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Lecture 12: Relaxed Consistency Models

• Topics: sequential consistency recap, relaxing various
SC constraints, performance comparison
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Relaxed Memory Models

• Recall that sequential consistency has two requirements:
program order and write atomicity

• Different consistency models can be defined by relaxing
some of the above constraints � this can improve
performance, but the programmer must have a good
understanding of the program and the hardware
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Potential Relaxations

• Program Order:  (all refer to different memory locations)
� Write to Read program order
� Write to Write program order
� Read to Read and Read to Write program orders

• Write Atomicity: (refers to same memory location)
� Read others’ write early

• Write Atomicity and Program Order:
� Read own write early
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Write � Read Program Order

• Consider three example implementations that relax the
write to read program order:
� IBM 370: a read can complete before an earlier

write to a different address, but a read cannot return
the value of a write unless all processors have seen
the write

� SPARC V8 Total Store Ordering (TSO): a read can
complete before an earlier write to a different address,
but a read cannot return the value of a write by another
processor unless all processors have seen the write
(it returns the value of own write before others see it)

� Processor Consistency (PC): a read can complete
before an earlier write (by any processor to any
memory location) has been made visible to all
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Relaxations

�

IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write

�

SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own
write before others see it)

�

Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all
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Examples

Initially, A=Flag1=Flag2=0                                      Initially, A=B=0
P1                                       P2                    P1              P2                       P3
Flag1=1                   Flag2=1                      A=1
A=1                          A=2                                if (A==1)
register1=A             register3=A                             B=1
register2=Flag2       register4=Flag1                           if (B==1)

register1=A

Result: reg1=1;reg3=2;reg2=reg4=0                    Result: B=1,reg1=0
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Safety Nets

• To explicitly enforce sequential consistency, safety nets
or fence instructions can be used

• Note that read-modify-write operations can double up as
fence instructions – replacing the read or write with a
r-m-w effectively achieves sequential consistency – the
read and write of the r-m-w can have no intervening 
operations and successive reads or successive writes
must be ordered in some of the memory models
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Optimizations Enabled

• W � R : takes writes off the critical path

• W � W: memory parallelism (bandwidth utilization)

• R � WR: non-blocking caches, overlaps other useful
work with a read miss
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Weak Ordering

• An example of a model that relaxes all of the above
constraints (except reading others’ write early)

• Operations are classified as data and synchronization

• A counter tracks the number of outstanding data
operations and does not issue a synchronization until
the counter is zero; data ops cannot begin unless the
previous synchronization op has completed
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Release Consistency

• RCsc relaxes constraints similar to WO, while RCpc also
allows reading others’ writes early

• More distinctions among memory operations
� RCsc maintains SC between special, while RCpc

maintains PC between special ops
� RCsc maintains orders: acquire � all, all � release,

special � special
� RCpc maintains orders: acquire � all, all � release,

special � special, except for sp.wr followed by sp.rd

shared

special ordinary
sync nsync

acquire release
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Programmer Viewpoint

• Weak ordering will yield high performance, but the
programmer has to identify data and synch operations

• An operation is defined as a synch operation if it forms a
race with another operation in any seq. consistent execution

• Given a seq. consistent execution, an operation forms a
race with another operation if the two operations access
the same location, at least one of them is a write, and
there are no other intervening operations between them

P1                 P2
Data = 2000        while (Head == 0) { }
Head = 1             … = Data
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Performance Comparison

• Taken from Gharachorloo, Gupta, Hennessy, ASPLOS’91

• Studies three benchmark programs and three different
architectures:

� MP3D: 3-D particle simulator
� LU: LU-decomposition for dense matrices
� PTHOR: logic simulator

� LFC: aggressive; lockup-free caches, write buffer with
bypassing

� RDBYP: only write buffer with bypassing
� BASIC: no write buffer, no lockup-free caches
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Performance Comparison
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Summary

• Sequential Consistency restricts performance (even more
when memory and network latencies increase relative to
processor speeds)

• Relaxed memory models relax different combinations of
the five constraints for SC

• Most commercial systems are not sequentially consistent
and rely on the programmer to insert appropriate fence
instructions to provide the illusion of SC
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