
1

Lecture 12: Relaxed Consistency Models

• Topics: sequential consistency recap, relaxing various
SC constraints, performance comparison

2

Relaxed Memory Models

• Recall that sequential consistency has two requirements:
program order and write atomicity

• Different consistency models can be defined by relaxing
some of the above constraints � this can improve
performance, but the programmer must have a good
understanding of the program and the hardware

3

Potential Relaxations

• Program Order: (all refer to different memory locations)
� Write to Read program order
� Write to Write program order
� Read to Read and Read to Write program orders

• Write Atomicity: (refers to same memory location)
� Read others’ write early

• Write Atomicity and Program Order:
� Read own write early

4

Write � Read Program Order

• Consider three example implementations that relax the
write to read program order:
� IBM 370: a read can complete before an earlier

write to a different address, but a read cannot return
the value of a write unless all processors have seen
the write

� SPARC V8 Total Store Ordering (TSO): a read can
complete before an earlier write to a different address,
but a read cannot return the value of a write by another
processor unless all processors have seen the write
(it returns the value of own write before others see it)

� Processor Consistency (PC): a read can complete
before an earlier write (by any processor to any
memory location) has been made visible to all

5

Relaxations

�

IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write

�

SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own
write before others see it)

�

Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all

XXXPC

XXTSO

XIBM 370

Rd own Wr
early

Rd others’ Wr
early

R

�

RW
Order

W

�

W
Order

W

�

R
Order

Relaxation

6

Examples

Initially, A=Flag1=Flag2=0 Initially, A=B=0
P1 P2 P1 P2 P3
Flag1=1 Flag2=1 A=1
A=1 A=2 if (A==1)
register1=A register3=A B=1
register2=Flag2 register4=Flag1 if (B==1)

register1=A

Result: reg1=1;reg3=2;reg2=reg4=0 Result: B=1,reg1=0

XXXPC

XXTSO

XIBM 370

Rd own Wr
early

Rd others’ Wr
early

R
�

RW
Order

W

�

W
Order

W

�

R
Order

Relaxation

7

Safety Nets

• To explicitly enforce sequential consistency, safety nets
or fence instructions can be used

• Note that read-modify-write operations can double up as
fence instructions – replacing the read or write with a
r-m-w effectively achieves sequential consistency – the
read and write of the r-m-w can have no intervening
operations and successive reads or successive writes
must be ordered in some of the memory models

8

Optimizations Enabled

• W � R : takes writes off the critical path

• W � W: memory parallelism (bandwidth utilization)

• R � WR: non-blocking caches, overlaps other useful
work with a read miss

9

Weak Ordering

• An example of a model that relaxes all of the above
constraints (except reading others’ write early)

• Operations are classified as data and synchronization

• A counter tracks the number of outstanding data
operations and does not issue a synchronization until
the counter is zero; data ops cannot begin unless the
previous synchronization op has completed

10

Release Consistency

• RCsc relaxes constraints similar to WO, while RCpc also
allows reading others’ writes early

• More distinctions among memory operations
� RCsc maintains SC between special, while RCpc

maintains PC between special ops
� RCsc maintains orders: acquire � all, all � release,

special � special
� RCpc maintains orders: acquire � all, all � release,

special � special, except for sp.wr followed by sp.rd

shared

special ordinary
sync nsync

acquire release

11

Programmer Viewpoint

• Weak ordering will yield high performance, but the
programmer has to identify data and synch operations

• An operation is defined as a synch operation if it forms a
race with another operation in any seq. consistent execution

• Given a seq. consistent execution, an operation forms a
race with another operation if the two operations access
the same location, at least one of them is a write, and
there are no other intervening operations between them

P1 P2
Data = 2000 while (Head == 0) { }
Head = 1 … = Data

12

Performance Comparison

• Taken from Gharachorloo, Gupta, Hennessy, ASPLOS’91

• Studies three benchmark programs and three different
architectures:

� MP3D: 3-D particle simulator
� LU: LU-decomposition for dense matrices
� PTHOR: logic simulator

� LFC: aggressive; lockup-free caches, write buffer with
bypassing

� RDBYP: only write buffer with bypassing
� BASIC: no write buffer, no lockup-free caches

13

Performance Comparison

14

Summary

• Sequential Consistency restricts performance (even more
when memory and network latencies increase relative to
processor speeds)

• Relaxed memory models relax different combinations of
the five constraints for SC

• Most commercial systems are not sequentially consistent
and rely on the programmer to insert appropriate fence
instructions to provide the illusion of SC

15

Title

• Bullet

