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Lecture 21: Coherence and Interconnection Networks

Papers:
• Flexible Snooping: Adaptive Filtering and Forwarding 
in Embedded Ring Multiprocessors, UIUC, ISCA-06 

• Coherence-Ordering for Ring-Based Chip 
Multiprocessors, Wisconsin, MICRO-06 (very brief)

• In-Network Cache Coherence, Princeton, MICRO-06
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Motivation

• CMPs are the standard

• cheaper to build medium size machines
– 32 to 128 cores

• shared memory, cache coherent
– easier to program, easier to manage

• cache coherence is a necessary evil
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Cache coherence solutions
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Ring Interconnect based snoop protocols

• Investigated by Barroso et al. in early nineties

• Why?
– Short, fast point-to-point link

– Fewer (data) ports

– Less complex than packet-switched

– Simple, distributed arbitration

– Exploitable ordering for coherence
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Ring in action

R

S

R

S

R

S

supplier
predictor

snoop

request

cmp

Lazy Eager Oracle

response

data
data

data

Courtesy: UIUC-ISCA06



6

R

S

R

S

R

S

latency

snoops

messages

• goal: adaptive schemes that approximate Oracle’s behavior
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Ring in action

Courtesy: UIUC-ISCA06
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Primitive snooping actions

X X

• snoop and then forward

• forward and then snoop

• forward only

+ fewer messages

+ shorter latency

+ fewer snoops
+ shorter latency
– false negative predictions not allowed

Courtesy: UIUC-ISCA06
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Predictor implementation

• Subset
– associative table:

subset of addresses that can be supplied by node

• Superset
– bloom filter: superset of addresses that can be supplied by node
– associative table (exclude cache):

addresses that recently suffered false positives

• Exact
– associative table: all addresses that can be supplied by node
– downgrading: if address has to be evicted from predictor table, 
corresponding line in node has to be downgraded
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Experiments

• 8 CMPs, 4 ooo cores each = 32 cores
– private L2 caches

• on-chip bus interconnect
• off-chip 2D torus interconnect with embedded 

unidirectional ring
• per node predictors:  latency of 3 processor cycles
• sesc simulator (sesc.sourceforge.net)
• SPLASH-2, SPECjbb, SPECweb
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Most cost-effective algorithms
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• high performance: Superset Aggressive
• faster than Eager at lower energy consumption

• energy conscious: Superset Conservative
• slightly slower than Eager at much lower energy consumption
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Issues

• Implementation of Ring Interconnects
• Already available in commercial processors

• IBM Power series & Cell
• Next generation Intel processors

• Limited Scalability (medium range systems)

• Power Dissipation
• Overhead due to design of routers (trivial though)

• Conflicts & Races
• Ring is not totally ordered

• may lead to retries (unbounded?)
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Ordering Points – avoiding retries

• Employ a node as an ordering point statically
• Creates total ordering of requests!
• Performance hit due to centralization

• Ring-Order (Wisconsin, MICRO 2006)
• Combines ordering and eager forwarding

• Ordering for stability
• Eager forwarding for performance

• Inspired from token coherence
• Use of a priority token

• breaks conflicts
• provides ordering
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In-Network Cache Coherence

• Traditional Directory based Coherence
• Decouple the protocol and the Communication medium

• Protocol optimizations for end-to-end communication
• Network optimizations for reduced latency

• Known problems due to technology scaling
• Wire delays
• Storage overhead of directories (80 core CMPs)

• Expose the interconnection medium to the protocol
• Directory = Centralized serializing point

• Distribute the directory with-in the network
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Current: Directory-Based Protocol

• Home node (H) keeps a 
list (or partial list) of 
sharers

• Read: Round trip 
overhead
– Reads don’t take 

advantage of locality
• Write: Up to two round 

trip overhead
– Invalidations 

inefficient

H

Courtesy:Princeton-MICRO06
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New Approach: Virtual Network

• Network is not just for getting 
from A to B

• It can keep track of sharers 
and maintain coherence

• How? With trees stored within 
routers
– Tree connecting home 

node with sharers
– Tree stored within routers
– On the way to home node, 

when requests “bump” into 
trees, routers will re-route 
them towards sharers.

H

Bump into tree

Add to tree

Courtesy:Princeton-MICRO06
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H

Reads Locate Data Efficiently

Legend
H:   Home node

Sharer node

Tree node (no data)

Read request/reply
Write request/reply
Teardown request

Acknowledgement

• Read Request 
injected into the 
network

• Tree constructed as 
read reply is sent 
back

• New read injected 
into the network

• Request is 
redirected by the 
network

• Data is obtained 
from sharer and 
returned

Courtesy:Princeton-MICRO06
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Writes Invalidate Data Efficiently

H

• Write Request 
injected into the 
network

• In-transit 
invalidations

• Acknowledgements 
spawned at leaf 
nodes

• Wait for 
acknowledgements

• Send out write reply

Legend
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Courtesy:Princeton-MICRO06
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Router Micro-architecture
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• Each cache line in the 
virtual tree cache 
contains
– 2 bits (To, From root 

node) for each 
direction (NSEW)

– 1 bit if the local node 
contains valid data

– 1 busy bit
– 1 Outstanding 

request bit

Tag Data

En
try

T T T TF F F F
N S E W D B R

Virtual Tree Cache

Router Micro-architecture: Virtual Tree Cache

Courtesy:Princeton-MICRO06
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Methodology

• Benchmarks: SPLASH-2
• Multithreaded simulator: Bochs running 16 or 64-way
• Network and virtual tree simulator

– Trace-driven 
• Full-system simulation becomes prohibitive with many cores
• Motivation: explore scalability

– Cycle-accurate
– Each message is modeled
– Models network contention (arbitration)
– Calculates average request completion times

Bochs
Network 

Simulator
Application Memory traces Memory access 

latency 
performance
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Performance Scalability

• Compare in-network virtual 
tree protocol to standard 
directory protocol

• Good improvement
– 4x4 Mesh: Avg. 35.5% 

read latency reduction, 
41.2% write latency 
reduction

• Scalable
– 8x8 Mesh: Avg. 35% 

read and 48% write 
latency reduction

4x4 Mesh

8x8 Mesh
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Storage Scalability

• Directory protocol: O(# Nodes)
• Virtual tree protocol: O(# Ports) ~O(1)
• Storage overhead

– 4x4 mesh: 56% more storage bits
– 8x8 mesh: 58% fewer storage bits

16

64

# of Nodes Tree Cache Line Directory Cache Line

28 bits

28 bits

18 bits

66 bits

Courtesy:Princeton-MICRO06
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Issues

• Power Dissipation
• Major Bottleneck

• complex functionality in the routers

• Complexity
• Complexity of routers, arbiters, etc. 
• Lack of verification tools

• CAD tool support
• More research needed for ease of adoption
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Summary

• More and more cores on a CMP
• Natural trend towards distribution of state
• More interaction between interconnects and protocols

• Ring interconnects => medium size systems
• Simple design, low cost
• Limited Scalability

• In-Network  coherence => large scale systems
• Scalability
• Severe implementation and power constraints on chip
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Thank you & Questions
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