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ABSTRACT

The growing dominance of wire delays at future technology points
renders a microprocessor communication-bound. Clustered mi-
croarchitectures allow most dependence chains to execute without
being affected by long on-chip wire latencies. They also allow
faster clock speeds and reduce design complexity, thereby emerg-
ing as a popular design choice for future microprocessors. How-
ever, a centralized data cache threatens to be the primary bottle-
neck in highly clustered systems. The paper attempts to identify
the most complexity-effective approach to alleviate this bottleneck.
While decentralized cache organizations have been proposed, they
introduce excessive logic and wiring complexity. The paper eval-
uates if the performance gains of a decentralized cache are worth
the increase in complexity. We also introduce and evaluate the be-
havior of Cluster Prefetch - the forwarding of data values to a clus-
ter through accurate address prediction. Our results show that the
success of this technique depends on accurate speculation across
unresolved stores. The technique applies for a wide class of pro-
cessor models and most importantly, it allows high performance
even while employing a simple centralized data cache. We con-
clude that address prediction holds more promise for future wire-
delay-limited processors than decentralized cache organizations.
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C.1.1[Processor Architecture]: Single Data Stream Architectures;
B.3.m [Memory Structure]: Miscellaneous
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Improvements in process technology have resulted in dramatic
increases in clock speeds and transistor budgets. However, delays
across wires have not been scaling down at the same rate as delays
across transistor logic. Projections have shown that in 10 years, the
delay in sending a signal across the diameter of a chip can be of the
order of 30 cycles [1]. The consequence of these technology trends
is that microprocessors in the billion-transistor era are likely to be
increasingly communication-bound.

In an effort to deal with long wire latencies, architects have pro-
posed clustered microarchitectures [11, 14, 20, 27, 31, 38]. A clus-
tered design helps reduce the size, porting, and bandwidth require-
ments of many processor structures, thereby enabling faster clocks
and reducing design complexity and power consumption. Variants
of these designs have even been incorporated in real microproces-
sors such as the Alpha 21264 [21] and the Pentium 4 [18].

In a clustered microarchitecture, each cluster has a limited set
of functional units, registers, and issue queue entries. Instruction
fetch, decode, and rename are centralized, after which instructions
are distributed among the clusters. Operand bypass within a cluster
happens in a single cycle. Hence, as far as possible, dependent
instructions are steered to the same cluster. However, instructions
in a cluster frequently read operands produced in a different cluster.
This communication of operands between clusters can take up a
number of cycles and can limit instruction per cycle throughput. In
spite of this, a clustered microarchitecture is an extremely attractive
option because of its potential for a faster clock, lower power, and
lower design effort.

While a clustered design helps localize communication to a lim-
ited set of functional units, the evaluation of the effect of technol-
ogy trends, such as increased transistor budgets, longer wire laten-
cies, and the shift to multi-threaded workloads, on its behavior has
received little attention. The most prominent effect of these trends
is an increase in the total number of on-chip clusters. This is mo-
tivated not only by the need to improve single-thread performance,
but also by the recent emphasis on the extraction of thread-level
parallelism (Intel’s Pentium 4 [18] and IBM’s Power4 [36]). This is
facilitated by large transistor budgets and the reuseability of a clus-
ter design, which allows the implementation and verification com-
plexity to not scale in proportion to the increased area. A second
related effect is that instructions of a program might spend tens of
cycles communicating their input and output values across widely
separated structures on the chip. This is especially true for load or
store instructions, which require transfers of the address and data
between a cluster and the cache.

Most recent studies on clustered designs have focused on in-
struction distribution algorithms for up to four clusters with modest
inter-cluster latencies, a centralized data cache, and zero commu-



nication cost between the cache and clusters. Current technology
trends are likely to quickly render these assumptions invalid. In the
near future, a cluster would likely have to spend many cycles send-
ing an address to a centralized data cache, and an equal amount of
time to receive the data back. This phenomenon is likely to repre-
sent one of the biggest bottlenecks for CPU performance.

The focus of this paper is the study of design considerations for
the L1 data cache in a highly clustered and wire-delay-limited mi-
croprocessor. Our hypothesis is that a decentralized cache organi-
zation entails too much design complexity and yields little benefit.
We claim that prediction mechanisms have the potential to hide
long wire delays and can result in simpler designs. Thus, the pa-
per directly contrasts two different approaches to designing a high
performance cache organization and provides data that might help
shape future research directions.

We start by using a centralized L1 data cache as our base case.
While such a design choice reduces the implementation complex-
ity, the long access latencies experienced by distant clusters limit its
performance. We analyze the average lifetime of a load and observe
that a large fraction of time is spent transferring addresses and data
between the cache and the clusters, and waiting for store addresses
to arrive at the cache. To alleviate this bottleneck, we propose Clus-
ter Prefetch — the transfer of data from the cache to a cluster before
the cluster initiates a request. Prefetching has been commonly em-
ployed in higher levels of caches to hide long access latencies. With
the emergence of long communication latencies within the CPU it-
self, it is necessary to employ prefetching techniques to bring data
in from the L1. We observe that load address prediction can be
quite accurate for many programs with high instruction level par-
allelism (ILP), and the relevant data can be forwarded to a cluster
soon after the instruction is decoded. However, to not violate mem-
ory dependences, the prefetch can issue only when earlier store
addresses have been resolved. Note that prefetch from L2 or be-
yond is typically free from such constraints. Hence, the success of
cluster prefetch depends strongly on being able to correctly specu-
late ahead of unresolved stores. By predicting store addresses and
memory dependences, we are able to quickly initiate prefetch re-
quests and hide communication latencies. Our results demonstrate
that cluster prefetch — the synergistic combination of memory de-
pendence speculation and load address prediction and prefetch —
significantly improves performance for a number of high-ILP pro-
grams.

Next, we evaluate the potential of a distributed cache — an alter-
native approach to reducing communication latencies. While this
increases implementation complexity, a load can now be steered
close to its data, thereby reducing its average communication cost.
However, to maintain correctness, store addresses have to be broad-
cast to the entire processor. Thus, the biggest bottleneck in the
system continues to be the latency involved in resolving memory
dependences. As a result, a decentralized cache organization fails
to outperform a centralized cache combined with cluster prefetch.

We verify that cluster prefetch is an effective approach for a wide
variety of processor parameters. It entails very little overhead in
terms of transistors or design complexity and yields performance
improvements of more than 8% for half the programs studied.

The rest of the paper is organized as follows. In Sections 2 and
3, we describe our base clustered processor and our simulation in-
frastructure. Section 4 analyzes the behavior of memory specula-
tion and load address prediction for a system with a centralized L1
data cache. In Section 5, we evaluate the potential of decentralized
data caches. We outline related work in Section 6 and conclude in
Section 7.
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Figure 1. The 16-cluster system with four sets of four
clusters each. A crossbar interconnect is used for com-
munication within a set of clusters and a ring connects
the four crossbar routers.

2. THE BASE CLUSTERED PROCESSOR

A number of architectures have been proposed to exploit large
transistor budgets on a single chip [7, 19, 25, 26, 27, 33]. Most
billion-transistor architectures partition the processor into multiple
small computational units and distribute instructions of a single ap-
plication across these units (either statically or dynamically). The
high cost of wire delays in future technologies renders many of
these architectures communication-bound. In this paper, as an eval-
uation framework, we employ a dynamically scheduled clustered
processor. The results from this study can apply to other partitioned
architectures as well.

Partitioned Execute Engine. Our clustered organization resem-
bles those proposed in prior bodies of work [2, 5, 6, 11, 38]. In
such a processor (Figure 1), branch prediction, instruction fetch,
and register renaming are centralized operations. During register
renaming, the instruction is assigned to one of many clusters. Each
cluster has a small issue queue, physical register file, and a lim-
ited number of functional units with a single cycle bypass network
among them. If an instruction’s source operands are in a differ-
ent cluster, copy instructions are inserted in the producing clusters
and the values are copied into physical registers in the consuming
cluster. This copy can take up a number of cycles.

Centralized Cache. For a load or store, the effective address
is computed in one of the clusters and then sent to a centralized
load/store queue (LSQ). The LSQ checks for memory dependences
before issuing loads or stores. A load accesses the cache only when
it is known to not conflict with earlier stores, i.e., all earlier store
addresses are known. The data read from the cache is then for-
warded back to the cluster that issued the load. A store writes data
to the cache when it commits. Thus, each load involves one ad-
dress transfer to the centralized LSQ and one data transfer back to
the cluster. Each store involves one address and one data transfer
to the LSQ. In our layout, we assume that the centralized cache and
centralized instruction decode are located close to each other.

Our clustered organization incorporates many recent innovations
and represents the state-of-the-art, as outlined below.

Instruction Steering Heuristic. The instruction per cycle (IPC)
throughput of a clustered processor is less than that of a monolithic
processor with no wire delay penalties and with the same number
of resources. This is because of communication cycles between in-
structions and because of higher contention for functional units in
a clustered processor. Hence, the primary goal of the instruction



steering heuristic is to minimize communication stalls and max-
imize load balance. Our steering heuristic is based on recent pro-
posals [11] and can be implemented with a modest amount of logic.
For each instruction, the heuristic computes a “suitability metric”
for each cluster and assigns the instruction to the cluster with the
highest “suitability”. For example, a cluster that produces a source
operand for that instruction, is considered “more suitable”. Simi-
larly, a cluster that already has many instructions assigned to it, is
considered “less suitable”. Based on these factors, for each instruc-
tion, weights are assigned to each cluster and the heuristic assigns
the instruction to the cluster with the highest weight. We also use
a criticality predictor [37] to detect the source operand that is pro-
duced later and assign a higher weight to that producing cluster. For
loads, clusters that are close to the centralized cache are assigned
a higher weight. If the selected cluster is full, the instruction is
steered to the nearest cluster. A number of experiments were con-
ducted to determine the values of the weights for each simulated
model.

Interconnect. Aggarwal and Franklin [3] point out that a cross-
bar has better performance when connecting a small number of
clusters, while a ring interconnect performs better when the number
of clusters is increased. To take advantage of both characteristics,
they propose a hierarchical interconnect, where a crosshar connects
four clusters and a ring connects multiple sets of four clusters. This
allows low-latency communication between nearby clusters. Our
16-cluster processor model, shown in Figure 1, has four sets of
clusters, each set consisting of four clusters.

Note that each edge in the hierarchical interconnect consists of
two 64-wide unidirectional links that are used for communication
of register values, load/store addresses, and load/store data. This is
referred to as the Primary Interconnect. Since a large number of
accesses are made to the data caches, the links leading in and out of
them have twice the bandwidth of other links. A separate intercon-
nect is used for transferring decoded instructions to the respective
clusters, referred to as the Instruction Delivery Interconnect. A
much narrower interconnect is used to transfer other control sig-
nals, such as branch mispredicts, instruction completion, etc. La-
tencies on all of these interconnects are modeled in our simulator.

3. METHODOLOGY

3.1 Simulation Parameters

Our simulator is based on Simplescalar-3.0 [10] for the Alpha
AXP instruction set. Separate issue queues and physical register
files are modeled for each cluster. Contention on the interconnects
and for memory hierarchy resources (ports, banks, buffers, etc.) are
modeled in detail.

To model a wire-delay-constrained processor, each of the 16
clusters is assumed to have 30 physical registers (int and fp, each),
15 issue queue entries (int and fp, each), and one functional unit
of each kind. In a later section, we verify that our results are not
very sensitive to this choice of parameters. While we do not model
a trace cache, we fetch instructions from up to two basic blocks in
a cycle. We use the methodology used by Agarwal et al. [1] to es-
timate clock speeds and memory latencies, following SIA roadmap
projections. We use CACTI-3.0 [35] to estimate access times for
cache organizations. Many different organizations were simulated
for a diverse benchmark set before determining the best base case.
The L1 cache has four word-interleaved banks with a total capacity
of 32KB. Important simulation parameters are listed in Table 1.

The latencies on the interconnect would depend greatly on the
technology and processor layout. We assumed the following laten-
cies: a cycle to send data to the crossbar router, a cycle to receive

Fetch queue size 64

Branch predictor comb. of bimodal and 2-level
Bimodal predictor size 2048

Level 1 predictor 1024 entries, history 10

Level 2 predictor 4096 entries

BTB size 2048 sets, 2-way
Branch mpred penalty at least 12 cycles
Fetch width

8 (across up to two basic blocks)
Dispatch/commit width 16
Issue queue size 15 in each cluster (int and fp, each)
Register file size 30 in each cluster (int and fp, each)
ROB size 480
Integer ALUs/mult-div 1/1 (in each cluster)
FP ALUs/mult-div 1/1 (in each cluster)
L1 I-cache 32KB 2-way
L1 D-cache 32KB 2-way set-associative,
6 cycles, 4-way word-interleaved
L2 unified cache 2MB 8-way, 25 cycles
TLB 128 entries, 8KB page size (I and D)
Memory latency 160 cycles for the first chunk

Table 1: Simplescalar simulator parameters.

Benchmark | Base IPC | L1 data cache miss rate
applu 221 9.9
apsi 2.55 9.9
art 154 25.5
equake 4.13 0.0
fma3d 2.45 0.1
galgel 3.60 0.2
lucas 2.03 17.7
mesa 3.27 11
mgrid 2.39 4.5
swim 1.85 29.6
wupwise 2.39 15

Table 22 Benchmark description. Baseline IPC is for a
monolithic processor with as many resources as the 16-
cluster system and no wire delay penalties. The L1 data
cache miss rate is for a 32KB 2-way cache.

data from the crossbar router, and four cycles to send data between
crossbar routers. Thus, the two most distant clusters on the chip are
reachable in 10 cycles. Considering that Agarwal et al. [1] project
30-cycle worst-case on-chip latencies at 0.035. technology, we ex-
pect this choice of latencies to be representative of wire-limited
future microprocessors®. To further validate our proposals, we also
present results for other latency choices. We assume that each com-
munication link is fully pipelined, allowing the initiation of a new
transfer every cycle. We also assume unlimited buffer space at each
of the routers. A recent study by Parcerisa et al. [29] shows that
such an assumption is not unreasonable and that these buffers typi-
cally require only eight entries.

3.2 Benchmark Set

Billion transistor architectures are best suited to workloads that
yield high parallelism or are multi-threaded. In this paper, our anal-
ysis focuses on high parallelism programs, such as those found in
the SPEC-FP benchmark suite. While we do not evaluate multi-
threaded workloads, as part of our sensitivity analysis, we present
data on SPEC-Int programs to evaluate the effect of our proposals
on code that is not as regular as floating-point code.

For most experiments, we use 11 of the 14 SPEC2k floating-

11t must be noted that the L2 would account for a large fraction of
chip area.
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Figure 2: Average number of cycles spent by a load in
different stages of the pipeline for a 16-cluster system
and for a monolithic processor with the same resources
and no communication penalties.

point programs 2. These programs were fast-forwarded for two
billion instructions, simulated in detail for a million instructions to
warm up various processor structures, and then measured over the
subsequent 100 million instructions. The reference input set was
used for all programs. Table 2 lists the programs, their IPCs for
a monolithic processor with no wire delay penalties and as many
resources as the base case, and their L1 data cache miss rates.

4. CLUSTER PREFETCH

One of the primary goals of the paper is to evaluate if prediction
techniques can help hide long communication latencies in a highly
clustered processor. The success of such an approach can eliminate
the need for decentralized cache organizations, that inevitably lead
to complex and power-inefficient designs.

4.1 Lifetime of a Load

We begin by examining where an average load spends its time on
the 16-cluster system described in Section 3. Figure 2 graphs the
average number of cycles spent in each logical phase: instruction
transfer to the cluster after decode, effective address computation,
transfer of the effective address to the centralized LSQ, resolution
of memory dependences, cache access, and transfer of data back
to the cluster, respectively. For the clustered processor (the black
bars), an average load consumes 98.1 cycles between decode and
instruction completion. We observe that resolution of memory de-
pendences and transfer of effective address and data take up 45 cy-
cles, nearly half the total execution time for an average load. If the
centralized LSQ could predict the effective address at instruction
decode time, instantly resolve the memory dependences, execute
the cache access, and transfer the data, it would arrive at the cluster
after 31.2 cycles. Thus, a load, on average, could complete nearly
67 cycles earlier.

To contrast this behavior with that seen in traditional systems, the
grey bars in Figure 2 show the corresponding latencies in a conven-
tional monolithic processor with the same total resources and no
communication penalties. An average load completes in half the
time it takes on a clustered processor. We observe that the time
taken to compute a load’s effective address and resolve its memory

2Sixtrack and Facerec were not compatible with our simulator and
Ammp is extremely memory bound, has an IPC of less than 0.1, and
is unaffected by CPU optimizations.

dependences goes down by a factor of four. This is because the
dependence chains leading up to the load and store address compu-
tations encounter zero communication costs and execute quickly.
Further, there is no communication cost in transferring the store
address to the LSQ. The cache access time goes up slightly. This is
caused by multiple loads waiting for the same block to be fetched
from memory. In a clustered processor, since the rate of instruction
issue is much slower, prior loads prefetch a block for the later loads
and they experience shorter cache access latencies. In the mono-
lithic processor, the instruction consumes 50.4 cycles between de-
code and completion. If we were to predict the effective address
at instruction decode time, instantly resolve the memory depen-
dences, and execute the cache access, data would be available after
35.4 cycles. Thus, these techniques would save only 15 cycles for
each load on a conventional processor, but save 67 cycles on a clus-
tered processor.

4.2 Address Prediction and Memory
Dependence Speculation

The results from the previous subsection clearly highlight the
emergence of new bottlenecks in future microprocessors. Effective
address computation, address and data communication, and mem-
ory dependence resolution, each take up about the same time as
the cache access itself. To reduce design complexity, we preserve
the centralized nature of the cache organization and explore the po-
tential of prediction techniques in alleviating the communication
bottlenecks.

Address Prediction and Prefetch. At the decode stage, we ac-
cess a simple address predictor to predict the effective address of
a load. Loads that do not have a high-confidence prediction go
through the same pipeline as before. If a high-confidence pre-
diction is made, the predicted address is placed in the centralized
LSQ where it awaits the resolution of memory dependences. When
memory dependences are resolved in the centralized LSQ, the load
issues and the fetched data is forwarded to the instruction’s cluster.
Once the instruction computes its effective address, it awaits the ar-
rival of its data. If data has been already prefetched, the load com-
pletes in a single cycle and awakens its dependents. The computed
effective address is sent to the centralized LSQ to verify that the
prediction was correct. If the prediction was incorrect, the correct
data has to be forwarded and all dependent instructions have to be
squashed and re-executed. To reduce the implementation complex-
ity, we adopt a mechanism very similar to a branch mispredict and
squash all instructions after the address mispredict. By restricting
the prefetch to high-confidence predictions, the number of mispre-
dicts is kept to a minimum.

Since data can be received by a cluster even before the effec-
tive address is computed, it is possible to initiate the dependent
instructions early. However, we make a conscious decision not to
implement this feature. Address prediction proposals in the past [4,
8, 9, 17, 32, 34] have exploited this feature to hide the latency of
executing long dependence chains. Unlike earlier studies, our fo-
cus here is the effect of these techniques on hiding communication
delays. To isolate only the performance improvements from hid-
ing these long communication latencies, we await the computation
of the effective address before waking up dependent instructions.
Since dependent instructions are woken up before the address pre-
diction gets verified at the LSQ, squash and recovery is required on
an address mispredict.

Address Predictor. To reduce design complexity, we employ a
simple strided address predictor [12]. The load PC indexes into a
table that keeps track of the stride and the last predicted address.
Every branch mispredict clears the “last predicted address” field



and requires that we track the next few accesses to determine its
value again. To initially compute the stride, we examine five con-
secutive accesses to verify a consistent stride. If more than five
incorrect predictions are made for a load, its fields are cleared and
the stride is re-computed. At the time of decode, if the stride and
last predicted address are unknown, no prediction is made. Such an
implementation ensures that only high-confidence predictions are
made. Note that every address mispredict behaves like a branch
mispredict and must be kept to a minimum.

It is possible to build complex address predictors that might yield
higher prediction accuracies. However, our objective is to evaluate
if a centralized cache augmented with simple prediction techniques
can work as well as a more complex decentralized cache organiza-
tion. We explicitly choose a simple predictor implementation in an
effort to fulfil our goals of low complexity and high performance.
The design of low complexity and high accuracy address predictors
and their impact on communication-bound processors is interesting
future work.

Steering Heuristic. We modify the instruction steering heuris-
tic to further reduce communication costs. Clusters close to the
centralized LSQ continue to receive a higher weight for loads that
do not have their address predicted. However, this is not done for
loads that are able to predict their effective address — prefetching
their data allows these loads to tolerate longer communication la-
tencies.

Memory Dependence Speculation. The ability to accurately
predict load addresses is meaningless if loads spend most of their
time in the centralized LSQ awaiting the resolution of earlier store
addresses. The communication costs in a clustered processor pro-
long the store address computation and communication time, re-
sulting in longer waits in the LSQ for all loads. To mitigate this
problem, we implement the following two simple prediction tech-
niques.

The first technique uses the load address predictor to also predict
addresses for stores. These predicted addresses are used to quickly
resolve memory dependences. If there is an address mispredict, all
instructions following the store are squashed and re-fetched, similar
to branch mispredict recovery.

The second technique identifies if a store is likely to pose con-
flicts with subsequent loads [22]. Every time a store in the LSQ
forwards its data to a later load, the store PC is used to index into
a table and set a bit, indicating its likelihood to pose conflicts in
the future. If a store does not have its corresponding bit set in the
table, we allow loads to issue even before the store address is re-
solved. If there is a mispredict, all instructions following the store
are squashed and re-fetched. Note that the two techniques are or-
thogonal — a store address may be hard to predict, but its likelihood
to conflict with later loads may be easily predicted. As before, we
consciously choose simple implementations instead of a more com-
plex and potentially more accurate predictor.

These two techniques allow us to exploit load address prediction
and prefetch data into a cluster in time for its use. Our results show
that each of these techniques by itself does not result in signifi-
cant performance improvements, but they interact synergistically
with each other. The combination of load address prediction, store
address prediction, store-load conflict prediction, and the early for-
warding of data is referred to as Cluster Prefetch.

4.3 Results

In Figure 3, we demonstrate the performance improvements from
adding these techniques. The first bar in the figure represents in-
structions per cycle (IPC) performance for the base case with 16
clusters and the centralized data cache. The second bar uses the
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Figure 3: IPCs for the base clustered processor with the
centralized cache with various prediction techniques.
The second bar includes the use of load address predic-
tion only, the third bar only includes store address pre-
diction and memory dependence prediction, while the
last bar includes all three techniques.

load address predictor to forward data early to a cluster and hide
the cost of communication between the cluster and the centralized
LSQ. The third bar does not use the load address predictor, but uses
the two memory dependence speculation techniques — store address
prediction and identifying stores that are likely to not pose conflicts.
The last bar combines all three techniques. Table 3 provides various
statistics that help us better understand the performance changes.

From the figure, we see that in many cases, the performance im-
provement from load address prediction alone is marginal. Table 3
reveals that accurate load address prediction can be achieved for
many programs, but only equake and lucas are able to exploit it and
register notable improvements. Lucas is able to successfully predict
nearly 100% of its loads, and equake is able to do the same for 76%
of its loads. Often, a load cannot issue early because it is waiting
for a prior store address. This is a frequent occurrence in art and
mgrid, that have high load address prediction accuracies (greater
than 95%), but no corresponding performance increase. In fact,
a number of programs (including art) display slightly poorer per-
formance. This happens because of the bursty nature of instruction
fetch, load address prediction, and data forwarding. The contention
that this creates on the interconnect slows down many dependence
chains. The most noticeable slowdown is observed for mesa. In
mesa, more than 4M additional transfers between the cache and
cluster are effected than in the base case because of address predic-
tion along branch mispredicted paths. Further, the 4K load address
mispredicts, and resulting recovery, delay instruction fetch by a to-
tal of about 0.9M cycles. The cost of address mispredict recovery
has a noticeable effect in apsi as well.

By comparing the first and third bars, we examine the effect of
memory speculation techniques alone. These help alleviate the bot-
tleneck created by long dependence chains and communications
involved in the computation of store addresses. Again, in spite
of high prediction accuracies for most programs, art, equake, and
mesa are the only programs to show noticeable performance im-
provements — these are the programs where loads spend the longest
time awaiting the resolution of store addresses. Again, mispredicts
are few in number and result in negligible recovery overhead.

Finally, by combining load address prediction and memory spec-
ulation, we observe a more than additive increase in performance



Benchmark [[ Num Num Mispredicts || Num Num Mispredicts Predicted Mispredicts Overall
loads | predicted stores | predicted store-load IPC
non-conflict improvement

applu 22M 7.8M 0 8M 3.7M 0 2.7M 80 1%
apsi 27TM 20M 71K 12M 8.4M 36K 9M 288 2%

art 33M 31.2M 13K 4M 4M 3K M 58 116%
equake 27TM 20.5M 163 ™ ™ 23 1.6M 113 29%
fma3d 15M 3.8M 7K 2M 1.8M 6 1.2M 173 4%
galgel 35M 1.7M 0 15K 0 0 0 0 2%
lucas 15M 15M 679 8M 8M 0 7.9M 53 18%
mesa 26M 16.5M 4K 10M 9.5M 511 1.7M 314 17%
mgrid 38M 37.3M 124 1.5M 1.4M 0 1.5M 61 8%
swim 29M 28.7TM 143 4.2M 4.2M 2 4.2M 83 4%
wupwise 20M 4.7M 150 ™ 2.2M 0 ™ 91 2%

Table 3: Statistics demonstrating the effectiveness of load and store address prediction and store-load conflict predic-
tion. Overall IPC improvement is that seen when employing all three techniques together.

improvements. Memory speculation allows more address predic-
tions to issue early. For example, in equake, the IPC improvement
from address prediction is 9%, from memory speculation is 11%,
and from the combination is 29%. Significant improvements are
also observed for art (116%), lucas (18%), mesa (17%), and mgrid
(8%). When comparing the harmonic means (HM) of IPCs, the
overall improvement over the base case is 21%. We were unable
to improve performance in some of the programs because of poor
load address prediction rates (applu, fma3d, galgel, and wupwise).
While swim was highly predictable, its performance is limited by
L2 and memory latencies, not by L1 access latencies. In fact, its
performance is already very close to that of the monolithic proces-
sor, and our optimizations have very little impact.

When these same techniques are implemented on a conventional
monolithic processor with no wire-delay penalties, negligible im-
provements are observed. Recall that we do not forward prefetched
data to the load’s dependents until the effective address is com-
puted. The overall improvement from load address prediction and
memory speculation was less than 3%, with a maximum improve-
ment of 16% seen for equake. Thus, simple implementations of
these techniques that yield little improvement in conventional mi-
croprocessors, have a significant impact in highly clustered and
communication-bound processors of the future.

5. DECENTRALIZED DATA CACHES

The previous section discusses how address prediction and mem-
ory speculation allow us to prefetch data in an effort to hide long
on-chip communication latencies. An alternative technique to re-
ducing these delays is to have multiple caches on the die, so that
every cluster is close to some cached data. In this section, we evalu-
ate the performance impact of such a distributed cache organization
and qualitatively discuss the complexity involved.

5.1 Replicated Cache Banks

The first decentralized organization we examine implements repli-
cated cache banks and LSQs (Figure 4). Every load gets serviced
by the cache bank that is closest to it, without ever incurring a com-
munication on the ring interconnect. Such a mechanism also re-
duces register communication as instruction steering no longer fac-
tors in the cache location in its decision-making. The only problem
with this approach is the redundancy in write traffic. Every cache
block that is fetched from L2 is broadcast to four cache banks. Sim-
ilarly, every store issued by every cluster has to be broadcast and
written to all four cache banks. Including this traffic on the Pri-
mary Interconnect has a debilitating effect on performance. In our
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Figure 4: The 16-cluster system with four sets of four
clusters each and a distributed LSQ and L1 data cache.
Each set of four clusters is associated with an LSQ and
cache bank.

evaluations, we use the Primary Interconnect only to tranfer store
addresses and data from producing clusters to the nearest LSQ. The
broadcast of these addresses and data to the other LSQs happens
through a separate Broadcast Interconnect. Each cache bank re-
quires as many write ports as the centralized cache bank in the base
case.

In terms of hardware and design complexity, the replicated cache
organization clearly entails higher overhead than that imposed by
address and dependence predictors. The need for an additional
Broadcast Interconnect increases wiring and layout complexity. Fur-
ther, datapaths are required between the L2 and every L1 cache
bank. There are also many implementation subtleties — ordering of
cache replacements to ensure that the cache banks contain identi-
cal data, distributed LRU information, etc. Such a design is also
likely to have poor power characteristics because of broadcasts for
all store addresses and data and multiple writes to each cache bank.
What we evaluate here is if the performance improvement merits
this increase in complexity.

Figure 5 shows the IPCs for the replicated cache organization.
As reference points, the first two bars in the figure present IPCs for
the base centralized cache without and with cluster prefetch. The
third bar represents a replicated cache organization, where each set
of four clusters is associated with a 32KB 6-cycle cache bank. The
fourth bar includes performance improvement from cluster prefetch
for the replicated cache organization. The results show that the



reduced cost of communication for a load and the reduced regis-
ter communication improve performance over the base centralized
cache. The overall improvement (while comparing harmonic mean
of IPCs) is about 6%, with appreciable speedups being seen for
art (13%), equake (29%), and mesa (11%). However, the biggest
bottleneck continues to be the time taken to resolve memory de-
pendences. The computation of the store address potentially in-
volves register communications and the computed address has to
be broadcast to all the LSQs. As a result, the base replicated cache
organization does not perform as well as cluster prefetch on a cen-
tralized cache organization. When cluster prefetch is implemented
with the replicated cache, significant speedups are observed. How-
ever, the overall improvement over the centralized cache with clus-
ter prefetch is marginal (3%). These results indicate that predicting
addresses and memory dependences is a more effective technique
to handling long communication latencies than moving copies of
the data cache closer to the computations.

5.2 Word-Interleaved Distributed Cache

The replicated cache wastes space and incurs multiple writes for
every update to data. We study an alternative cache organization
that eliminates these problems. Similar to the previous subsec-
tion, we employ four cache banks, but each of these banks con-
tains mutually exclusive data. All word addresses of the form 4N
are mapped to the first bank, word addresses of the form 4N+1 are
mapped to the next, and so on. We assume that each word is eight
bytes long. In this organization, when a load address is computed,
it is sent to the unique LSQ and cache bank that contains that ad-
dress. Similarly, store addresses and data are also sent to their re-
spective LSQs. However, to avoid memory conflicts, until the store
address is resolved, all the LSQs maintain a dummy entry for ev-
ery unresolved store. The computation of the store address triggers
a broadcast to all the LSQs so they can remove the dummy slot.
This broadcast requires a much narrower interconnect than the one
used for the replicated cache. Also, store data need not be broad-
cast. Such an implementation has been used in prior studies [5, 38].
This organization can reduce load communication latencies if the
load can be steered close to its data. Since the load address is not
known at dispatch time, we employ our address predictor to guide
the instruction steering heuristic. If a high-confidence prediction
can not be made, the steering heuristic attempts to minimize regis-
ter communication. However, note that such an organization will
continue to incur stall cycles while waiting for store addresses to
be resolved. It incurs less implementation complexity and lower
power consumption than the replicated cache, but is likely to per-
form worse because of longer communication latencies for loads.
It can yield higher performance only because of its increased cache
capacity.

The fifth bar in Figure 5 represents performance for such a de-
centralized cache organization with a total 128KB L1 capacity.
The sixth bar incorporates cluster prefetch. We see that in al-
most all cases, because of imperfect load address prediction, the
word-interleaved cache organization performs slightly worse than
the replicated cache. Noticeable improvements are seen only in
mesa, where the larger cache drops the cache miss percentage from
1.1t00.2.

5.3 Discussion

The previous sections characterize the behavior of different ap-
proaches in handling communication latencies during cache access.
A distributed cache organization helps bring the cache closer to the
load instruction, but does not target one of the most important bot-
tlenecks in the system — the resolution of memory dependences.
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Figure5: IPCs without and with cluster prefetch for three
different cache organizations. The first uses a cen-
tralized cache, the second uses four replicated cache
banks, and the third uses four word-interleaved dis-
tributed cache banks.

Memory dependence resolution is slowed by the long latency in-
volved in computing the store effective address and communicat-
ing it to the LSQs. Since all the LSQs have to receive this store ad-
dress, decentralization does not alleviate this bottleneck. Instead, it
introduces non-trivial implementation complexity and an increase
in power consumption.

We observed that load address prediction and prefetch, and mem-
ory speculation provide impressive speedups in all the organiza-
tions studied. In fact, with these techniques implemented, cache
access ceases to be a major bottleneck and there is very little per-
formance difference between a centralized and decentralized cache.
This result has very favorable implications for implementation com-
plexity as a centralized cache is significantly easier to design and
consumes less power.

All the designs evaluated in this paper rely on dynamic memory
disambiguation for good performance. If the compiler can reliably
resolve memory dependences, more efficient architectures can be
constructed. For example, instructions and data can be statically
mapped to different clusters and cache banks, respectively, and ex-
plicit communication instructions can be introduced when memory
dependences are detected. Such an organization is likely to have
the best performance and modest hardware complexity (intercon-
nects between L2 and multiple L1 cache banks). In some sense, the
replicated cache organization with cluster prefetch and four times
as much cache capacity most closely resembles this static approach
in terms of performance — loads do not travel far, do not wait for
addresses of unrelated stores, and have access to 128KB of total
cache. Our results show that such a replicated cache outperforms
a centralized cache with cluster prefetch by less than 4%. Thus,
the static approach to cache decentralization is likely to not offer
a huge performance advantage, when compared with a centralized
cache with cluster prefetch. Further, it must be noted that only a
subset of programs can reliably resolve memory dependences at
compile-time.

Address prediction and memory dependence speculation entail
negligible overhead. The address predictor is a structure very simi-
lar to a branch predictor. Memory dependence speculation requires
another table with single-bit entries. The next subsection demon-
strates that the total size of these structures can be as little as 18KB,
and yet afford good performance. An additional bit is required in
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Figure 6: IPCs without and with cluster prefetch for clus-
tered processors with Fast and Slow interconnects.

the LSQ to indicate predicted addresses. Each cluster might need a
small buffer to store prefetched data. Alternatively, the prefetched
data can be directly written to a physical register and the depen-
dents woken up. Recovery from any kind of mispredict can be han-
dled similar to a branch mispredict. This might entail more check-
pointed rename state [27]. If that is a concern, given the relatively
infrequent occurrence of a mispredict, it could even be treated like
an exception. The confidence thresholds can also be varied to lower
the number of mispredicts.

It is worth reiterating that our goal here is not to evaluate highly
complex and highly accurate prediction techniques. By demon-
strating that the least complex predictors outperform cache decen-
tralization, we have identified the least complex approach to a high
performance cache organization. Our results lead us to believe
that more attention should be focused on the design of high per-
formance predictors than on cache decentralization strategies.

5.4 Sensitivity Analysis

In this subsection, we verify our results over a broader range of
processor parameters. First, we examine the effect of different in-
terconnect latencies. In the results so far, we have assumed that
the two furthest clusters are separated by a minimum latency of 10
cycles. We evaluate the effect of cluster prefetch on two more in-
terconnects: (i) Fast: communication on the crossbar, within a set
of four clusters takes a single cycle and each hop on the ring inter-
connect takes two cycles. (ii) Slow: communication to and from
the crosshar takes two cycles each, and each hop on the ring in-
terconnect takes eight cycles. Figure 6 shows IPCs for these two
interconnects without and with cluster prefetch. Performance im-
provements are less significant for the Fast interconnect as com-
munication delays are less of a bottleneck (overall improvement
of 11%). On the Slow interconnect, communication delays are a
bottleneck on most of the programs and an overall improvement
of 37% is observed. Impressive speedups are seen in art (217%),
equake (42%), fma3d (10%), lucas (26%), mesa (32%), and mgrid
(10%).

We also evaluated the effect of larger and smaller clusters on
cluster prefetch. Similar result trends as before were observed.
When using only 20 registers (int and fp, each) and 10 issue queue
entries (int and fp, each), cluster prefetch yielded an overall 21%
improvement. When using twice as many resources in each cluster,
we continued to see an overall 22% IPC improvement. While our
earlier experiments employed large 64K-entry predictors, we also

evaluated the use of smaller predictors. When using predictors with
1K entries, overall performance dropped by less than 1%. We esti-
mate that each entry requires roughly 18 bytes of storage, resulting
in about 18KB worth of transistor overhead.

Finally, to make our evaluation more comprehensive, we exam-
ine the effect of cluster prefetch on 10 SPEC-Int programs®. As
mentioned before, a billion-transistor architecture is best suited for
programs with high parallelism or for multi-threaded workloads.
By examining the behavior of SPEC-Int programs, we hope to get
a flavor for the effects of cluster prefetch on less regular codes that
might be representative of a multi-threaded workload. As expected,
the performance improvements from cluster prefetch are not as im-
pressive. Half the programs (bzip, eon, gap, gzip, vortex) yielded
improvements of less than 2%, and crafty, gcc, and vpr yielded im-
provements of 3-4%. Only twolf and parser exhibited noticeable
speedups (7% and 9%, respectively). The primary reason for this
reduced benefit in SPEC-Int is that only 38% of all committed loads
and stores have their addresses correctly predicted, while the same
number in SPEC-FP is a much healthier 66%. For cluster prefetch
to yield significant speedups in irregular code, more complex ad-
dress predictors would have to be implemented.

6. RELATED WORK

A number of recent proposals [2, 3, 5, 6, 11, 29, 38] on dy-
namically scheduled clustered processors have advanced the state-
of-the-art and many of them have been incorporated in our study,
as described in Section 2. Some of these studies examine scala-
bility issues for clustered designs. Aggarwal and Franklin [2, 3]
design instruction steering algorithms and hierarchical intercon-
nects for processors with up to 12 clusters. Parcerisa et al. [29]
propose point-to-point interconnect designs for systems with up to
eight clusters. Balasubramonian et al. [5] demonstrate that per-
formance does not always scale up as the number of clusters is
increased and propose adaptation algorithms to identify optimal
trade-off points for low-ILP programs. Most studies assume cen-
tralized data caches and often ignore the cost of communication
to this centralized resource. Zyuban and Kogge [38] incorporate
a decentralized data cache in their study and Balasubramonian et
al. [5] evaluate their results for both centralized and decentralized
caches. A recent study by Racunas and Patt examines a distributed
cache implementation for a clustered processor [30]. Consistent
with our results, they show that decentralization results in overall
improvements of less than 5%. Ours is the first study that contrasts
multiple approaches to designing a complexity-effective cache for
dynamically scheduled clustered processors.

Similar bottlenecks have also been studied in the domain of clus-
tered VLIW processors. Sanchez and Gonzalez [33] propose the
multiVLIW, which has multiple data cache banks to serve the clus-
ters. A snooping cache coherence protocol ensures correctness
when dealing with replicated cache blocks. Gibert et al. [15] use
an interleaved distributed cache that eliminates the need for com-
plex cache coherence protocols. To allow memory parallelism, the
compiler has to resolve memory dependences. The authors intro-
duce Attraction Buffers to prefetch spatially contiguous data. Thus,
some data is replicated, and the compiler is responsible for ensur-
ing memory correctness. In recent work [16], the same authors
advocate the use of a centralized cache with compiler-managed LO
buffers to reduce communication latency. The LO is used to cache
“critical” data and “non-critical” data is mapped to the slower cen-
tralized L1 cache. In contrast to these static approaches, we rely on

3Perlbmk was not compatible with our simulator and mcf is too
memory bound to be affected by on-chip optimizations.



dynamic techniques to speculate across unresolved memory depen-
dences and employ address prediction to prefetch data into a clus-
ter. As is typical with dynamic analysis, our approach entails more
hardware, but can exploit run-time information to potentially per-
form better. However, it is interesting to note that both approaches
advocate the use of a centralized cache combined with a prefetch
mechanism as a low-complexity and high performance alternative.
The RAW machine [7] is another example of a compiler-managed
distributed on-chip cache.

Parcerisa and Gonzalez [28] evaluate the use of register value
prediction to free up register dependences and hide the latency of
register communication. In this paper, we employ memory address
prediction to hide cache communication latency and free up mem-
ory dependences.

Many prior bodies of work have investigated the use of address
prediction [4, 8, 9, 12, 17, 23, 32, 34] and memory dependence
speculation [13, 22, 24] to reduce load latency. This is the first eval-
uation of some of these techniques in the context of a dynamically
scheduled clustered processor with the goal of reducing on-chip
wire delays. This is also the first comparison between prediction
techniques and cache decentralization. Our results illustrate that
simple implementations that would have yielded little improvement
in a conventional processor can have a huge impact in reducing the
effect of wire delays in future processors. We demonstrate that
these different techniques interact synergistically, and the compari-
son with the distributed data cache suggests that address prediction
and memory dependence speculation are more promising lines of
research than data cache decentralization.

7. CONCLUSIONS

The paper examines data cache design issues in a highly-clustered
and wire-limited microprocessor of the future. We observe that
communication delays slow down the execution speeds of depen-
dence chains, increasing the latency for effective address compu-
tation. Load latency dramatically increases because it takes a long
time to compute the address, transfer it to an LSQ, wait for store
addresses to determine memory dependences, and then transfer the
data back to the cluster. This is especially true for a centralized data
cache organization.

Our evaluations reveal that decentralizing the data cache is not
an effective solution to the problem. It increases the implementa-
tion complexity and does not target the primary bottleneck — the
time taken to broadcast store addresses and resolve memory de-
pendences. Hence, we adopt a simple centralized cache organiza-
tion and employ prediction techniques to deal with communication
bottlenecks. We found that load address prediction and prefetch,
combined with store address prediction and store-load conflict pre-
diction yield significant speedups and outperform the decentral-
ized cache organizations. Half the high-ILP programs in our study
showed IPC improvements of between 8% and 116%. The combi-
nation of these prediction techniques is synergistic and collectively
referred to as cluster prefetch. These apply to decentralized cache
organizations as well, and we observed significant speedups in a
wide variety of processor settings. Our approach also maintains
low complexity and low power consumption, a primary concern for
designers. The centralized cache eliminates the need for coherence
traffic and cluster prefetch entails a modest amount of centralized
transistor and logic overhead.

Thus, the contributions of the paper are:

e Demonstrating that simple prediction techniques, that yield
minor improvements in a conventional processor, have a ma-
jor impact in a processor constrained by communication la-
tencies.

e Evaluating the performance potential of a decentralized orga-
nization and showing that the benefit likely does not warrant
the additional implementation complexity.

e The conclusion that address prediction and prefetch yield
higher performance and entail less complexity than decen-
tralized cache organizations. This result should help influ-
ence future research directions.

As future work, we plan to improve the performance of our pre-
dictors and apply them to more diverse benchmark sets and to han-
dle other long latencies on the chip, such as those for register com-
munication and L2 access. While our proposed techniques have
helped lower load latencies, they do not reduce the total bandwidth
needs. In fact, the use of cluster prefetch removes a number of net-
work transfers from the program critical path. Managing priorities
on the network to improve performance and power remains an open
problem.
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