
LOT-ECC: LOcalized and Tiered Reliability Mechanisms for

Commodity Memory Systems ∗

Aniruddha N. Udipi† Naveen Muralimanohar‡ Rajeev Balasubramonian†

Al Davis† Norman P. Jouppi‡

†University of Utah ‡HP Labs

{udipi, rajeev, ald}@cs.utah.edu {naveen.muralimanohar, norm.jouppi}@hp.com

Abstract

Memory system reliability is a serious and growing

concern in modern servers. Existing chipkill-level mem-

ory protection mechanisms suffer from several draw-

backs. They activate a large number of chips on ev-

ery memory access – this increases energy consump-

tion, and reduces performance due to the reduction in

rank-level parallelism. Additionally, they increase ac-

cess granularity, resulting in wasted bandwidth in the

absence of sufficient access locality. They also restrict

systems to use narrow-I/O x4 devices, which are known

to be less energy-efficient than the wider x8 DRAM de-

vices. In this paper, we present LOT-ECC, a local-

ized and multi-tiered protection scheme that attempts

to solve these problems. We separate error detection

and error correction functionality, and employ simple

checksum and parity codes effectively to provide strong

fault-tolerance, while simultaneously simplifying imple-

mentation. Data and codes are localized to the same

DRAM row to improve access efficiency. We use sys-

tem firmware to store correction codes in DRAM data

memory and modify the memory controller to handle

data mapping. We thus build an effective fault-tolerance

mechanism that provides strong reliability guarantees,

activates as few chips as possible (reducing power con-

sumption by up to 44.8% and reducing latency by up to

46.9%), and reduces circuit complexity, all while work-

ing with commodity DRAMs and operating systems. Fi-

nally, we propose the novel concept of a heterogeneous

DIMM that enables the extension of LOT-ECC to x16

and wider DRAM parts.

1 Introduction
With shrinking feature sizes and increasing capac-

ity, memory system reliability is a growing concern. In

some datacenter settings, it has been suggested that stor-

age be built entirely out of DRAM memory, and large-

scale systems be created by aggregating the main mem-

∗This work was supported in parts by NSF grants CCF-0811249,

CCF-0916436, NSF CAREER award CCF-0545959, HP, and the Uni-

versity of Utah.

ory of thousands of servers [26]. This places greater

pressure on the memory system to not yield errors.

High-availability servers are typically expected to pro-

vide chipkill-level reliability – the ability to withstand

the failure of an entire DRAM chip. Current commer-

cial chipkill-level reliability mechanisms [10] are based

on conventional symbol-based ECC codes [14]. They

impose various restrictions on system configuration, and

suffer from some combination of the following prob-

lems: (i) wasted energy from activation overfetch, (ii)

wasted memory bus bandwidth and energy due to forced

prefetching, (iii) reduced energy-efficiency due to the

forced use of narrow I/O DRAMs, (iv) lost opportunities

to increase rank-level parallelism, (v) increased storage

overheads, and (vi) increased circuit complexity. Recent

attempts to improve chipkill design [34, 36] have only

partly addressed these problems. There is thus clearly a

need for a fundamentally different approach to provide

efficient chipkill-level fault-tolerance.

Given the memory industry’s hard constraints with

respect to commodity parts in servers, it is essential to

stay fully standards-compliant to even be considered for

commercial adoption. We allow ourselves no leeway

to modify the design of DRAM chips, DIMMs, or the

JEDEC protocol, including burst length, access gran-

ularity, etc. Similarly, the fault-tolerance mechanism

should be completely transparent to the cache hierar-

chy, OS, and applications in order to be implementation

friendly. The only permitted changes are in the mem-

ory controller and system firmware [16]. Also, mem-

ory capacity by itself is affordable, as long as commod-

ity components are used, and some of it can be traded

off for RAS benefits, rather than changing standards or

modifying a multitude of system components [16].

With these requirements and constraints in mind, we

present LOT-ECC, a novel chipkill-level memory reli-

ability mechanism. LOT-ECC employs multiple levels

of localized and tiered error protection. Simple check-

sum and parity codes are deployed effectively to pro-

vide strong levels of fault tolerance while activating the

smallest possible number of chips per memory access.



All the requisite data mapping and verification is han-

dled by the memory controller with minimal help from

the system firmware, while being completely transpar-

ent to the DRAM devices, OS, caches, TLB, and other

system components. Compared to a modern commercial

chipkill implementation, LOT-ECC saves up to 44.8%

memory power (static + dynamic) and reduces average

memory access latency by up to 46.9%, in addition to a

reduction in ECC circuit complexity, all for a small 14%

additional storage overhead.

2 Background and Related Work

2.1 Existing Commercial Solutions

Current commercial chipkill solutions employ Sin-

gle Symbol Correct Double Symbol Detect (SSC-DSD)

codes [10, 14, 36], which operate on a set of bits (a

“symbol”) rather than individual bits. All errors, of all

lengths, within a single symbol can be corrected. There

are two popular SSC-DSD codes, the eponymous 3-

check-symbol and 4-check-symbol codes [36].

Three check symbols can protect up to 2b − 1 data

symbols, where b is the width of the symbol. With x4

DRAMs, the symbol-width b is 4, the output of each

chip; three ECC chips can therefore protect fifteen data

chips. Being non-power-of-two all around, this results

in granularity mismatches and is inconvenient. The 4-

check-symbol code is therefore preferred, which allows

protection of more data symbols. 32 data symbols are

protected by 4 ECC symbols, creating a 144-bit datapath

from 36 total chips. This is typically implemented as

two ECC DIMMs with 18 chips each, reading/writing

two 64-byte cache lines at a time on a standard DDR3

channel with a burst length of 8.

The x4 chip, 4-check symbol code based designs suf-

fer from several drawbacks, as described below, and

summarized in Table 1. First, ECC codes are com-

puted over large 144-bit data words. This activates a

larger number of chips than absolutely required, increas-

ing overfetch within DRAM chips [15, 20, 32, 34], and

resulting in substantially increased energy consumption.

Area, density, and cost constraints make overfetch in-

evitable to some extent within a rank of chips, but im-

posing additional inefficiency in order to provide fault

tolerance should be avoided. Second, the wide-word re-

quirement results in increased access granularity as burst

lengths increase – a 144-bit bus with the standard DDR3

burst length of 8 already reads/writes two 64-byte cache

lines per access. This forced prefetch potentially wastes

bandwidth and energy unless access locality is consis-

tently high. Third, since a large number of chips is made

busy on every access, there are fewer opportunities for

rank-level parallelism within a given amount of mem-

ory, potentially hurting performance. Bank contention

will likely emerge as a major bottleneck if novel in-

terconnect technologies such as silicon photonics [11,

33] substantially increase the available off-chip mem-

ory bandwidth, making parallelism more important. All

of these problems are exacerbated by the fact that the

structure of the ECC codes forces the use of narrow-

I/O x4 DRAM chips [36]. This increases the number of

DRAM chips needed to achieve a given data bus width,

reducing space on the DIMM for moreDRAM chips, de-

creasing the number of independent ranks available [17].

Additionally, for a given capacity, DIMMs with narrow

chips consume more energy than those with wider I/O

chips [28]. Attempts to reduce the access granularity or

move to x8 or x16 DRAM chips results in a significant

increase in storage overhead for the ECC codes [36]. Fi-

nally, symbol-based ECC computation and verification

entails significant circuit complexity due to the involve-

ment of Galois field arithmetic, particularly with wide

symbols such as 8 or 16 bits [27, 36].

With x8 DRAMs, on the other hand, b is 8, allow-

ing just three check symbols to protect as many as 255

data symbols. We consider three protection strategies,

as summarized in Table 1. While it would be most effi-

cient from a storage overhead perspective to use a con-

figuration of 3 ECC chips + 255 data chips, the access

granularity would be unacceptably large. Reducing ac-

cess granularity to a single cache line would require 3

ECC chips + 8 data chips, but storage overhead rises to

37.5%. Reducing storage overhead to 18.75% through a

3 ECC + 16 data configuration ends up reading/writing

two cache lines at a time, in addition to requiring a non-

standard 152-bit channel. The server industry has there-

fore stayed away from x8 DRAMs for chipkill-correct

systems so far. Similar tradeoffs can be made with x16

or wider DRAMs, but at the cost of much sharper in-

creases in either access granularity or storage overhead.

2.2 Virtualized ECC

Virtualized ECC (VECC) [36] is a recent academic

proposal which attempts to provide chipkill-level re-

liability while exploiting the benefits of x8 and x16

DRAMs, without requiring non-standard DIMMs. It

separates error detection and error correction into two

tiers, similar also to other prior work [29, 34, 35]. Fur-

ther, it proposes storing some ECC information (the sec-

ond tier T2EC, responsible for data correction if an error

is detected) in data memory, similar to an earlier pro-

posal for last level caches [35]. However, VECC still

suffers from some significant drawbacks. It continues to

use conventional symbol-based ECC codes, inheriting

all of their constraints with respect to DIMM/rank orga-

nization and access granularity. First, it requires 144-

bit channels, which was not a problem in the original

paper since it evaluated a DDR2 channel with a burst



Table 1. Commercial and academic chipkill implementations; burst length of 8
Design Bus-width Granularity

(Cache lines)

Storage

overhead

Problems

SSC-DSD x4, 4-check

symbol code (commercial)

128b data +

16b ECC

2 12.5% Overfetch, forced prefetching, reduced rank-level

parallelism, GF arithmetic, x4 restriction

SSC-DSD x8, 3-check

symbol code, Option 1

2040b data +

24b ECC

31 1.17% Significant overfetch, non-power-of-2 data length, forced

prefetching, non-standard channel width, GF arithmetic

SSC-DSD x8, 3-check

symbol code, Option 2

64b data +

24b ECC

1 37.5% Significant storage overhead, non-standard 88-bit channel,

GF arithmetic

SSC-DSD x8, 3-check

symbol code, Option 3

128b data +

24b ECC

2 18.75% Overfetch, forced prefetching, reduced parallelism,

non-standard 152-bit channel, GF arithmetic

VECC x8, 3-check symbol

code, 1 symbol virtualized

128b data +

16b ECC

2Rd/4Wr 18.75% Overfetch, forced prefetching (both even worse for writes),

performance impact due to writes, reduced parallelism, GF

arithmetic, modifies various system components

SSA x8, checksum+parity 64b data +

8b ECC

1 25% Increased storage overhead, performance impact due to

extra writes to global parity, modifies DRAM

microarchitecture

LOT-ECC x8,

checksum+parity

64b data +

8b ECC

1 26.5% Increased storage overhead

length of 4 – every access is only 144*4 bits, a single

64-byte cache line. However, most servers today use

DDR3 channels, with a minimum burst length of 8, forc-

ing prefetch. Half-burst accesses (length = 4) are possi-

ble in DDR3, but this simply masks out the last four

bursts – no transfer occurs, and half the bandwidth is

wasted. Second, 18 x8 chips are made busy on each ac-

cess (twice the minimum required), increasing overfetch

and reducing rank-level/bank-level parallelism. Third,

these problems are exacerbated for memory write oper-

ations. Specifically, the data mapping adopted by VECC

leaves open the possibility of the T2EC being placed

in a failed DRAM chip if a single rank is used. It

therefore forces the T2EC code to be placed in a dif-

ferent rank (also 18 x8 chips), thus raising the number

of chips touched when writing to memory to 36. It also

means that we can only tolerate failure in at most 1 in

36 DRAM chips. Finally, VECC requires modifications

to several components of the system, including the op-

erating system, memory management unit, caches, etc.,

making it difficult to implement.

2.3 Single Subarray Access (SSA)

Another recent proposal to improve chipkill design is

SSA [34]. It was able to reduce access granularity to just

9 x8 DRAM chips and one cache line, at a tolerable stor-

age overhead of 25%. However, it was specifically tar-

geted at a novel DRAM microarchitecture (Single Sub-

array Access, SSA) also proposed in the same paper, and

required cache lines to be localized to a single DRAM

chip unlike commodity architectures. It exploited cer-

tain RAS features built into the microarchitecture, such

as additional space in each row to store local ECC infor-

mation. Also, it suffered from non-trivial penalties dur-

ing write operations since some ECC information com-

puted across several different cache lines had to be up-

dated every time any of those lines was written to.

2.4 Other Related Work

Memory reliability has received increased atten-

tion from the architecture community in recent years.

Schroeder et al. studied DRAM failures in large-scale

datacenters at Google [30]. The Rochester Memory

Hardware Error Project [22] characterized failures not

just at a platform level, but went right down to individual

bits. Both papers highlighted the importance of memory

errors going forward, but did not propose novel reliabil-

ity mechnisms. Papers on novel memory architectures

such as Mini-Rank [37] and MC-DIMM [9] have in-

cluded discussions on their impact on ECC and/or chip-

kill, but have not proposed any fundamental changes.

Key Differentiators: LOT-ECC solves most of the prob-

lems discussed above. It works with just a single rank

of nine x8 chips, improving access granularity, energy

consumption, and performance. Also, both commercial

designs and VECC define chipkill as the failure of 1 chip

out of 36, whereas LOT-ECC supports 1 dead chip in

9, a significant boost in reliability guarantee. As with

prior designs, the target fault model is the failure of one

entire chip, and the detection of failures in at least 2

chips. Finally, LOT-ECC is transparent to everything

but the memory controller and the firmware, making it

less invasive, and more implementation friendly. LOT-

ECC pays for this reduction in energy,improvement in

performance, and simplicity through a slight increase in

storage overhead for the ECC codes – a total of 26.5%

(both tiers together), compared to 18.75% with VECC

and 12.5% with commercial SSC-DSD.



3 Proposal: LOT-ECC Design

LOT-ECC takes a novel, fundamentally different ap-

proach to reliability. It splits protection into multiple

tiers to detect errors, isolate their location, and recon-

struct the erroneous data, and maps all data and codes

into the same row-buffer to allow efficient access.

3.1 Local Error Detection (LED)

The first layer of protection afforded by LOT-ECC is

local error detection (LED). The function of this code

is to perform an immediate check following every read

operation to verify data fidelity. Additionally, it needs

to identify the exact location of the failure, at a chip-

granularity within a rank. To ensure such chip-level de-

tection (required for chipkill), the LED information it-

self needs to be maintained at the chip level – associated

not with each cache line as a whole (as in symbol-based

ECC codes), but with every cache line “segment”, the

fraction of the line present in a single chip in the rank.

In Figure 1, for example, cache line A is divided into

segmentsA0 throughA8. The corresponding local error

detection codes are LA0 through LA8.

Data Layout: Consider a standard ECC rank with nine

x8 DRAMs, and a burst length of 8, as shown in Fig-

ure 1. Instead of treating this as eight data chips and

one ECC chip, we propose storing both data and LED

information on all nine chips. Since we need 512 data

bits (one cache line) in total, each chip will have to pro-

vide 57 bits towards the cache line. An x8 chip supplies

64 bits per access, which are interpreted as 57 bits of

data (A0 in Figure 1, for example), and 7 bits of LED

information for those 57 bits (LA0). Across 9 chips, this

translates to 513 bits of data and 63 bits of LED. Since

a cache line is only 512 bits, there is one surplus bit,

which we will utilize as part of the second layer of pro-

tection (Section 3.2. At this point, simply note that the

7-bit LED detects errors in 57 bits of data – code details

follow in Section 3.5.

Impact on Memory Reads and Writes: There are no

performance penalties on either reads or writes due to

the LED layer. Every cache line access also reads/writes

its corresponding LED information. Since the LED is

“self-contained”, i.e., it is constructed from bits belong-

ing to exactly one cache line, no read-before-write is re-

quired – all bits required to build the code are already at

the memory controller before a write.

3.2 Global Error Correction (GEC)

The function of the Layer 2 Global Error Correction

code is to aid in the recovery of lost data once the Layer

1 code detects an error and indicates its location. The

Layer 2 GEC is itself decomposed into three tiers. The

primary component is a 57-bit entity that is a column-

wise XOR parity of the nine cache line segments, each

a 57-bit field from the data region. For cache line A, for

example, its GEC parity PA is a XOR of data segments

A0, A1, .., A8. Data reconstruction from the GEC code

is trivial (a simple XOR of the error-free segments and

the GEC code) since the LED has already flagged the

erroneous chip. Since there isn’t an additional dedicated

ECC chip (we used up the one provided to store data +

LED), the GEC code has to be stored in data memory

itself. The memory is made to appear smaller than it

physically is by the firmware. The memory controller is

also aware of this change, and maps data accordingly.

Data Layout: In line with our objective to provide

strong fault-tolerance of 1 dead chip in 9, and to min-

imize the number of chips touched on each access, we

choose to place the GEC code in the same rank as its

corresponding cache line, unlike prior proposals [36].

We set apart a specially-reserved region (shaded red

in Figure 1) in each of the 9 chips in the rank for this

purpose. This is a subset of cache lines in every DRAM

page (row), although it is shown as a distinct set of rows

in Figure 1 for clarity. This co-location ensures that

reads or writes to the GEC information will be guar-

anteed to be a row-buffer hits when made in conjunc-

tion with the read or write to the actual data cache line,

thus reducing its performance impact. With this new

data-mapping, a 9 KB row buffer can only accommo-

date 8 KB of data+LED; the rest is used to store the GEC

codes for that 8 KB. This requires some basic arithmetic

circuitry at the memory controller to appropriately cal-

culate the row-id for each physical page.

Figure 2 shows the way the GEC information is laid

out in the reserved region, for an example cache line A.

Similar to the data bits, the 57-bit parity PA is itself dis-

tributed among all 9 chips. The first seven bits of the PA

field (PA0−6) are stored in the first chip, the next seven

bits (PA7−13) are stored in the second chip, and so on.

Bits PA49−55 are stored on the eighth chip. The last

bit, PA56 is stored on the ninth chip, in the surplus bit

borrowed from the Data+LED region (see Section 3.1).

The failure of a chip also results in the loss of the cor-

responding bits in the GEC region. The GEC code PA

itself, therefore, is protected by an additional parity, the

third tier PPA. PPA is a 7-bit field, and is the XOR of

eight other 7-bit fields, PA0−6, PA7−13, .., PA49−55.

The PPA field is stored on the ninth chip. If an en-

tire chip fails, the GEC is first recovered using this par-

ity combined with uncorrupted GEC segments from the

other chips (we know which chips are uncorrupted since

the LED indicates the failed chip). The full GEC is then

used to reconstruct the original data.

Next, consider the case where in addition to a fully

failed chip, there is an error in a second chip – we still

need to be able to detect, if not correct, such a failure



. .A0
LA0 B0

LB0 A7
LA7 B7

LB7 A8
LA8 B8

LB8

57 bits 7 bits

PA

0 6

G0
LG0 H0

LH0 G7
LG7 H7

LH7 G8
LG8 H8

LH8
PB

0 6

PH

0 6

PA

49

PB

49

PH

49 PPA PPB PPH

57 bits 7 bits

0 6

A, B, C, D, E, F, G, H – Cache Lines, each comprised of segments X0 through X8 Data

0 6 0 6
55 55 55

Chip 0 Chip 7 Chip 8

LXN – L1 Local Error Detection for Cache Line X, Segment N

[PX0:PXN] – L2 Global Error Correction across segments X0 through X8

PPX – Parity across GEC segments PX0 6 through PX49 55

ata

LED

GEC

Figure 1. LOT-ECC shown with a single rank of nine x8 DRAM chips

7b 1b

Surplus bit borrowed from data + LED

7b 1b7b 1b 7b 1b

PA0 6 PA7 13 PA49 55 PPA
..T4 T4 T4 PA

56

T4

Chip 0 Chip 1 Chip 7 Chip 8p Chip 1 Chip 7 Chip 8

GEC

– row hit

Figure 2. Data layout for one cache line’s GEC in the red-shaded GEC region

under our fault model. If this second error is also a

full-chip failure, it will be detected by the LED along

with the initial data read, and flagged as an uncorrectable

double-chip failure. On the other hand, if this second er-

ror occurs just in the GEC region of interest, it needs to

be detected during the GEC phase.

For example, assume that the second chip has com-

pletely failed – we have now lost A1, and PA7−13. If,

in addition, there is an error in the GEC region of the

first chip, there is a possibility that one or more of the

bits PA0−6 are corrupt. The reconstruction of lost bits

PA7−13 from PPA and PA0−6, PA14−20, PA21−27,

.., PA56 may itself be incorrect. To handle this prob-

lem, we use the remaining 9 bits (marked T 4, for Tier-4,

in Figure 2) to build an error detection code across GEC

bits PA0 through PA55, and PPA. Note that neither

exact error location information nor correction capabili-

ties are required at this stage since the reliability target is

only to detect a second error, and not necessarily correct

it. We can therefore build a code using various permu-

tations of bits from the different chips to form each of

the T 4 bits. This should include multiple bits from the

same chip, and bits from different columns across chips

to maximize the probability of detection.

We will now work through examples of various

failure possibilities, and illustrate LOT-ECC operation.

Again, consider a single cache line A. Recall that chips

0-7 (without loss of generality) contain 57 bits of data

plus 7 bits of LED in the data region, and 7 bits of GEC

parity plus 1 bit of T4 information in the GEC region.

Chip-8 contains 56 bits of data plus 7 bits of LED in the

data region, and 8 bits of parity (including the surplus

bit borrowed from the data region) plus one bit of T4

information in the GEC region.

If one of the first eight chips, say chip-1, fails, 57 bits

of data (A1) are lost, in addition to GEC parity infor-

mation PA7−13. We first read A0 - A8, and the LED

associated with A1 (LA1), indicates a chip error. We

then read GEC segments PA0−6, PA14−20, PA21−27,

.., PA49−55, PA56and PPA to recover the lost GEC bits

PA7−13, thereby reconstructing GEC parity PA. Com-

bined with values A0 andA2 - A7, data valueA1 can be

reconstructed, thus recovering the entire original cache

line. If, on the other hand, the ninth were to fail, only

56 bits of data are lost (A8), in addition to PPA, and

the surplus bit PA56. The lost 56 bits can be recovered

simply from the 56 bits of parity stored in the first eight

chips (PA0−55), and clean segments A0 - A7. The loss

of surplus bit PA56 is immaterial. Across these cases,

the fidelity of the GEC parity bits themselves is guaran-

teed by T 4.



Impact on Memory Reads and Writes: Read opera-

tions do not need to access GEC information unless an

error is detected, which is a rare event. GEC, therefore,

has no significant impact on reads. Write operations, on

the other hand, need to update the GEC (which includes

PX , PPX , and T 4) when any data is modified. In a

basic implementation, each cache line write gets trans-

formed into two writes – one to the data location (for a

full 576 bits of data+LED+surplus bit) and another to its

correspondingGEC location (72-bits). We minimize the

performance impact of this additional write by mapping

data and GEC to the same DRAM row, guaranteeing a

row-buffer hit. This trick is similar to Loh and Hill’s op-

timization to store tag and data for a cache line in the

same row in a large DRAM cache [23]. Additionally,

note that there isn’t a need for a read-before-write of the

data cache lines themselves as in some earlier propos-

als [34], since all bits contributing to the GEC code are

from a single cache line, already available at the con-

troller. This also helps keep performance impact low.

Although only 72 bits of GEC+T4 code need to be

updated per write, we are forced by the DDR3 proto-

col to complete a burst of 8 per access (an entire 72-

byte “cache line” size of data). We could, therefore, po-

tentially combine as many as 8 different GEC updates

into a single write command, minimizing performance

impact further. This is low-overhead since writes are

already buffered and streamed out intermittently from

the memory controller to avoid frequent bus turnaround.

Additional logic can easily be implemented to coalesce

as many GEC writes as possible. Every write is trans-

formed into 1 + δ writes (δ ≤ 1) depending on the ap-

plication’s access characteristics and the write-buffering

policies. δ = 1 in a non-coalesced basic LOT-ECC

implementation, and 0.125 in an oracular design since

eight GEC words fit in a single “cache line”, and could

potentially be coalesced into a single write. The val-

ues of δ for the PARSEC [12] benchmark workloads

are shown in Figure 3 (details on methodology follow

in Section 4). Note that for the purposes of this paper,

we employ a very rudimentary coalescing scheme where

the “window” we look into to find suitable writes to co-

alesce is simply the set of writes that are sent out by

default each time the bus is turned around for a “write

burst”. More complicated schemes that may selectively

buffer writes for longer in an effort reduce δ are certainly

possible – we leave such optimizations to future work.

If complete coalescing is not possible (based on the

addresses being written to), data masking [18] can be

employed to only write the appropriate bits into mem-

ory. Note that the complete burst of 8 has to performed

nonetheless – some pieces of data are just masked out

while actually writing to DRAM.

Table 2. LOT-ECC with x16 DRAMs

Design Access

Granularity

(Cache lines)

Storage

Over-

head

Customization

Required

Option 1 2 26.5% None

Option 2 1 50.0% None

Option 3 10 37.5% None

Heterogeneous

DIMMs

1 37.5% Commodity

x16 & x8

DRAMs on a

custom DIMM

3.3 Storage Costs of LOT-ECC

For each 64-byte cache line, LOT-ECC requires the

following ECC bits: (1) 63 bits of LED information, at

7 bits per chip, (2) 57 bits of GEC parity, spread across

the nine chips, (3) 7 bits of third-level parity, PPX , and

(4) 9 bits of T 4 protection, 1 bit per chip. This adds

up to a total of 136 bits, a storage overhead of 26.5%.

Out of this 26.5%, 12.5% is provided by the 9th chip on

standard ECC DIMMs, and the other 14% is stored in

data memory.

3.4 LOT-ECC with Wide-I/O DRAMs
Wider-I/O DRAM parts are favored over narrower

DRAMs since they are typically more power effi-

cient [36] and enable greater rank-level parallelism. To

enable their widespread adoption, there is a need to de-

velop efficient reliability mechanisms that work with

such configurations. However, there are several un-

knowns regarding the use x16 and x32 DRAMs in fu-

ture commodity DIMMs – data bus width increases or

the provisioning of additional chips for ECC support,

for example. We therefore present a brief discussion of

LOT-ECC implementation under a few possible scenar-

ios, and propose the concept of heterogeneous DIMMs

to address some concerns with these options. For clarity,

we only quantify overheads with x16 DRAMs; similar

ideas can be extended to x32 DRAMs and beyond. The

options are summarized in Table 2.

Option 1 -WideMemory Channels: If the natural pro-

gression of memory system design is to simply increase

the channel width as wider-I/O DRAMs become com-

mon, LOT-ECC can be implemented with little mod-

ification. For instance, consider a rank of nine x16

DRAMs. The 128 bits supplied by an x16 DRAM in

a burst of 8 would simply be interpreted as 114 data bits

and 14 checksum LED bits, the same storage overhead

as with x8 DRAMs. GEC operation remains unchanged.

There is necessarily an increase in access granularity and

overfetch, independent of LOT-ECC. This will also dou-

ble with the further doubling of I/O width to x32 or x64.

Total storage overhead remains at 26.5%.



0.40

0.50

0.60

0.70

0.80

0.90

1.00

o
f
fr
a
ct
io
n

0.00

0.10

0.20

0.30

0.40

b
la
ck
sc
h
o
le
s

b
o
d
y
tr
a
ck

ca
n
n
e
a
l

fa
ce
si
m

fe
rr
e
t

fl
u
id
a
n
im

a
te

fr
e
q
m
in
e

ra
y
tr
a
ce

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n

v
ip
s

x
2
6
4

A
v
e
ra
g
e

V
a
lu
e

(a) Xeon 7500 based system

0.40

0.50

0.60

0.70

0.80

0.90

1.00

o
f
fr
a
ct
io
n

0.00

0.10

0.20

0.30

0.40

b
la
ck
sc
h
o
le
s

b
o
d
y
tr
a
ck

ca
n
n
e
a
l

fa
ce
si
m

fe
rr
e
t

fl
u
id
a
n
im

a
te

fr
e
q
m
in
e

ra
y
tr
a
ce

st
re
a
m
cl
u
st
e
r

sw
a
p
ti
o
n

v
ip
s

x
2
6
4

A
v
e
ra
g
e

V
a
lu
e

(b) Xeon 5500 based system

Figure 3. Quantification of GEC coalescing opportunity

Option 2 - Increasing Storage Overhead: If access

granularity is fixed at exactly one cache line, the min-

imum rank size with x16 chips is 5 chips,4 data and 1

ECC. Each chip provides 128 bits per burst of 8, inter-

preted as 103 data bits (since 103 * 5 chips = 512-bit

cache line). This leaves 25 bits per chip to store the LED

code, which provides very strong error protection, but is

likely overkill and wasteful of storage area (the over-

head is 24.3%). GEC overhead increases as well, since

the global parity is a 103-bit entity computed over five

103-bit data segments. After including storage for T3

and T4, the total overhead is about 50%.

Option 3 - Optimizing Storage Overhead: If storage

overhead is an important consideration, it can be fixed at

about 12.5%, paying for it through an increase in access

granularity. With x16 chips and a 5-chip rank, for ex-

ample, 9 reads can be issued consecutively, reading out

a total of 80 bits per cycle * burst of 8 cycles * 9 ac-

cesses = 5,760 bits. This results in a very large access

granularity of 10 cache lines (5120 bits) plus their LED

codes, a storage overhead of 12.5%. The GEC overhead

remains approximately 25%, similar to Option 2, for an

overall ECC storage overhead of about 37.5%. There

may also be some forced prefetching since a single burst

also partly reads bits from a second cache line.

Heterogeneous DRAMs within a Rank: If neither

access granularity nor storage overhead can be com-

promised, but there is freedom to implement a custom

DIMM, we propose a novel third option – the use of het-

erogeneous DRAMs within a single DIMM rank. In this

case, minimum access granularity can be maintained

while still retaining a 12.5% storage overhead. With x16

parts, for instance, a minimum-sized rank would be four

x16 DRAMs plus one x8 DRAM (note that the DRAMs

are still commodity, just not the DIMM), providing a

DIMM width of 72 bits. With a burst length of 8, each

x16 DRAM supplies 128 bits and the x8 DRAM sup-

plies 64 bits. These should be interpreted as (114 data +

14 LED) and (56 data + 8 LED) respectively. There is

no change to GEC overhead or operation.

Conclusion: It is clear that there are several knobs avail-

able to turn – the storage overhead, the importance of

access granularity (typically a function of access locality

in the workload), the willingness to build heterogeneous

DIMMs – as wide I/O parts such as x16 or x32 become

mainstream due to their reduced power consumption.

LOT-ECC is flexible enough to be effective in designs

with varying combinations of these knobs.

3.5 DRAM Errors and LED Checksum

The target of the LED code (Section 3.1) is to detect

errors in 57 bits of data through the use of a 7 bit check-

sum. The 57 bits of data are divided into 8 blocks of 7

bits each. The last bit is padded with 6 zeros to make

it a 7-bit value. A 7-bit checksum is produced by per-

forming an integer one’s complement addition of these

nine blocks. The carry-out information of the MSB is

preserved via being wrapped around and added back to

the LSB, improving error detection capability. We re-

fer the reader to Maxino [24] for further details on the

operation of checksums.

Prior work has shown that DRAM errors occur in a

few major ways – single-bit error, double-bit error, row-

failure, column-failure, row-column failure, pin failure,

and full chip-failure [13, 21, 22, 31]. We consider each

of these in turn, and show how the proposed LED check-

sum handles error detection. Table 3.5 summarizes both

the raw FIT1 and the effective FIT, i.e., the failure rate

with a fault tolerance mechanism in place.

Single-bit error: This is among the most common fail-

ure modes in DRAM, and can be either due to a soft-

error or a hard-error. Any checksum is guaranteed to

detect this kind of error.

Double-bit error: These are defects that span two near-

est neighbor memory cells and are not the coincidence

of two independent single bit errors [31]. Adjacent bits

11 FIT, or Failure In Time, is the when 1 failure is likely in 1 billion

hours of operation.



Table 3. LOT-ECC LED Error Detection

Error-type Raw

FIT

Eff.

FIT

(Chip-

kill)

Eff.

FIT

(LOT-

ECC)

Eff.

FIT

(Sim-

ple

SEC-

DED)

Single-bit soft
5000 [21]

0 0 0

Single-bit hard
12.6 [31]

0 0 0

Double-bit 0.7 [31] 0 0 0

Row 6.3 [31] 0 0 6.3

Pin 4.1 [31] 0 0 0

Row-Column 4.2 [21] 0 0 4.2

Chip
13.7 [31]

0 0 13.7

Multiple random

(hard+hard)

- 0 1.1E-

6

>0

Multiple random

(hard+soft)

- 0 4.7E-

4

>0

Multiple random

(soft+soft, NO

scrubbing)

- 0 0.19 >0

Failure of 2 chips in

18, errors in >2

chips per rank, etc.

-
>0 0 >0

Soft errors will likely be caught by patrol scrubbers, and

will rarely occur in conjunction with other errors

will fall into adjacent checksum-columns2, only flipping

a single bit in each column. This will alter the checksum

value, flagging the error.

Row-failure: These are caused by a failure of one of

the chip’s row drivers, causing all cells in one row of

the affected chip to fail. We employ bit inversion in the

checksum computation so that such stuck-at faults are

detected [34]. With this in place, the checksum detects

an entire row incorrectly being either all 0 or all 1.

Column-failure: These are caused by the failure of a

senseamp in an array, making the entire column of bits

unreadable. For a given request, this is equivalent to a

single-bit failure, and can be detected by the checksum.

Row-column failure: This error occurs when an inter-

secting row and column fail. It does not require any

special handling beyond a simple row or column error

depending on the data being accessed.

Pin-failure: This error occurs when a data-pin (DQ)

gets stuck at 0 or 1. It might also be caused by a failure

of one of the column senseamps or column decoders,

with similar effects as a failed pin. With the proposed

LED mechanism, since each block is 7 bits, and each

pin outputs 8 bits per access, there is a “wrap-around”

that occurs naturally. This means that the eight poten-

2the set of bits that line up vertically for addition during the check-

sum generation process

tially erroneous bits coming from the failed pin fall into

distinct checksum-columns, with the exception of the

last bit. Since we employ an addition-based checksum

(rather than XOR based), the presence of the carry-bit

protects against the simultaneous inversion of those two

overlapping bits; note that the undetectable combination

of 0 to 1 flip in one bit and 1 to 0 flip in the other cannot

occur with stuck-at faults.

Chip-failure: For a given cache line, handling a chip er-

ror is conceptually equivalent to handling a row failure,

and the same arguments with regard to error detection

hold good. The difference lies primarily in post-error

service operation. With a row error, there is a possi-

bility of re-mapping the data from the failed row (upon

reconstruction) into one of several spare rows typically

provisioned on DRAM chips, called Memory Page Re-

tire [31]. With an entire chip failure, the DIMM is im-

mediately flagged for replacement.

Multiple random bit errors: Addition-based check-

sums are susceptible to silent data corruption if an even

number of bits in a given checksum-column flip. In our

LED checksum, Column 0, for example, consists of bits

0, 7, 14, 21, 28, 35, 42, 49, and 57 from a single row.

Since there is 6-bit gap between the closest two bits, it is

highly unlikely that the same failure “cause” (other than

a row or column failure), such as a soft-error strike, can

result in such bit flips. This means that the two have to

be independent single-bit events. Since each error is al-

ready rare in general, the probability of a combination

of errors affecting the same data word in the same lo-

cality is extremely low [22]. To quantify, consider the

12.6 FIT number for a single-bit hard error. If a single

DRAM has 16 M cache line segments, the probability of

an error in a given segment during a billion hour period

is 12.6 / 16 M, which is 7.51E-7 – this is the segment

FIT. The probability of two independent errors affect-

ing the same segment is therefore 5.64E-13 per billion

hours. With each segment being 64 bits, the probability

that the two erroneous bits are among the nine bits 0, 7,

14, 21, 28, 35, 42, 49, and 57 is (9C2)/(64C2). Since

errors can occur in any of the 7 checksum-columns, we

multiply this value by 7, giving 0.125. The probability

of a two bits flipping in a way that is undetected is, there-

fore, 5.64E-13 * 0.125, which is just 7E-14. Finally, this

can occur in any of 16 M segments, giving an overall

undetectable FIT of 1.1E-6. Next, consider the com-

bination of a single-hit hard error and a single-bit soft

error. Calculations similar to the one above indicate an

undetectable FIT of 4.7E-4. Finally, consider the case of

two soft errors. Modern servers typically employ some

form of patrol scrubbing which periodically corrects any

soft errors in the array. It is therefore unlikely that two

soft errors will occur in the same row leading to an unde-



tectable error. Even worst-case calculations for a system

with no scrubbing, and a pessimistic assumption of 5000

FIT for soft errors [21] results in an undetected error rate

of 0.19 FIT. The odds of 4 or 6 or 8 independent random

errors all affecting the same segment are even smaller.

Combination Errors: Even when the individual raw

FIT of a fault is as high as 5000 (as with the single-bit

soft error), we showed that the probability of multiple si-

multaneous occurrences leading to silent data corruption

is extremely small. This is evenmore true for other com-

binations such as multiple column decoder/senseamp

failures on the same data word, or a sensamp failure

plus a single-bit soft error, etc., since their individual

raw FITs are already orders of magnitude smaller than

5000. Such combination errors, therefore, will have a

negligible impact on overall reliability levels.

Discussion: Existing commercial chipkill mechanisms

formally guarantee catching any and all possible com-

binations of bit flips within a chip, paying significant

power and performance penalties to guard against ob-

scure bit-flip combinations that occur rarely, if ever.

However, field studies indicate that DRAM errors typ-

ically fall under a very small number of failure modes

with specific root causes. LOT-ECC is cognizant of

these, and captures all commonly occurring faults, while

providing substantial power and performance benefits.

Additionally, LOT-ECC captures some failure scenarios

that current mechanisms cannot. Examples include the

failure of 2 chips in 18, the simultaneous occurance of a

single chip failure and single bit errors in all other chips,

etc.

Given the significant power/performance overheads

of fault-tolerance, the burden of memory reliability will

likely not be foisted solely upon ultra-robust catch-all

ECC codes, especially considering trends such as rising

burst lengths, wider chip I/Os, and increasing system

capacities. Strong yet practical fault-tolerance codes,

combined with RAS features such as patrol scrub-

bing [1], spare-row mapping, bit steering, memory page

retire [31], will provide the best power-performance-

reliability tradeoff at the system level. These will likely

“cure” a majority of faults before they deteriorate into

undetectable errors.

4 Benefits and Results
4.1 Methodology

Performance Studies: To study the performance

characteristics of our designs, we use a detailed

in-house DRAM simulator. We accurately model

refresh overheads, address/command bus, data bus,

bank/rank/channel contention, and the memory con-

troller queue. We also model a separate write-queue that

holds write operations (and the associated GEC writes)

as they come in to the memory controller, and issues

them in bursts to amortize bus-turnaround overheads.

We use close-page row-buffer management with a sim-

ple FCFS policy, since the access pattern has little im-

pact on the operation of LOT-ECC. Close-page policies

are the norm today for industry standard servers from

all major vendors in an effort to improve performance in

typical workloads with relatively low locality [8, 19, 25].

The one exception we make is for write operations –

the data line and GEC lines (coalesced or otherwise) are

guaranteed to be co-located in a single row buffer, mak-

ing a semi-open-page policy beneficial. We adopt the

baseline address mapping policy from Jacob et al. [17].

DRAM timing parameters were obtained from Micron

DDR3 datasheets. We employ a synthetic traffic gener-

ator with a tunable rate of traffic injection, and a tunable

fraction of write operations for a majority of our exper-

iments. We use the PARSEC [12] benchmarks to evalu-

ate the GEC coalescing scheme.

Power Calculation: To accurately calculate memory

power consumption, we directly use Micron’s DDR3

power calculator spreadsheet [6]. The spreadsheets re-

quire inputs regarding bus utilization, bank utilization,

etc., which we obtain from our performance simulation.

The calculator accounts for activation power, read/write

power, termination power, and background power. It

also incorporates support for low-power modes, which

we assume are oracularly applied whenever all banks

are idle. We measure power when the system is under

heavy load, with traffic just below the system’s satura-

tion point, as determined by our performance studies.

Target System Configurations: We evaluate our de-

signs on memory systems based on two contemporary

high-end server processors from Intel. The same ba-

sic controller/channel/DIMM organization and reliabil-

ity mechanisms are used by all major server vendors.

First, we consider Xeon 7500 based systems [3, 4, 7],

with a typical configuration as shown in Table 4.1. All

Xeon 7500 based servers mandatorily implement Lock-

step Mode in the memory system. This gangs two x72

ECC-DIMMs and channels together to form a 144 bit

bus, essential for today’s reliability mechanisms.

Second, we consider Xeon 5500 based systems [2,

5], with a typical configuration as shown in Table 4.1.

Since these processors have an odd-number of channels

(three, in this case), the effect of lockstep mode is pro-

nounced. While the processor does allow operation in

non-lockstep mode if strong reliability is not desired,

chipkill mode simply leaves one channel empty, and

gangs the other two together. This results in a signifi-

cant performance hit. Note that design decisions leading

to an odd number of channels are a result of complex

interplay between pin availability, expected bandwidth

demand based on target workloads and processor horse-



Table 4. Main Memory Configuration
Parameter Xeon 7500 Xeon 5500

Protocol DDR3 DDR3

Channels 8 3

DIMMs/channel 2 3

Ranks/DIMM 2 for x4; 4 for x8 2 for x4, 4 for x8

Banks/Rank 8 8

Capacity 128 GB 72 GB

power, re-use of designs for varying market segments

(desktops, laptops, and servers), etc. It is therefore cer-

tainly possible that such designs will continue to exist in

future commercial processors, despite the large impact

on power and performance for reliability.

Reliability Models Evaluated: Our baseline model is

a modern commercial Single Symbol Correct Double

Symbol Detect (SSC-DSD) design, as described in Sec-

tion 2. This is currently supported only with x4 DRAMs.

Additionally, it requires the use of lockstep-mode opera-

tion. Our second baseline is VECC [36], which enables

the use of x8 DRAMs in lockstep mode, while suffer-

ing a small write-penalty. We obtain the T2EC cache

miss rate, i.e., the fraction of writes that require an ad-

ditional “redundant information write”, from the origi-

nal paper, and include it in our simulator – the VECC

model is therefore an optimized baseline, accounting for

T2EC caching. We also optimistically assume that all

the hardware/software support mechanisms required to

make VECC work happen oracularly with no perfor-

mance or power impact. We first evaluate the basic LOT-

ECC design, which allows us to upgrade to x8 DIMMs,

without the use of lockstep mode. In this mode, ev-

ery write is transformed into two writes – one data and

one GEC. We then show the benefits of coalescing GEC

writes to reduce their performance impact. Finally, we

show an oracular design with perfect coalescing, where

only one in eight writes suffers from the overhead of an

additional GEC write.

4.2 Power Savings
LOT-ECC provides substantial power savings com-

pared to traditional chipkill mechanisms, through a re-

duction of both dynamic and static power.

Dynamic power: Commercial chipkill solutions touch

thirty-six x4 chips both to read and write [10].

VECC [36] activates eighteen x8 chips per read and

thirty-six x8 chips per write (data + T2EC). LOT-ECC,

on the other hand, activates the absolute minimum num-

ber required, just nine x8 chips (writes may require an

additional row-buffer access to the same chips). This

change in activation granularity results in a reduction

in dynamic energy consumption. LOT-ECC also elim-

inates forced prefetching, since only one 64-byte cache-

line is touched in a standard burst-of-8 access, further

reducing dynamic energy.

40

50

60

70

80

r
D
is
si
p
a
ti
o
n
(W

) Background

Activate

Rd/Wr/Term

0

10

20

30

40

SSC DSD x4 VECC x8 w/

Caching

LOT ECC x8 LOT ECC x8 w/

GEC coalescing

LOT ECC x8 w/

oracular GEC

coalescing

M
e
m
o
ry

P
o
w
e
r

Figure 4. Power in Xeon 7500 systems

10

15

20

25

30

35

40

M
e
m
o
ry

P
o
w
e
r
D
is
si
p
a
ti
o
n
(W

) Background

Activate

Rd/Wr/Term

0

5

10

15

20

25

30

35

40

SSC DSD x4 VECC x8 w/

Caching

LOT ECC x8 LOT ECC x8 w/

GEC coalescing

LOT ECC x8 w/

Oracular

coalescing

M
e
m
o
ry

P
o
w
e
r
D
is
si
p
a
ti
o
n
(W

) Background

Activate

Rd/Wr/Term

Figure 5. Power in Xeon 5500 systems

Static power: LOT-ECC reduces the footprint of each

activation, allowing unused rank/banks to transition into

low-power modes. For our evaluation, we only employ

the shallow low-power modes that can be entered into

and exited from quickly.

The combined power consumption is shown in Fig-

ures 4 and 5. In the Xeon 7500-based system, LOT-ECC

reduces power consumption by 43.1% compared to the

SSC-DSD baseline. Reducing the number of writes to

GEC locations through GEC coalescing increases the

savings to 44.8%, based on average δ from Figure 3.

With an oracular coalescer, savings can potentially in-

crease to 47.4%. The trends are similar with 5500-

based systems, although the power savings are some-

what lower. This is because some of the savings are

offset by increased static power consumption due to the

increased number of DIMMs made possible when LOT-

ECC relaxes the lockstep mode constraint and popu-

lates the third channel. Power savings with respect to

the SSC-DSD baseline are 31.9% with basic LOT-ECC,

32.9% with GEC coalescing, and 38.3% with oracular

GEC coalescing. VECC’s energy consumption lies be-

tween those of SSC-DSD and LOT-ECC; we confirm

that VECC’s power savings compared to the SSC-DSD

baseline are in line with numbers reported in the original

paper. Compared to this baseline, LOT-ECC with coa-

lescing reduces power consumption by 24.6% in 7500-

based systems, and 18.2% in 5500-based systems.



400 00

450.00

500.00

550.00

600.00

A
cc
e
ss

La
te
n
cy

@
5
G
H
z)

VECC x8 w/ Caching

SSC DSD x4

LOT ECC x8

LOT ECC x8 w/ GEC coalescing

LOT ECC x8 w/ oracular GEC coalescing

200.00

250.00

300.00

350.00

400.00

10203040506070

A
v
g
.
M
e
m
o
ry

A

(C
y
cl
e
s
@

Increasing Traffic Left to Right (1 request per N cycles on avg)

Figure 6. Latency in Xeon 7500 systems

1500.00

2000.00

2500.00

A
cc
e
ss

La
te
n
cy

@
5
G
H
z)

VECC x8 w/ Caching

SSC DSD x4

LOT ECC x8

LOT ECC x8 w/ GEC

coalescing

LOT ECC 8 / l

0.00

500.00

1000.00

1030507090

A
v
g
.
M
e
m
o
ry

A

(C
yc
le
s
@

Increasing Traffic Left to Right (1 request per N cycles on avg)

LOT ECC x8 w/ oracular

GEC coalescing

Figure 7. Latency in Xeon 5500 systems

4.3 Performance Gains
In addition to the large energy advantage, reducing

access granularity also has a small positive effect on per-

formance. For a given total number of chips in the sys-

tem, there is increased rank-level parallelism. This re-

duces bank conflicts and reduces overall average mem-

ory access latency. A fraction of this gain is lost due

to the the extra writes to GEC lines required along with

the regular writes. Despite this overhead, LOT-ECC still

comes out ahead, even without coalescing.

Figures 6 and 7 shows the average memory access la-

tency as a function of traffic. With the 7500-based sys-

tem, at a traffic rate of 1 request per 40 cycles (just under

saturation), the basic implementation of LOT-ECC x8

provides 4.6% latency reduction compared to the SSC-

DSD baseline. GEC coalescing further enhances the im-

provement to 7.7%, with an oracular policy providing a

maximum of 16.2% reduction in latency. Latency re-

ductions are much more substantial in the 5500-based

system, since LOT-ECC relaxes the lockstep-mode con-

straint, providing substantially increased channel band-

width. At a traffic rate of 70 (SSC-DSD in lockstep

mode saturates soon after), latency reductions are 42.9%

with LOT-ECC x8, 46.9% with GEC coalescing, and

an oracular maximum of 57.3%. VECC actually per-

forms marginally worse than the SSC-DSD baseline

(confirming the results in the original paper). Compared

to VECC, LOT-ECC with coalescing reduces average

memory latency by almost 11% in 7500-based systems,

and 54% in 5500-based systems. Additionally, LOT-

ECC allows the channel to operate without saturating

even under substantially higher traffic rates.

4.4 Positive Impact on System Design
LOT-ECC imposes few restrictions on the choice

of DRAM parts, DIMM layout, DDR protocol, burst

length, etc. In fact, with larger DRAM parts such as

x16 or x32, the size of the data segment on each chip

increases, and it is often more efficient to build strong

error detection codes over larger data words. It is as

yet unclear what DIMM configurations the memory in-

dustry will adopt with x16 or x32 chips, and LOT-ECC

can work well in any case Additionally, LOT-ECC re-

quires absolutely no modification to the DRAM parts

or interface. It only requires support from the memory

controller (data mapping and interpreting bits as either

data, LED, or GEC) and system firmware (to reduce

the amount of memory space visible to the OS to ac-

commodate GEC). These are relatively more amenable

to change [16], and require the participation of fewer

design teams, removing a few hurdles for commercial

adoption. Another consideration is that Galois field

arithmetic over 16-bit or 32-bit symbols (required with

the switch to x16 or x32 parts) can get complicated to

implement [27, 36], increasing complexity, latency, and

energy consumption. LOT-ECC utilizes simple addi-

tive checksums and parity calculations to provide strong

fault tolerance, reducing the required design effort, and

saving a small amount of power.

4.5 Storage Overhead

The price LOT-ECC pays to achieve excellent power,

performance, and complexity characteristics is a small

increase in storage overhead. Conventional schemes

spread data across a large number of DRAMs, keeping

ECC overhead at 12.5%. LOT-ECC utilizes this space to

store the LED, and requires a further 14% storage area

for GEC. However, since only cheap commodity mem-

ory is used, this will likely be a price that server vendors

will be willing to pay [16]. Additionally, overall TCO is

reduced due to the substantial energy savings.

5 Conclusions
The power, performance, storage, and complexity

overheads of providing strong levels of fault-tolerance

are already very significant. Various trends in mem-

ory system design such as increasing burst length, wider

I/O DRAM chips, increasing contribution of memory

to system-level power/performance, larger memory ca-

pacities, greater need for parallelism, and less reli-



able hardware will exacerbate this problem. There is

a need to fundamentally rethink memory error protec-

tion in a manner that is cognizant of these trends and

improves efficiency. We present LOT-ECC, a novel

chipkill-level reliability mechanism that employs sim-

ple multi-tiered checksum and parity fields that effec-

tively address various DRAM failure modes. It enables

the use of minimally-sized ranks of x8 DRAMs, re-

ducing energy consumption by up to 44.8% and aver-

age memory access latency by up to 46.9%, while si-

multaneously simplifying implementation. Moreover, it

achieves these benefits without affecting the design of

commodity memory DIMMs or channels, and is also

transparent to other system components such as the OS

and caches. It pays for all these advantages through a

small increase in storage overhead, considered an ac-

ceptable cost in the memory industry as long as com-

modity DRAMs are used.

References

[1] Advanced Memory Protection for HP ProLiant 300 Se-

ries G4 Servers. http://goo.gl/M2Mqa.

[2] Dell Help Me Choose: Memory. http://goo.gl/

paF1c.

[3] Dell PowerEdge 11th Generation Servers: R810, R910,

and M910. http://goo.gl/30QkU.

[4] HP ProLiant DL580 G7 Server Technology. http://

goo.gl/aOQ3L.

[5] IBM System x3550 M3 Product Guide. http://goo.

gl/yFPLS.

[6] Micron System Power Calculator. http://goo.gl/

4dzK6.

[7] Oracle’s Sun Fire X4800 Server Architecture. http:

//goo.gl/h0efI.

[8] N. Aggarwal et al. Power Efficient DRAM Speculation.

In Proceedings of HPCA, 2008.

[9] J. Ahn et al. Future Scaling of Processor-Memory Inter-

faces. In Proceedings of SC, 2009.

[10] AMD Inc. BIOS and Kernel Developer’s Guide for

AMD NPT Family 0Fh Processors.

[11] S. Beamer et al. Re-Architecting DRAM Memory Sys-

tems with Monolithically Integrated Silicon Photonics.

In Proceedings of ISCA, 2010.

[12] C. Bienia et al. The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications. Technical

report, Princeton University, 2008.

[13] M. Blaum et al. The Reliability of Single-Error Pro-

tected Computer Memories. IEEE Transactions on Com-

puters, 1988.

[14] C. L. Chen. Symbol Error Correcting Codes for Memory

Applications. In Proceedings of FTCS, 1996.

[15] E. Cooper-Balis and B. Jacob. Fine-Grained Activation

for Power Reduction in DRAM. IEEE Micro, May/June

2010.

[16] HP Industry Standard Server Group and HP Business

Critical Server Group. Personal Correspondence, 2011.

[17] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems -

Cache, DRAM, Disk. Elsevier, 2008.

[18] JEDEC. JESD79-3D: DDR3 SDRAM Standard, 2009.
[19] John Carter, IBM Power Aware Systems. Personal Cor-

respondence, 2011.

[20] P. Kogge(Editor). ExaScale Computing Study: Technol-

ogy Challenges in Achieving Exascale Systems. Defense

Advanced Research Projects Agency (DARPA), 2008.

[21] S. Li et al. System Implications of Memory Reliability

in Exascale Computing. In Proceedings of SC, 2011.
[22] X. Li et al. A Realistic Evaluation of Memory Hardware

Errors and Software System Susceptibility. In Proceed-

ings of USENIX, 2010.
[23] G. Loh and M. Hill. Efficiently Enabling Conventional

Block Sizes for Very Large Die-stacked DRAM Caches.

In In Proceedings of MICRO, 2011.
[24] T. Maxino. The Effectiveness of Checksums for Embed-

ded Networks. PhD thesis, 2006.
[25] C. Natarajan et al. A Study of Performance Impact of

Memory Controller Features in Multi-Processor Envi-

ronment. In Proceedings of WMPI, 2004.
[26] J. Ousterhout et al. The Case for RAMClouds: Scalable

High-Performance Storage Entirely in DRAM. SIGOPS

Operating Systems Review, 43(4), 2009.
[27] S. Paul et al. Reliability-Driven ECC Allocation for

Multiple Bit Error Resilience in Processor Cache. IEEE

Transactions on Computers, 2011.
[28] S. Ankireddi and T. Chen. Challenges in Thermal Man-

agement of Memory Modules. http://goo.gl/

ZUn77.
[29] N. N. Sadler and D. J. Sorin. Choosing an Error Protec-

tion Scheme for a Microprocessor’s L1 Data Cache. In

Proceedings of ICCD, 2006.
[30] B. Schroeder et al. DRAM Errors in the Wild: A Large-

Scale Field Study. In Proceedings of SIGMETRICS,

2009.
[31] C. Slayman et al. Impact of Error Correction

Code and Dynamic Memory Reconfiguration on High-

Reliability/Low-Cost Server Memory. In Integrated Re-

liability Workshop Final Report, 2006.

[32] J. Torrellas. Architectures for Extreme-Scale Comput-

ing. IEEE Computer, November 2009.
[33] A. N. Udipi, N. Muralimanohar, R. Balasubramonian,

A. Davis, and N. Jouppi. Combining Memory and a

Controller with Photonics through 3D-Stacking to En-

able Scalable and Energy-Efficient Systems. In Proceed-

ings of ISCA, 2011.
[34] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Bal-

asubramonian, A. Davis, and N. Jouppi. Rethink-

ing DRAM Design and Organization for Energy-

Constrained Multi-Cores. In Proceedings of ISCA, 2010.
[35] D. Yoon and M. Erez. Memory Mapped ECC: Low-Cost

Error Protection for Last Level Caches. In Proceedings

of ISCA, 2009.
[36] D. Yoon and M. Erez. Virtualized and Flexible ECC for

Main Memory. In Proceedings of ASPLOS, 2010.
[37] H. Zheng et al. Mini-Rank: Adaptive DRAM Architec-

ture For Improving Memory Power Efficiency. In Pro-

ceedings of MICRO, 2008.


