
file. Dhodapkar and Smith attempted to mitigate this overhead
by proposing a hardware mechanism which constructs signa-
tures hashing branches into an n-bit vector [17]. Sherwood
et al. later refine this proposal by adding in the amount of
time spent in each branch as well as a phase predictor [2].
Dhodapkar and Smith then provided an evaluation framework
utilizing sensitivity, false-positives, and stability which lay
the foundation and motivation for CCoV and STAB [18]. In
their comparison work, they find that while BBVs provide
the best phase detection, utilizing branch counts nets a phase
detection with 80% of the performance. In many ways, this is
the motivation for our work.

Shen et al. explore the notion of phases as repeating, but
non-uniform behavior [19]. They utilize wavelet filtering and
allow for variable phase sizes. While their technique performs
comparably to manual-code injection, it requires a separate
training step to determine program phases. Nagpurkar et al.
also approach the problem utilizing dynamic phase sizes by
suggesting the notion of stable and transition periods [20].
They use an adaptive trailing window policy to detect phases
and instrument a new binary. However, their technique is
only applicable to Java applications. Nevertheless, both of
these approaches are particularly applicable when the goal is
optimizing software as the program can be run and profiled
many times. Since these publications, Linux perf has improved
dramatically, and supports such analysis. Gregg has an ex-
cellent blog which includes many tutorials for such software
optimization using perf and other tools [21].

However, another application of phase detection is on-
line hardware optimization, which requires lightweight online
phase detection. In this scope, ScarPhase [3] represents the
state-of-the-art. ScarPhase bridges the gap of previous phase
detection techniques by designing a framework which works
on present hardware, operates completely online without prior
training, and has significantly lower overhead than previous
approaches [3]. However, ScarPhase chooses 100M instruction
window phases as a baseline by citing prior work. We differ
from ScarPhase in that we explore trade-offs associated with
different phase sizes. We show that while variance increases
with finer resolution, the trade-off is nonlinear and has auxil-
iary benefits.

VIII. CONCLUSION

In this paper we explored program phase detection for the
use case of online performance optimization. To perform real-
time optimization, an algorithm must be able to evaluate per-
phase performance in a particular configuration. The faster per-
phase performance can be evaluated with a phase detection
algorithm, the quicker a reinforcement learning agent can
adapt the system. With this in mind, we create a new metric,
STAB, which weights phase stability, number of phases, and
interval size. It statistically grounds time required for a given
algorithm to establish per-phase performance.

Utilizing STAB, we perform an oracle study using SimPoint
and show that smaller phases are desirable to minimize learn-
ing overhead. However, we find that the existing state-of-the-
art phase detector, ScarPhase, suffers from excessive run-time
overheads when attempting fine-grain phase classification. In
addition to overhead, ScarPhase’s sampling techniques break
down due to limited information, resulting in hundreds of
unique phases being identified. To attempt to fill this void,
we explore the use of performance counters for online phase
detection.

We employ statistical and machine learning techniques in
a two-step process to select a core subset of performance
counters. Using these counters, we build the POP phase
detector, which is able to accurately detect phases at fine
granularity while incurring just 1.35% overhead. In the context
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of online optimization, the POP detector requires 2.1× fewer
instructions to establish baseline performance. If even lower
overhead is required, POP imposes just 0.09% overhead when
using 100M instruction interval phases. In the future we would
like to test the POP detector with more benchmarks and system
configurations to further validate its efficacy.
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