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Parallel Algorithms II

• Topics: matrix and graph algorithms



2

Solving Systems of Equations

• Given an N x N lower triangular matrix A and an N-vector
b, solve for x, where Ax = b (assume solution exists)

a11x1 = b1 
a21x1 + a22x2 = b2 , and so on…
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Equation Solver
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Equation Solver Example

• When an x, b, and a meet at a cell, ax is subtracted from b
• When b and a meet at cell 1, b is divided by a to become x
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Complexity

• Time steps = 2N – 1

• Speedup = O(N), efficiency = O(1)

• Note that half the processors are idle every time step –
can improve efficiency by solving two interleaved
equation systems simultaneously
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Inverting Triangular Matrices

• Finding X, such that  AX = I, where A is a lower triangular
matrix

• For each row j,  A xj = ej , where ej is the jth unit vector
(0,…, 0, 1, 0,…, 0) and xj is the jth row of matrix X

• Simple extension of the earlier algorithm – it can be
applied to compute each row individually
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Inverting Triangular Matrices
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Solving Tridiagonal Matrices

• Can be solved recursively with odd-even reduction
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Odd-Even Reduction

• For each odd  i, the corresponding equation Ei is 
represented as:

• This equation is substituted in equations Ei-1 and Ei+1

• Therefore, equation Ei-1 now has the following unknowns:
xi-1, xi+1, xi-3, (note that i is odd) 

• We now have N/2 equations involving only even unknowns
– repeat this process until there is only 1 equation with 1
unknown – after computing this unknown, back-substitute
to get other unknowns 
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X-Tree Implementation
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The Algorithm

• The ith leaf receives the inputs ui, di, li, and bi

• Each leaf sends its values to both neighboring processors
(purple sideways arrows) and every even leaf computes
the u, d, l, and b values for the second level of equations

• These values are sent to the next higher level (upward
purple arrows)

• After the root computes the value of xN, it is propagated
down and to the sides until all xi are computed (green
arrows)
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Gaussian Elimination

• Solving for x, where Ax=b and A is a nonsingular matrix

• Note that A-1Ax = A-1b = x ; keep applying transformations
to A such that A becomes I ; the same transformations 
applied to b will result in the solution for x

• Sequential algorithm steps:
� Pick a row where the first (ith) element is non-zero and

normalize the row so that the first (ith) element is 1
� Subtract a multiple of this row from all other rows so

that their first (ith) element is zero
� Repeat for all i
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Sequential Example

2   4   -7       x1         3
3   6   -10     x2   =    4
-1  3   -4       x3         6

1   2   -7/2    x1         3/2
3   6   -10     x2   =    4
-1  3   -4       x3         6

1   2   -7/2    x1         3/2
0   0   1/2     x2   =    -1/2
-1  3   -4       x3         6

1   2   -7/2    x1         3/2
0   0   1/2     x2   =    -1/2
0   5  -15/2   x3        15/2

1   2   -7/2    x1         3/2
0   5  -15/2   x2   =  15/2
0   0   1/2     x3        -1/2

1   2   -7/2    x1         3/2
0   1   -3/2    x2   =    3/2
0   0   1/2     x3        -1/2

1   0   -1/2    x1        -3/2
0   1   -3/2    x2   =    3/2
0   0   1/2     x3        -1/2

1   0   -1/2    x1        -3/2
0   1   -3/2    x2   =    3/2
0   0      1     x3         -1

1   0   0    x1        -2
0   1   0    x2   =    0
0   0   1    x3        -1
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Algorithm Implementation

• The matrix is input in staggered form
• The first cell discards inputs until it finds

a non-zero element (the pivot row)

• The inverse ρ of the non-zero
element is now sent rightward

• ρ arrives at each cell at the same
time as the corresponding
element of the pivot row
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Algorithm Implementation

• Each cell stores δi = ρ ak,I – the value for the normalized pivot row
• This value is used when subtracting a multiple of the pivot row from other rows
• What is the multiple? It is  aj,1
• How does each cell receive aj,1 ? It is passed rightward by the first cell
• Each cell now outputs the new values for each row
• The first cell only outputs zeroes and these outputs are no longer needed
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Algorithm Implementation

• The outputs of all but the first cell must now go through the remaining 
algorithm steps

• A triangular matrix of processors efficiently implements the flow of data
• Number of time steps?
• Can be extended to compute the inverse of a matrix
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Graph Algorithms
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Floyd Warshall Algorithm
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Implementation on 2d Processor Array
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Algorithm Implementation

• Diagonal elements of the processor array can broadcast
to the entire row in one time step (if this assumption is not
made, inputs will have to be staggered)

• A row sifts down until it finds an empty row – it sifts down
again after all other rows have passed over it

• When a row passes over the 1st row, the value of ai1 is
broadcast to the entire row – aij is set to 1 if ai1 = a1j = 1
– in other words, the row is now the ith row of A(1)

• By the time the kth row finds its empty slot, it has already
become the kth row of A(k-1)
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• When the ith row starts moving again, it travels over
rows ak (k > i) and gets updated depending on
whether there is a path from i to j via vertices < k (and
including k)

Algorithm Implementation
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