Parallel Algorithms Il

« Topics: matrix and graph algorithms

Solving Systems of Equations

« Given an N x N lower triangular matrix A and an N-vector
b, solve for x, where AX = b (assume solution exists)

a,,X; = by
a, X; + a,,X, = b, ,and so on...

. o . T
Define 1 =ger b1, ti =def bi — 2727 @ijTj,2 <
i < N. Then z; = i{;/a;;.

Equation Solver

Define ¢1 =gef b1, ti =der b; — E§;11 a;jTj,2 <
i < N. Then z; = i{;/a;;.

Xy X3X> X1 after 3 steps
- . -
- wa— i b3 § b4
EERERY
aq % 0 0
* 021 * *
A, ® @31 %
* as; * Qg
ass * Q4 *

Equation Solver Example

« When an X, b, and a meet at a cell, ax is subtracted from b
« When b and a meet at cell 1, b is divided by a to become x

XX g o
E Xy : X,
— - - * — - g - *
- T |y | --—b SR - {)3 E’-l = P - - - ’)4
A A B IR
* an ¥ * @32 * a3 *
0 "' a3 X * @32 > Ay
* e * €y (1 o * I.'TL;«, *
a, Ay i a, x 3
E3 a4 #* H_]”; Fr s sk
ayy # # #
. = X — -
b3= by - a3 X, bySby=On® by=hy - G50
.I'J.}L -IIJ-}L.:
i X X i X
—— g 12 e —— e
- —a— g - b.; e - - -
a F ' L}
Froing oy posy c
b @32 Ay 33 a, *
iy % Q4o # # a, * %
? ay * % Ayy * ’ 4
r

Complexity

e Time steps =2N -1
» Speedup = O(N), efficiency = O(1)

* Note that half the processors are idle every time step —
can improve efficiency by solving two interleaved
equation systems simultaneously

Inverting Triangular Matrices

* Finding X, such that AX =1, where A is a lower triangular
matrix

* For each row |, A X =€;, where g, is the jth unit vector
(0,...,0,1,0,...,0) and x; Is the jth row of matrix X

« Simple extension of the earlier algorithm — it can be
applied to compute each row individually

Inverting Triangular Matrices

- & ey |-
? f f ﬁ 0%0*0*1
= [« |« [« | *0%1%0
N I I
- [ey [| 1%0%0
0 %
Lt Tt
1 % 0
A
) aZ'l) *
s % A3 *
% as, " A
as; * @42 *
* ﬂl43 * %
: *

Solving Tridiagonal Matrices

Tridiagonal matrix : for all z,7, the (<,7)-th
entry is 0 if e —j| > 1

[(d1 wq \
lo do wuo O
A=
0 IN—-1 dN-1 un-—1
\ IN AN)

Solve Ax = b for a vector b.

« Can be solved recursively with odd-even reduction

Odd-Even Reduction

* For each odd I, the corresponding equation E; is

represented as: 1
T; = E(bi — LiTi—1 — wTi41).
T

 This equation is substituted in equations E ; and E,;

» Therefore, equation E, ; now has the following unknowns:
Xi 1, Xiz1, X3, (NOte that i is odd)

* We now have N/2 equations involving only even unknowns
— repeat this process until there is only 1 equation with 1
unknown — after computing this unknown, back-substitute

to get other unknowns .

X-Tree Implementation

]

LS

/NN

Dol

A

l

e

4--

;

Ay

- 8
8
6 ™8
él:7*

o

8

10

The Algorithm

 The it" leaf receives the inputs u, d,, I, and b,

« Each leaf sends its values to both neighboring processors
(purple sideways arrows) and every even leaf computes
the u, d, |, and b values for the second level of equations

* These values are sent to the next higher level (upward
purple arrows)

* After the root computes the value of xy, it iIs propagated
down and to the sides until all x; are computed (green
arrows)

11

Gaussian Elimination

 Solving for x, where Ax=b and A is a nonsingular matrix

* Note that A-Ax = Alb = x ; keep applying transformations
to A such that A becomes | ; the same transformations
applied to b will result in the solution for x

« Sequential algorithm steps:
= Pick a row where the first (i) element is non-zero and
normalize the row so that the first (i) element is 1
= Subtract a multiple of this row from all other rows so
that their first (it") element is zero
* Repeat for all |

12

Sequential Example

2 4 -7 x1 3 1 2 -72 x1 3/2 1 2 -72 x1 3/2
3 6 -10 x2 4 3 6 -10 x2 = 4 0 0 1/72 x2 = -1/2
-1 3 4 X3 6 -1 3 -4 X3 6 -1 3 -4 X3 6
1 2 -72 x1 3/2 1 2 -72 x1 3/2

0 0 1/2 x2 -1/2 0 5 -15/2 x2 = 15/2

0 5 -15/2 x3 15/2 0 0 1/2 x3 -1/2

1 2 -72 x1 3/2 1 0 -1/72 x1 -3/2

0 1 -3/2 x2 3/2 0 1 -3/2 x2 = 3/2

0 0 1/2 x3 -1/2 0O 0 1/2 x3 -1/2

1 0 -1/72 x1 -3/2 1 0 0 x -2

0 1 -3/2 x2 3/2 010 x2 =20

0O 0 1 x3 -1 O 01 x -1

13

Algorithm Implementation

Y
¥

- -

E * The matrix is input in staggered form
 The first cell discards inputs until it finds

S & a non-zero element (the pivot row)
@31 iy E

@31 @22 @13

A4 e ar;

; a2 a33

* #* ﬂ.dﬁ

4 3 *

L]]
Fi12 K23

» The inverse p of the non-zero f f

'

element is now sent rightward

» p arrives at each cell at the same f @ f f

time as the corre_sponding i1 1 a , Ay 14

element of the pivot row @, 1 41,2 @ 3
. Ae2,2 Oyv1,2
» . Acv2,2

14

Algorithm Implementation

0, =P @2 Ai1,3
A 12 - 52 Q11 Pay

f

f 21 f 11 f
A +31 Ayi22 Ai41,2
Ayi41 A 43,2 A2

* Each cell stores o, = p a,, — the value for the normalized pivot row

 This value is used when subtracting a multiple of the pivot row from other rows
* What is the multiple? Itis a,,

* How does each cell receive a,; ? It Is passed rightward by the first cell

» Each cell now outputs the new values for each row

 The first cell only outputs zeroes and these outputs are no longer needed

15

Algorithm Implementation

» The outputs of all but the first cell must now go through the remaining
algorithm steps

* A triangular matrix of processors efficiently implements the flow of data

* Number of time steps?

» Can be extended to compute the inverse of a matrix

* *

yq ay ¥
g 2 :
Ay s Aoy

Ay

Graph Algorithms

G = (V,E) : a directed graph, V ={1,...,N}
The adjacency matrix A= (a;;) of G is

- __ | 1 if either (3,5) € E or ¢ = j,
%j =Y 0 otherwise.

The transitive closure of G is G* = (V, E*),

E* = {(+,7) | 7 is reachable from z in G}.

A AT
@} ()
g £€/71100) /1111)
i0101 0111
~ lo110 0111
@ I"""“*:‘-3"‘)\(:.(311) \0 11 1)

Floyd Warshall Algorithm

A = ¢ (a,gf)), where for each k,0 < k <

i, a,g’) = 1 if j is reachable from : passing
through only nodes < k and O otherwise.

Then AN = A*, A0) = A, and for all k> 1,

a.gg) — ag:_l) V (a,g_l) A a,%_l)) .

18

Implementation on 2d Processor Array

Row 3

Row 2 Row 3
Row 1 Row 2 Row 3
Row 1 Row 2 Row 3
Row 1 Row 2

Row 1
19

Algorithm Implementation

» Diagonal elements of the processor array can broadcast
to the entire row in one time step (if this assumption is not
made, inputs will have to be staggered)

* A row sifts down until it finds an empty row — it sifts down
again after all other rows have passed over it

* When a row passes over the 1st row, the value of a, Is
broadcast to the entire row — a;issetto 1ifa; =a; =1
— in other words, the row is now the it row of A®

* By the time the k" row finds its empty slot, it has already

become the kth row of Ak-1) }

Algorithm Implementation

* When the it" row starts moving again, it travels over
rows a, (k > i) and gets updated depending on
whether there is a path from i to | via vertices < k (and
iIncluding k)

21

Title

e Bullet

22

