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Abstract

Memory compression has been proposed and deployed

in the past to grow the capacity of a memory system and re-

duce page fault rates. Compression also has secondary ben-

efits: it can reduce energy and bandwidth demands. How-

ever, most prior mechanisms have been designed to focus

on the capacity metric and few prior works have attempted

to explicitly reduce energy or bandwidth. Further, mecha-

nisms that focus on the capacity metric also require com-

plex logic to locate the requested data in memory. In this

paper, we design a highly simple compressed memory ar-

chitecture that does not target the capacity metric. Instead,

it focuses on complexity, energy, bandwidth, and reliabil-

ity. It relies on rank subsetting and a careful placement

of compressed data and metadata to achieve these benefits.

Further, the space made available via compression is used

to boost other metrics – the space can be used to implement

stronger error correction codes or energy-efficient data en-

codings. The best performing MemZip configuration yields

a 45% performance improvement and 57% memory energy

reduction, compared to an uncompressed non-sub-ranked

baseline. Another energy-optimized configuration yields a

29.8% performance improvement and a 79% memory en-

ergy reduction, relative to the same baseline.

1 Introduction

Many system components (cache, memory, disk) are

capacity-constrained. It is therefore natural to consider data

compression techniques to boost the effective capacities of

these structures. By storing data in compressed formats,

there is an additional encoding/decoding delay on every

read/write, but it reduces the number of accesses to the next

level of the memory hierarchy. Many papers have shown

the effectivness of data compression for caches [27], mem-

ory [4], and disk [39]. This paper focuses on compression

applied to main memory. The work here is orthogonal to

the compression algorithm in use – our focus is on the or-

ganization of compressed data within the memory system.

Most prior works focus on the higher effective capacity

made possible by compression. When applied to the main
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memory system, it reduces the number of expensive page

faults. There are other possible secondary benefits from

compression: lower energy per access and lower bandwidth

demand, although, these have not been explicitly targeted

by most prior work. A couple of papers have attempted to

reduce bandwidth and channel energy in a GPU/GDDR5

system [28], and in systems with off-chip memory con-

trollers [31].

There are three primary hardware-based memory com-

pression architectures for chip multiprocessors (CMPs) and

DDR3 memory in recent literature. The IBM MXT tech-

nology [4] uses a memory look-up to find a pointer to a

compressed block. Thus, every access requires two mem-

ory fetches. The work of Ekman and Stenstrom [16] stores

metadata with every TLB entry so that the start of a cache

line can be computed. The LCP architecture [26] optimizes

the common case. For cache lines that can be compressed

within a given size, a pointer to the compressed block is triv-

ially computed. But a cache line that cannot be compressed

within the specified size will require three memory accesses

in the worst case. More details about these schemes are pro-

vided in Section 2.

All of these prior designs attempt to first increase effec-

tive capacity with compression. Since DDR3 memory chips

must return data in bursts of eight, every request continues

to return 64-byte blocks from memory. This 64-byte block

may contain multiple compressed cache lines. There is an

energy and bandwidth advantage only if applications ex-

hibit spatial locality and indeed require the many cache lines

contained in one 64-byte transfer (LCP [26] introduces an

optimization to exploit this property). These prior designs

also require some logic to locate and fetch a cache line be-

cause compressed blocks get re-organized in the physical

memory space. Further, when a block is written to, the new

block may have a different compressed size. This requires

a potential re-organization of data and multiple cache line

copies within memory.

Instead, in this work, we design a new compression

architecture that is designed explicitly for energy- and

bandwidth-efficient operation. The performance improve-

ment comes from bandwidth efficiency, not from a reduced

page fault rate. It is therefore useful even when applica-

tions don’t stress the memory capacity or don’t exhibit spa-

tial locality. A similar approach was also employed for



GPU and GDDR5 architectures by Sathish et al. [28]. In

this paper, we first show how bandwidth and energy can be

saved with compression in a DDR3 memory system. Fur-

ther, the extra space made available by compression is used

to improve reliability and energy, by introducing ECC and

energy-efficient encoding at no extra cost.

Our architecture is based on a memory system that uses

rank subsetting. A compressed cache line is fetched from a

single rank subset and the burst length (a multiple of eight)

is a function of the compression factor. For example, an

uncompressed cache line can arrive with a burst length of

64, while a highly compressed cache line can arrive with

a burst length of eight. Thus, the energy and bandwidth

demand of a cache line transfer is dictated entirely by its

compression factor, while also complying with DDR3 stan-

dards. To reduce look-up complexity, we assume that the

starting location of every block is the same as in an un-

compressed baseline memory system. So the new memory

system stores as many blocks as the baseline and offers no

capacity advantage. Some of the spare space in the memory

system can now be used to save ECC bandwidth or to fur-

ther reduce energy. Energy is reduced by storing data in an

encoded format that reduces the number of data bus transi-

tions. This format is referred to as the Data Bus Inversion

(DBI) format [30] and requires a few more metadata bits

that are placed in the spare space of each block.

Thus, unlike most prior work in DDR3 memory com-

pression, this work ignores the conventional figure of merit

(capacity), and targets the unconventional metrics: com-

plexity, energy, bandwidth, reliability.

The best performing MemZip configuration yields a

45% performance improvement and 57% memory energy

reduction, compared to an uncompressed non-sub-ranked

baseline. Another energy-optimized configuration yields a

29.8% performance improvement and a 79% memory en-

ergy reduction, relative to the same baseline.

2 Background

2.1 DRAM Memory Basics
A high-performance processor typically implements up

to four memory controllers. Each memory controller han-

dles a 64-bit DDR3 data channel with an address/command

bus with a width in the neighborhood of 23 bits. The chan-

nel supports 1-4 ranks. A rank is a collection of DRAM

chips that together feed the 64-bit data bus, i.e., in the com-

mon case, a rank may contain 8 x8 chips, or 4 x16 chips, or

16 x4 chips (xN refers to a DRAM chip with N data bits of

input/output on every clock edge). DDR3 has a minimum

burst length of 8, i.e., a request results in eight 64-bit data

transfers on the bus. To fetch a cache line, the memory con-

troller first issues an Activate (ACT) command, followed

by a Column-Read (COL-RD). Each COL-RD results in a

burst of 8 from each DRAM chip in that rank, yielding a 64-

byte cache line. The ACT command brings an entire row of

data (about 8 KB) into a row buffer. Adjacent cache lines

in the row can be fetched with multiple COL-RDs without

requiring additional ACTs. Each rank is itself partitioned

into 8 banks. The 8 banks are independently controlled and

have their own row buffers.

ECC-DIMMs introduce additional chips per rank to store

SECDED codes. Typically, an 8-bit code is fetched along

with every 64-bit data word; this introduces an energy

penalty, but not a delay penalty.

2.2 Rank Subsetting

Different forms of rank subsetting have been introduced

in recent years [40, 5, 33] to improve energy and perfor-

mance. Rank subsetting partitions a 64-bit rank into smaller

subranks. Each subrank can be independently controlled

with the same single command/address bus on that chan-

nel. An ACT command only applies to a single subrank,

i.e., it only causes activity in a subset of DRAM chips in the

rank and limits the overfetch into the row buffer. Fetching

a 64-byte cache line may require multiple COL-RDs, de-

pending on the width of each subrank. Since the banks in

each subrank can be independently controlled, the number

of available banks also increases. This leads to lower queu-

ing delays and higher data bus utilization. In short, rank

subsetting lowers energy per memory access, increases the

cache line transfer time, decreases data bus queuing delays,

and increases command bus utilization (more COL-RDs per

cache line request).

There are differing implementations of rank subsetting.

The SSA design of Udipi et al. [33] designed a custom chip

and interface. Ahn et al. [5] and Zheng et al. [40] remained

DDR3 compliant and introduced MUXes and a buffer chip

on the DIMM to activate the appropriate subrank on every

command.

As an example, consider the following baseline rank that

is made up of 8 x8 DRAM chips. In a 4-way subranked

model, the rank and channel are partitioned into 4 subranks.

Each subrank consists of 2 DRAM chips. Four COL-RDs

are required to fetch an entire cache line from one subrank.

4-way rank subsetting enables a quadrupling in the number

of independent banks.

Prior work has shown a performance improvement on

average with rank subsetting. Section 4 reproduces some

of this analysis and considers a large design space. In that

section, we also propose a modification to rank subsetting

that helps alleviate the data transfer time penalty, while still

allowing high compressibility.

Prior work on rank subsetting also mentioned the diffi-

culty in providing ECC support. Each subrank now needs

its own extra chip to store ECC codes. Four-way rank sub-

setting would therefore require four extra chips instead of

the one extra chip required in the baseline. Zheng et al. [40]

introduced the notion of embedded-ECC to overcome this

problem. The ECC for each cache line is not stored in a
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separate chip, but in the same chips as the data. If we as-

sume an 8-way sub-ranked system, every 64-byte cache line

in a row is followed by eight bytes of ECC codes. The cache

line is fetched with 8 consecutive COL-RDs and the ECC

is fetched with a 9th sequential COL-RD. The extra COL-

RD is an overhead not seen in a conventional rank with a

9th ECC chip. Embedded-ECC also makes indexing a lit-

tle more complex because a row can only store 112 cache

lines instead of 128. If we use 4-way and 2-way subranking,

the embedded-ECC overheads grow because a single COL-

RD forcibly prefetches ECC codes for 2 and 4 consecutive

cache lines, respectively. As we show later, MemZip is able

to support embedded-ECCwithout suffering from the above

two drawbacks (extra COL-RDs and forced prefetch) in the

common case.

2.3 Compression Algorithms

The MemZip architecture can work with any compres-

sion algorithm. In this work, we focus on two compres-

sion schemes that are easy to implement in hardware: base-

delta-immediate (B∆I) [27] and frequent pattern compres-

sion (FPC) [7].

B∆I relies on the observation that words in a line only

differ slightly. Hence, the words are better represented as

their distance from a given base. This is best explained with

an example. Consider a 64-byte line that is partitioned into

8 8-byte words. Let’s assume that the first 8-byte word is

the base. The difference between each 8-byte word and the

base may be (represented in decimal): 0, 7, 23, 16, 104, 5,

213, 77. Since every one of these deltas is less than 255,

they can each be represented by a single byte. The com-

pressed version of this line would therefore be an 8-byte

word, followed by 8 1-byte words, for a total capacity of 16

bytes. Each compressed line needs a few bits of header to

indicate the size of the base and the size of each delta. B∆I

also allows the use of two bases, one of which is the word

zero. Every delta is therefore relative to the specified base

or relative to zero. A bit mask is required in the header to

indicate which of the two deltas is used for every word in

the line.

FPC [7] relies on the fact that some word patterns occur

frequently in many applications. Examples include all-zero

and all-one bit strings in positive and negative integers with

small absolute values. FPC divides a line into 4-byte words

and keeps three encoding bits per word. In some cases, the

three encoding bits are enough to represent the data, e.g.,

000 represents a 4-byte string of zeroes. In some cases, the

three encoding bits must be accompanied by additional data

bits. For example, the 100 encoding represents a halfword

padded with a zero halfword [7]. Representing such a 4-

byte word would require 19 bits (3 bits of header, followed

by 16 bits of the non-zero halfword). The entire 64-byte

line is assembled as an initial 48-bit header indicating 3-bit

encodings for each of the 16 4-byte words, followed by the

additional bytes required by each encoding.

2.4 IBM MXT [4]

The IBM MXT architecture compresses 1 KB blocks.

Every 1 KB block has a 16 byte metadata entry in physical

memory that is indexed by the block address. If we’re lucky,

the compressed version of the 1 KB block may be found in-

side the metadata entry itself. If not, then the metadata entry

has up to four pointers to 256 byte sectors. The compressed

version of the 1 KB block is placed in 1-4 sectors. The

physical memory is therefore allocated at the granularity of

sectors. Data is fetched in 32 byte increments (this archi-

tecture is over 10 years old and pre-dates the DDR3 stan-

dard that requires a minimum burst length of eight). Most

cache line requests require two memory accesses – one for

the metadata and one for the cache block itself. The de-

sign is explicitly optimized to maximize effective capacity

and reduce page faults. The memory access latency is much

higher than that of a comparable baseline memory system.

There is no explicit feature for bandwidth or energy effi-

ciency. A write can be expensive as it requires the creation

of new sectors and an update of the metadata entry.

2.5 Ekman and Stenstrom [16]

The work of Ekman and Stenstrom [16] addresses many

of the weaknesses found in the MXT design. It associates

the metadata for a page along with the TLB entry. This

metadata tracks the size of each compressed block within

the page. In parallel with the LLC look-up, the location of

the cache line in memory is computed based on the infor-

mation in the metadata. This hides the latency for address

calculation, but increases the energy overhead. On every

write, if the new compressed block has a very different size

from the old compressed block, the blocks may have to be

re-organized, requiring a page table update and even requir-

ing a copy to a new page in the worst case. The proposal

has no explicit feature for bandwidth or energy efficiency.

2.6 LCP [26]

Very recently, Pekhimenko et al. [26] proposed the LCP

architecture. Each block is expected to be compressed

within a fixed size field. Hence, the expected start address

of a block is easy to compute. But if the block cannot be

compressed within the fixed field size, it is placed in an ex-

ception region within the same page. Metadata in that page

helps locate this block. In the worst case, three memory

look-ups are required to fetch the requested block. The au-

thors introduce a metadata cache at the memory controller.

On metadata cache hits, the block can be fetched with a

single memory access. The authors introduce a bandwidth

optimization for compression. When a 64 byte block is

fetched, the metadata is used to determine if multiple valid

cache lines exist in this block. Any valid additional cache

blocks are placed in cache, especially if recommended by a

stride prefetcher. If an application exhibits spatial locality,
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compression helps reduce the fetch energy and bandwidth

demand for multiple blocks.

3 MemZip Architecture

3.1 The MemZip Approach

In the previous section, we discussed three competing

architectures that all try to optimize effective capacity with

compression. All of them try to tightly pack compressed

blocks within the physical memory. This leads to overheads

when accessing data. Metadata has to be consulted to locate

the start of the block. The LCP architecture is most adept

at quickly finding the block if there is a metadata cache

hit. If there is a metadata cache miss, three memory ac-

cesses may be required. Further, when performing a write,

if the new compressed block can’t be fit into the page, a new

larger page must be created and the contents must be moved

from the old page to the new page. All of these complica-

tions arise from the fact that blocks of different sizes are

being packed into a small page. To achieve a simple de-

sign, we make no attempt to save capacity. Every block has

the same starting address as a baseline uncompressed mem-

ory, so there is no complication in locating a block. If the

size of the compressed block varies with each new write,

the block simply takes up more or less space within its al-

located space; there is never a need to copy data to make

room for a large compressed block.

Commodity DDR3 DRAM chips are required to provide

data with a minimum burst length of eight. For a standard

64-bit DDR3 bus, we are therefore required to fetch a min-

imum of 64 bytes on every memory access. This limits the

ability of prior work to save bandwidth and energy – even

though a compressed blockmay only occupy (say) 32 bytes,

one is forced to fetch at least 64 bytes. If the extra 32 bytes

contain an entire compressed cache line and if this addi-

tional line is accessed soon after, then the prefetch enabled

by compression leads to energy and bandwidth saving. In-

stead of relying on this accidental saving, we make an ex-

plicit effort to reduce energy and bandwidth. We access

metadata that tells us the exact number of bursts required

to fetch the compressed cache line. The line is then trans-

ferred over exactly that burst length, thus saving bandwidth

and energy that is proportional to the compression ratio. Be-

cause of the DDR3 standard, we are limited to using burst

lengths that are multiples of eight. We exploit rank sub-

setting to transfer a cache line over (say) a narrow 8-bit bus,

instead of the standard 64-bit DDR3 bus. In a burst of eight,

we can receive a 64-bit compressed cache line; in a burst of

16, we can receive a 128-bit compressed cache line, and so

on. In short, we control the transfer at 8-byte granularities

instead of 64-byte granularities, thus fully exploiting the en-

ergy and bandwidth potential of memory compression.

If a 64-byte cache block has been compressed into a (say)

26-byte block, we have 38 more spare bytes to store other

useful information pertaining to that block. If we used all of

these 38 bytes, we would negate the bandwidth and energy

advantage from compression. But if we used only 6 bytes,

there would be no energy or bandwidth overhead for the

fetch since we are required to fetch at 8-byte granularities

anyway. These 6 bytes can be used to save ECC code or

for DBI codes. DBI is an encoding format that reduces the

energy for data transfer.

More details of the architecture will be explained next. It

is worth reiterating that compression is being performed (i)

to improve performance by better utilizing memory band-

width, and (ii) to improve energy per memory access. Our

specific design choices also have favorable implications on

reliability and complexity.

3.2 Basic Architecture

We first describe the design of a single channel in our

memory system. We use rank subsetting to split the 64-bit

data channel into N narrow data channels. We will assume

N = 8 for this discussion; our evaluation considers several

rank subsetting scenarios. The 8 narrow data channels share

a single address/command bus. Such rank subsetting in-

creases the delay to transfer a single cache line, but leads to

lower queuing delays because of the parallelism and better

bus utilization. Rank subsetting also leads to lower energy

by shrinking the sizes of activated rows.

Data can be organized across the memory system in

many different ways. Typically, an entire cache line is

fetched from a single channel, rank, and bank. Consecutive

cache lines can be co-located in a single row of the bank to

boost row buffer hit rates or in different banks, ranks, and

channels to boost memory-level parallelism. The MemZip

architecture can work with either address mapping policy.

Prior compression schemes have to adopt the former ad-

dress mapping policy to derive any bandwidth or energy

advantage from spatial locality.

We are now fetching an entire 64-byte cache line over an

8-bit data bus. This data bus is fed by a single x8 DRAM

chip, or 2 x4 DRAM chips, or 4 x2 DRAM chips, or 8 x1

DRAM chips. To minimize activation energy, we will as-

sume that a rank subset is comprised of 1 x8 DRAM chip.

The 64-byte cache line is placed in consecutive columns of

a single bank’s row buffer. It is fetched by issuing one ACT

(Activate) command, followed by 8 COL-RD (Column-

Read) commands in quick succession. Each COL-RD com-

mand uses a minimum burst length of eight. The entire 64-

byte cache line is transferred with 64 8-bit transfers.

In the MemZip design, each 64-byte cache block is com-

pressed to an arbitrary size. The compressed block begins

at the same address location as in the baseline rank-subset

architecture. If the compressed block has a size of 26 bytes,

it occupies the next 208 column bits in that row. The next

304 column bits (38 bytes) in that row are left unused, i.e.,

the capacity saving from compression is not being exploited
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yet (we will shortly explain how some of this space can be

used for reliability and energy).

Metadata structures track the size of the compressed

block and the number of COL-RDs required to fetch it.

Each cache line requires a few-bit metadata entry. For an 8-

way subranked system, the cache line may be fetched with 0

to 8 COL-RDs, requiring a 4-bit metadata entry. If the cache

line is a string of zeroes, the memory access is avoided alto-

gether (0 COL-RDs). If 8 COL-RDs are required, the block

is stored in uncompressed format.

One option for metadata storage is to attach it to the page

table and the TLB. An 8 KB OS page has 128 cache lines,

corresponding to 512 bits of metadata. While this level of

storage may be supported by a TLB, the storage require-

ments grow if the OS is using large pages. Since this is a

common scenario, we instead use a more general scheme.

The metadata information is stored in physical memory and

is cached at the memory controller in a metadata cache.

Since we require 4 bits of metadata for every 512-bit data

line, every 128 lines of data require 1 line of metadata stor-

age. This metadata line is organized as follows. Every 8 KB

DRAM row accommodates 128 lines, of which the first 127

are data lines and the last line is the metadata information

for the entire row. The 128th data line is placed in a sepa-

rate “overflow” row. One overflow row is required for every

128 data rows. This organization was selected so that meta-

data access yields a row buffer hit in the common case. The

OS must reserve every 129th page for overflow lines, i.e.,

MemZip metadata introduces a storage overhead of 0.8%.

The memory controller requires a new (but deterministic)

indexing function when fetching the 128th line in any row.

If we assume an embedded-ECC baseline, a DRAM row is

composed of 112 data lines, 14 ECC lines, and 2 unused

lines. The last unused line can be used to store metadata.

Therefore, metadata storage is essentially free when using

an embedded-ECC model.

Metadata itself is never stored in compressed format.

The metadata cache stores 64-byte entries, with each en-

try representing 8 KB of contiguous data in a row. We later

show results for different metadata cache sizes; in essence,

a metadata cache sized similar to an L1 cache can represent

most of the data in the LLC. The metadata cache access is

on the critical path, but only adds a couple of cycles to the

memory latency if there is a hit in the metadata cache.

Once the metadata information is obtained by the mem-

ory controller, the appropriate number of COL-RDs are is-

sued to fetch the compressed cache block. It is worth point-

ing out one key difference from prior work. In prior de-

signs, the metadata is used to locate the cache block. In

MemZip, the location is known and the metadata is used to

avoid bringing in other blocks, thus saving bandwidth and

energy.

Once the compressed cache line is fetched, the first few

3b 4b 4b DBI(0B-3B) 5b Bit mask Base …. 

3b 4b 4b DBI(0B-3B) 5b FPC meta …. Uncomp. Sect. 

Compression 
scheme 

  

DBI size(just 2 used) 

Compress Base-delta-immidiate 

Compressed Frequent patten compression 

Figure 1. Compressed cache line structure.

header bits are examined. The compressed cache line for-

mat is shown in Figure 1. The first three bits of the header

indicate which one of eight compression algorithms have

been used. These algorithms are summarized in Table 1.

Seven of these are B∆I algorithms. For these B∆I algo-

rithms, the first few bits of the compressed cache line repre-

sent the B∆I bit mask, followed by the base and the deltas.

Once the B∆I algorithm is known, the sizes of the bit mask,

base, and deltas are known, so simple logic is required to

interpret and compute the cache line. The eighth algorithm

uses FPC. If FPC is being used, the first 48 bits of the com-

pressed cache line indicate how the rest of the line should

be interpreted. We assume that all of this decompression

logic requires 3 cycles. Prior work has shown that B∆I can

be implemented in 1 cycle [7] and FPC can be implemented

in 2 cycles. We add an extra cycle for DBI conversion (dis-

cussed shortly in Section 3.4).

000 fpc 001 BDel(8,0)

010 BDel(8,1) 011 BDel(8,2)

100 BDel(8,4) 101 BDel(4,1)

110 BDel(4,2) 111 BDel(2,1)

Table 1. Compression algorithms and codes.

A similar process is involved on a write, but in reverse

order. Compression takes more effort because eight differ-

ent compression algorithms must be evaluated. Compres-

sion latency is higher, but is off the critical path. Write

operations typically wait in the write queue for hundreds

of cycles and we assume that the compression is performed

during this time. After compression, the appropriate num-

ber of COL-WRs are issued. The metadata is also updated

(hopefully a hit in the metadata cache).

3.3 Impact on Reliability

As explained earlier, rank subsetting can increase the

overhead for ECC support, requiring an extra chip for ev-

ery rank subset. Embedded-ECC [40] reduces the storage

overhead by storing ECC bits in the same row as the data

itself. This requires an extra COL-RD for many cache line

fetches and it leads to forced prefetch of ECC for neighbor-

ing lines.

The MemZip architecture can alleviate this overhead of

embedded-ECC. Similar to the embedded-ECC data layout,

a DRAM row contains 112 data lines, 14 ECC lines, and 2

unused lines. By default, every data line will have its ECC
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codes saved among the 14 ECC lines at the end of the row.

Now consider a case where a data line is compressed to say

26 bytes. A 26-byte line requires a 4-byte ECC code. This

code can be placed immediately after the compressed data

field instead of being placed among the 14 ECC lines at the

end of the row. Since the cache line is fetched in increments

of eight bytes, the ECC code is fetched without introducing

an additional COL-RD. If the compressed cache line was

30 bytes in size, adding 4 bytes of ECC code would cross

the 8-byte boundary and require an extra COL-RD. So there

is no advantage to placing the ECC code immediately after

the compressed data field. The ECC code therefore remains

at the end of the row.

With this organization (compression + embedded-ECC),

cache line fetches frequently do not require extra COL-RDs

to retrieve their ECC codes. The memory controller can

easily compute the location of the ECC code for every line.

Once the header bits of the compressed cache line are ex-

amined, the memory controller can estimate if there was

enough room to store the ECC codes without requiring an

extra COL-RD. Note again that compression is being used

not to improve capacity, but to improve other metrics (in

this case, performance).

3.4 Reducing Energy with DBI

Instead of focusing on reliability, the spare bits in a com-

pressed cache line can be used for energy efficiency. We

first explain the Data Bus Inversion (DBI) technique [30].

Consider an 8-bit wide subrank that must transmit a 26-byte

compressed line in 26 clock edges. If two successive bytes

differ in 6 bits, 6 of the 8 bus wires will switch and dissi-

pate dynamic energy. If we instead transmitted the inverse

of the second byte, only 2 of the wires would switch. To

save energy in this way, one extra bit would be required for

every byte, to indicate if the byte is being sent in its orig-

inal form or in its inverted form. Since there are 6 spare

bytes in this example, we can easily accommodate 26 ex-

tra inversion bits. If 26 bits are not available, but 13 bits

are available, every alternate byte can be considered for in-

version. To keep the design simple, we allow either 0, 1,

2, or 3 bytes of DBI information. The more bytes of DBI

information, the more energy we can potentially save. Of

course, the overhead of sending additional DBI bits must

also be factored in. Two bits are maintained in the first byte

header of the compressed cache line (see Figure 1) to indi-

cate the type of DBI encoding in use. The DBI bits follow

right after. The DBI optimization is especially helpful in

MemZip because compressed data tends to exhibit higher

entropy (activity).

4 Analyzing Rank Subsetting

In this section, we first analyze the behavior of baseline

rank subsetting (RS). It is important to first optimize RS

because our compression techniques are built on top of RS.

We propose a new data layout that is especially useful for

MemZip. The results in this section do not consider any

compression; the effects of compression are evaluated in

the next section.

Processor

ISA UltraSPARC III ISA

CMP size and Core Freq. 8-core, 3.2 GHz

Re-Order-Buffer 64 entry

Fetch, Dispatch, Maximum

Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I-cache 32KB/2-way, private, 1-cycle

L1 D-cache 32KB/2-way, private, 1-cycle

L2 Cache 4MB/64B/8-way, shared, 10-cycle

Coherence Protocol Snooping MESI

DRAM Parameters

DDR3 MT41J1G4 DDR3-1600 [3],

Baseline 4 72-bit channels (ECC)

DRAM 1 DIMM/channel

Configuration 1 rank/DIMM, 9 devices/rank

Total DRAM Capacity 4 GB

DRAM Bus Frequency 800 MHz

T RCD/T RP/T CAS 11/11/11 (memory cycles)

T RC/T RAS/T RRD 39/28/5 (memory cycles)

DRAM Read Queue 48 entries per channel

DRAM Write Queue Size 48 entries per channel

High/Low water marks 32/16

Table 2. Simulator parameters.

Memory Power

VDD/IDD0/IDD2P0 1.5 V/55mA/16mA

IDD2P1/IDD2N/IDD3P 32mA/28mA/38mA

IDD3N/IDD4R/IDD4W/IDD5 38 mA/157mA/128mA/155mA

Metadata Cache Power

dyn. access energy 0.19 nJ

leakage power 7.9 mW

Compressor/Decompressor

Compression power 15.08 mW

decompression power/frequency 17.5 mW/1 GHz

Table 3. Power estimation parameters.

4.1 Methodology

Our simulations use the Simics [2] full-system simu-

lator with out-of-order cores. Our simulation parameters

are listed in Table 2. We have integrated the detailed

USIMM [11] DRAM simulator with Simics. The DRAM

device model and timing parameters have been obtained

from Micron datasheets [3] and are also summarized in Ta-

ble 2. We adopt the open-page address mapping policy that

places consecutive cache lines in the same row [20]. The

memory controller scheduler employs the FR-FCFS policy.

It uses high/low water marks in the write queue to drain

writes in batches [11]. We expect that future processors

will integrate 4-8 channels shared by tens of cores. To limit

simulation time, we model a system with eight cores and a

single channel and rank.

For our workloads, we use 20 memory-intensive pro-

grams from SPEC2k6 (libquantum, omnetpp, xalancbmk,
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Figure 2. RS performance normalized to memory without rank sub-setting.

Figure 3. Normalized execution time for GRS.

milc, GemsFDTD, mcf, leslie3d, soplex), PARSEC [9]

(canneal), NAS Parallel Benchmarks [8] (is, mg, bt, ep, sp),

and CloudSuite [17] (classification, cassandra, cloud9). The

SPEC2k6 programs are run in multi-programmed mode,

with 8 copies of the same program, while the rest are run

in multi-thread mode. The multi-threaded applications start

detailed simulations at the start of the parallel region of

interest. In the multi-programmed workloads, each core

is fast forwarded for 20 billion instructions before starting

simulations. The statistics for the first 100K memory trans-

actions are ignored to account for cache warm-up effects.

All of our simulations are executed until one million total

DRAM accesses are encountered; this corresponds to 20-

517 million committed cycles for various benchmarks. The

use of DRAM access counts to terminate simulations en-

sures that roughly the same amount of work is done in each

experiment for a given workload. This was also verified by

examining other statistics such as DRAM reads/writes.

Our energy and power estimations are based on Micron’s

power calculator [1] for 4Gb DDR3 x8 chips, with access

counts derived from our detailed simulations. Our estimates

for metadata cache energy are derived with CACTI 6.5 [25]

for 65 nm technology. We also synthesized the compres-

sion/decompression circuit using synopsis design compiler

in 65 nm technology. Our power estimation parameters are

listed in Table 3.

4.2 Rank Subset Results

Figure 2 shows the execution times for our benchmark

suite for 2-way, 4-way, and 8-way RS, normalized against a

conventional memory system with no RS. While rank sub-

setting can help reduce energy per memory access, it can

have either positive or negative impacts on performance.

Performance is positively impacted by affording a higher

level of bank parallelism. Performance is negatively im-

pacted by the increase in cache line transfer time and the

increase in command bus contention. RS helps in several

benchmarks, especially those that have higher bank con-

flicts and queuing delays. For example, the average queuing

delay in cg reduces from 179 cycles in the baseline to 111

cycles in 2-way RS. In many cases, RS can degrade per-

formance. In cg, in going from 4-way RS to 8-way RS,

the command bus contention increases by 6x and the data

transfer time increases by 2x, resulting in an overall aver-

agememory latency increase of 89 cycles. Therefore, cg ex-

hibits highest performance for 2-way RS (23.4% better than

the baseline), while the performance of 8-way RS is 15%

worse than the baseline. On average, across all benchmarks,

performance improvements over the baseline are 12.7% for

2-way RS, 4.8% for 4-way RS, and -22.5% for 8-way RS.

This results trend is consistent with that shown in prior anal-

yses of RS [5]. MemZip has the potential to do better with

finer-grained memory access; we therefore first attempt to

improve upon our baseline RS design. To reduce command

bus contention, we consider DDR signaling for the com-

mand bus (shown by ++ in legends in subsequent figures).

To reduce data transfer time, we consider a new data layout

that is discussed next.

4.3 Modified Data Layout – GRS

As we move towards fine-grained RS, such as 4-way and

8-way RS, the long data transfer times tend to dominate,

thus lowering performance. The fine-grained subranks are

especially useful when dealing with compressed blocks be-

cause they minimize bandwidth waste. For example, if we

are fetching a 38-byte compressed cache line, 2-way RS

leads to 26 wasted bytes on the bus, 4-way RS leads to

10 wasted bytes, and 8-way RS leads to 2 wasted bytes.

We must therefore devise a memory organization and lay-

out that allows fine-grained memory access while support-

ing relatively low data transfer times. We refer to this new

organization as Generalized Rank Subsetting (GRS).
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Figure 4. GRS data layout.

GRS logically combines fine-grained subranks into

coarse-grained subranks. Consider the following example.

Figure 4 (a) shows an 8-way subranked baseline. The 64-

byte cache line is placed in a single subrank, and fetching

the line requires 8 sequential COL-RDs. In GRS, shown in

Figure 4 (b), we assume an 8-way subranked design, but a

64-byte cache line is placed across two subranks. Fetching

the cache line still requires 8 COL-RDs, but at any time,

2 COL-RDs can be performed in parallel. So the cache

line transfer time is equivalent to the delay for 4 sequen-

tial COL-RDs. This design point, referred to as GRS-8x2,

is a hybrid of 8-way and 4-way RS. This design point is not

meaningful for an uncompressed memory system – it has

the data transfer time and parallelism of a 4-way RS system,

but suffers from the command bus contention of an 8-way

RS system. However, it is a meaningful design point for a

compressed memory system. It offers the low data trans-

fer time of 4-way RS, and the fine granularity of an 8-way

RS system. For example, a 38-byte compressed cache line

would be spread across the two 8-way subranks such that

one subrank would provide 24 bytes (3 COL-RDs) and the

second subrank would provide 16 bytes (2 COL-RDs). The

delay would equal the delay for 3 sequential COL-RDs. The

second subrank could have also supported another COL-RD

in the same time. Instead, if we had used an 8-way RS de-

sign, the data transfer time would have equaled the delay

for 5 sequential COL-RDs. If we had used a 4-way RS de-

sign, the data transfer time would have equaled the delay

for 3 sequential COL-RDs, but the bus would have carried

10 empty bytes and the subrank supports no other operation

during those three COL-RDs. In the GRS example above,

one subrank services fewer COL-RDs than the other sub-

rank. For load balance in this system, the start of every

cache line must be shifted in a round-robin manner.

More generally stated, GRS-NxM refers to an organi-

zation that uses N-way rank subsetting, but spreads every

cache line across M subranks. Figure 3 shows execution

time results for each benchmark, normalized against the

conventional non-subranked baseline. Unlike Figure 2, the

models in Figure 3 assume DDR signaling for the address

and command bus. The first three bars show execution

times for 2-way RS, 4-way RS, and GRS-4x2, all without

Figure 5. Geometric mean of different rank sub-

setting cases with and without ECC.

any ECC support. We see that GRS-4x2 is very similar to

the high performance of 2-way RS, while still providing the

finer granularity of 4-way RS.

Figure 5 shows normalized execution time (averaged

across all benchmarks) for various RS and GRS-NxM or-

ganizations. We also separately show results for cases with

and without ECC. The primary observations on this graph

are: (i) Models with ECC have higher traffic rates and ben-

efit from higher levels of subranking. (ii) The faster com-

mand bus typically improves performance by 1-2%. The

improvement is higher for memory configurations support-

ing fine-grained access. (iii) The GRS-Nx2 configuration

typically approaches the performance of the N/2-way RS

configuration, e.g., GRS-4x2++ and 2-RS++ are similar.

5 Results

Figure 6 shows execution time for various rank sub-

set configurations (without embedded-ECC) combined with

memory compression. All of the bars are normalized

against the execution time for a traditional baseline with

no rank subsetting and no compression. Different config-

urations are optimal for each benchmark, but all three con-

figurations yield overall geometric mean improvements of

30-45% over the baseline. Note that rank subsetting by it-

self can only yield an improvement of 15%, so most of this

benefit can be attributed to MemZip’s reduction of memory

bandwidth pressure by fetching compressed lines. Perfor-

mance varies depending on the compression ratio for the

benchmark, the metadata cache hit rates, and how the pro-

gram is impacted by the higher parallelism and higher la-

tency afforded by rank subsetting. Figure 7 shows the com-

pressibility for each benchmark. A few benchmarks show

performance degradation in Figure 6. In the case of milc,

most compressed lines are greater than 32 bytes, so there is

no bandwidth reduction when using the 2-way RS configu-

ration. It also has a high metadata cache miss rate of 37.5%.

In the case of benchmark iswith fine-grained COL-RDs, we

noticed that compression frequently resulted in empty read

queues, which in turn caused frequent write drains, which

were interrupted by newly arriving read requests. This fre-

quent toggle between reads andwrites led to poor row buffer
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Figure 6. Normalized execution time for different MemZip configurations.

Figure 7. Breakdown of compressibility for different

applications.

hit rates.

Figure 8.Geometric mean of execution times for dif-

ferent MemZip configurations with and without ECC.

Ideal refers to a perfect metadata cache.

Figure 8 shows normalized execution times (GM for all

benchmarks) for MemZip for a wide variety of rank sub-

set configurations, with and without ECC support. We

also show the idealized performance possible with a perfect

metadata cache. All bars are normalized against the tradi-

tional baseline with no rank subsetting and no compression.

The performance levels are all very similar, with 2-way rank

subsets marginally outperforming 8-way rank subsets. As

we see later, 8-way rank subsets save more energy than 2-

way rank subsets. The ECC cases all have longer execution

times than the non-ECC cases. This is because embedded-

ECC implementations introduce extra COL-RDs to fetch

the ECC information. When embedded-ECC is added to the

Figure 9. Memory traffic for MemZip normalized to

non-compressed 4-RS with and without ECC.

8x2-GRS organization without compression, performance

degrades by 21.8%. When embedded-ECC is added to the

8x2-GRS organization with compression, the performance

only degrades by 12.5%, i.e., some of the ECC codes are

fetched at no extra cost and don’t result in performance

penalties.

Figure 9 shows the normalized memory traffic with

MemZip for the 4-way RS model, with and without ECC.

Note that the ECC bar is normalized against a baseline with

ECC, while the no-ECC bar is normalized against a base-

line without ECC. Compression is able to reduce traffic by

46.6% in the no-ECC case and by 53.7% in the ECC case.

The reduction is higher in the ECC case because many ECC

codes can be accommodated in the spare space within a

compressed line and fetched for free.

In the interest of space we don’t report hit rates for our

8 KB 8-way metadata cache for our benchmark suite. We

observed that benchmarks known to have large working

set sizes (e.g., mcf, classification, canneal, omnetpp) show

poorer hit rates (32-58%). Half the benchmark suite has

metadata cache hit rates higher than 90%. On average, ap-

plications have a 93% metadata cache hit rate.

Figure 10 shows the energy for the memory system,

metadata cache, and compression/decompression logic for

different MemZip configurations. These bars are normal-

ized against the energy for the traditional baseline with no

rank subsetting. Note that the energy consumptions of the

metadata cache and the compression/decompression logic

are dwarfed by the memory energy in all cases. The energy

reduction is higher for fine-grain rank subsetting, increasing
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Figure 10. Memory energy for MemZip normalized to non-compressed non-sub-ranked baseline.

Figure 11. Breakdown of DBI encodings used for each benchmark and various bus widths in MemZip. All-zero and

non-compressible lines are excluded in this breakdown.

from 46% in 2-way RS to 57% in 4-way RS, and to 79% in

GRS-8x2. Some of this energy benefit comes from rank

subsetting itself and some of it from fetching compressed

blocks. The energy saving from compression alone is 33-

40% for the different configurations.

While we don’t show a figure for energy-delay prod-

uct (EDP), it is clear that the GRS-8x2 configuration will

emerge as a clear winner. All the configurations in Figure 8

have very similar execution times, but the 8-way rank sub-

sets have much lower energy than 4-way and 2-way rank

subsets. This also highlights the importance of the new

GRS data layout. Note that 8-way RS has much poorer per-

formance (Figure 2); a GRS-8x2 data layout is required to

achieve the low energy of 8-way rank subsets, while also

achieving high performance.

Finally, we show the energy savings with the DBI op-

timization. This is represented by the activity metric, i.e.,

how many bit-flips are encountered on the memory channel

for all cache line transfers. We observe that moving from

64-wide buses to narrow buses (rank subsetting) increases

the activity level on average. This is primarily because some

applications have 64-bit data fields that align favorably on

consecutive data transfers; this alignment is lost when mov-

ing to narrower buses. Once the lines are compressed, the

total number of bit-flips are reduced, but this reduction is

not proportional to the reduction in total traffic, i.e., com-

pressed lines exhibit higher entropy. Figure 12 shows the

reduction in activity when DBI encoding is added to various

configurations with compression included. DBI is applied

such that the DBI encoding bits can be accommodated in

the available space in that line. For the 32-wide bus, DBI

encoding causes a 30% reduction in activity. The saving

reduces for 16- and 8-wide buses because they have less

available space for DBI encoding bits. Figure 11 shows a

breakdown of how often different DBI encodings were in-

voked in each configuration. It is worth noting that the DBI

optimization will help reduce memory link energy, which

can account for up to 40% of memory system energy [1].

6 Related Work

Data compression has been applied and evaluated for dif-

ferent components from the register file [22, 10] up to the

hard disk drive [39]. Compression has been mainly con-

sidered to reduce the number and the size of data transfer

packets. In this section we review some of these works that

relate to the main memory system and last level cache.

There are several hardware and software compression

approaches for main memory. We have reviewed the three

main hardware approaches [4, 16, 26] in Sections 2.4, 2.5,

and 2.6. MemZip yields an energy and bandwidth advan-
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Figure 12. Bit flips on the bus for MemZip, normalized to corresponding non-compressed RS baselines.

tage over these prior works, especially if the application ex-

hibits little spatial locality.

Some software-level high-latency compression tech-

niques are used to save disk bandwidth when paging to

disk on a page fault [14, 35, 13]. Tuduce and Gross apply

compression to non-critical data in memory to mitigate per-

formance degradation from long-latency compression [32].

Kjelso et al. [24] show that hardware compression performs

better than software compression.

The other way to save memory bandwidth is to reduce

miss rate. Many prior works have proposed compression-

based cache designs that lead to miss reduction. Lee and

Hong have used an X RL compression algorithm for cache

compression and have tried to hide high latency decom-

pression in order to improve performance [21]. Villa et

al. have proposed Frequent Value Compression for all lev-

els of cache, especially the low-associative first level cache.

Their compression scheme is based on the fact that most

values read from or written to the memory hierarchy belong

to a few special patterns [34]. Alameldeen and Wood also

found similarities in the patterns of words of cache lines.

They use compression to keep more cache lines in a set

to reduce cache miss rates. This approach, however, suf-

fers from 5-cycle decompression [6, 7]. Another approach

for cache compression was proposed by Islam and Sten-

strom [19], and Dusser et al. [15], which compresses cache

lines with entire zero values. Yang et al. use the same ap-

proach to reduce power in the cache [36]. C-pack is a recent

proposal that performs parallel decompression of multiple

cache lines [12]. Pekhimenko et al. propose base-delta-

immediate [27], which is an algorithm that relies on small

differences between words in the same line. This algorithm

is applied to compression in the cache hierarchy. Hallnor

and Reinhardt investigate designs with both memory and

cache compression [18].

Thuresson et al. evaluate a value locality compression

scheme for the memory bus [31]. Similar to our work, they

do not attempt to save memory capacity. Blocks are sent

from the LLC to an off-chip memory controller in com-

pressed format. The memory controller then stores the

block in memory in its uncompressed form. This link com-

pression approach is not applicable in most modern systems

that integrate the memory controller on the processor chip.

Some papers have proposed finer granularitymemory ac-

cess, but have not considered compression. Mini-rank first

proposed rank sub-setting for energy reduction [40]. Yoon

et al. [38, 37] rely on rank subsetting to allow fine grain

memory access, i.e., only part of a line is sent over the

memory bus. This is primarily used to save bandwidth and

power, but requires a sector cache [23].

Skerlj and Ienne trade off reliability and energy by us-

ing weaker ECC codes and using that space to store DBI

bits [29].

Finally, Sathish et al. [28] consider compression for

bandwidth saving in GPUs. Similar to our work, they too do

not attempt to save memory capacity and rely on a metadata

cache to fetch the appropriate amount of compressed data

from GDDR5 memory. Our approach builds on this prior

work in many ways. First, while GDDR5 allows for fine-

grained memory access, DDR3 does not. To allow for fine-

grained access, we combine compression with rank subset-

ting. We also introduce GRS to mitigate the long data trans-

fer times inherent in rank subsetting. Second, we take ad-

vantage of unused space to send ECC information without

requiring another data burst. Third, MemZip reduces bus

activity with DBI, again exploiting the unused space cre-

ated by compression.

7 Conclusion

The MemZip organization attempts memory compres-

sion with a focus on low complexity, reliability, and en-

ergy efficiency. It also derives high performance by re-

ducing bandwidth pressure. It is able to achieve these

goals by combining compression with rank subsetting, and

with novel data layouts. It integrates the data layout with

embedded-ECC codes as well as DBI codes. We show that

the use of the new GRS data layout allows us to dramat-

ically reduce energy per access, while not incurring long

data transfer times. We believe this is an area of promising

future work. There is the potential to further improve per-

formance with intelligent schedulers that can prioritize the

shortest job or deprioritize ECC code fetches.
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