
1

Lecture 25: Parallel Algorithms II

• Topics: matrix, graph, and sort algorithms

• Tuesday presentations:

Each group: 10 minutes

Describe the problem, your proposed solution,
clarify novelty and related work, plan to get results,
some early numbers

2

Gaussian Elimination

• Solving for x, where Ax=b and A is a nonsingular matrix

• Note that A-1Ax = A-1b = x ; keep applying transformations
to A such that A becomes I ; the same transformations
applied to b will result in the solution for x

• Sequential algorithm steps:
Pick a row where the first (ith) element is non-zero and
normalize the row so that the first (ith) element is 1
Subtract a multiple of this row from all other rows so
that their first (ith) element is zero
Repeat for all i

3

Sequential Example

2 4 -7 x1 3
3 6 -10 x2 = 4
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
3 6 -10 x2 = 4
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
0 0 1/2 x2 = -1/2
-1 3 -4 x3 6

1 2 -7/2 x1 3/2
0 0 1/2 x2 = -1/2
0 5 -15/2 x3 15/2

1 2 -7/2 x1 3/2
0 5 -15/2 x2 = 15/2
0 0 1/2 x3 -1/2

1 2 -7/2 x1 3/2
0 1 -3/2 x2 = 3/2
0 0 1/2 x3 -1/2

1 0 -1/2 x1 -3/2
0 1 -3/2 x2 = 3/2
0 0 1/2 x3 -1/2

1 0 -1/2 x1 -3/2
0 1 -3/2 x2 = 3/2
0 0 1 x3 -1

1 0 0 x1 -2
0 1 0 x2 = 0
0 0 1 x3 -1

4

Algorithm Implementation

• The matrix is input in staggered form
• The first cell discards inputs until it finds

a non-zero element (the pivot row)

• The inverse ρ of the non-zero
element is now sent rightward

• ρ arrives at each cell at the same
time as the corresponding
element of the pivot row

5

Algorithm Implementation

• Each cell stores δi = ρ ak,I – the value for the normalized pivot row
• This value is used when subtracting a multiple of the pivot row from other rows
• What is the multiple? It is aj,1
• How does each cell receive aj,1 ? It is passed rightward by the first cell
• Each cell now outputs the new values for each row
• The first cell only outputs zeroes and these outputs are no longer needed

6

Algorithm Implementation

• The outputs of all but the first cell must now go through the remaining
algorithm steps

• A triangular matrix of processors efficiently implements the flow of data
• Number of time steps?
• Can be extended to compute the inverse of a matrix

7

Graph Algorithms

8

Floyd Warshall Algorithm

9

Implementation on 2d Processor Array

Row 3
Row 2
Row 1

Row 1

Row 3
Row 2

Row 1/2

Row 3

Row 1/3

Row 2

Row 1

Row 2/3

Row 2/1

Row 3

Row 2

Row 3/1 Row 3/2

Row 1

Row 3

Row 2
Row 1

Row 3
Row 2
Row 1

10

Algorithm Implementation

• Diagonal elements of the processor array can broadcast
to the entire row in one time step (if this assumption is not
made, inputs will have to be staggered)

• A row sifts down until it finds an empty row – it sifts down
again after all other rows have passed over it

• When a row passes over the 1st row, the value of ai1 is
broadcast to the entire row – aij is set to 1 if ai1 = a1j = 1
– in other words, the row is now the ith row of A(1)

• By the time the kth row finds its empty slot, it has already
become the kth row of A(k-1)

11

• When the ith row starts moving again, it travels over
rows ak (k > i) and gets updated depending on
whether there is a path from i to j via vertices < k (and
including k)

Algorithm Implementation

12

Shortest Paths

• Given a graph and edges with weights, compute the
weight of the shortest path between pairs of vertices

• Can the transitive closure algorithm be applied here?

13

Shortest Paths Algorithm

The above equation is very similar to that in transitive closure

14

Sorting with Comparison Exchange

• Earlier sort implementations assumed processors that
could compare inputs and local storage, and generate
an output in a single time step

• The next algorithm assumes comparison-exchange
processors: two neighboring processors I and J (I < J)
show their numbers to each other and I keeps the
smaller number and J the larger

15

Odd-Even Sort

• N numbers can be sorted on an N-cell linear array
in O(N) time: the processors alternate operations with
their neighbors

16

Shearsort

• A sorting algorithm on an N-cell square matrix that
improves execution time to O(sqrt(N) logN)

• Algorithm steps:
Odd phase: sort each row with odd-even sort (all odd

rows are sorted left to right and all even
rows are sorted right to left)

Even phase: sort each column with odd-even sort
Repeat

• Each odd and even phase takes O(sqrt(N)) steps – the
input is guaranteed to be sorted in O(logN) steps

17

Example

18

The 0-1 Sorting Lemma

If a comparison-exchange algorithm sorts input sets
consisting solely of 0’s and 1’s, then it sorts all input
sets of arbitrary values

19

Complexity Proof

• How do we prove that the algorithm completes in O(logN)
phases? (each phase takes O(sqrt(N)) steps)

• Assume input set of 0s and 1s

• There are three types of rows: all 0s, all 1s, and mixed
entries – we will show that after every phase, the number
of mixed entry rows reduces by half

• The column sort phase is broken into the smaller steps
below: move 0 rows to the top and 1 rows to the bottom;
the mixed rows are paired up and sorted within pairs;
repeat these small steps until the column is sorted

20

Example

• The modified algorithm will behave as shown below:
white depicts 0s and blue depicts 1s

21

Proof

• If there are N mixed rows, we are guaranteed to have
fewer than N/2 mixed rows after the first step of the
column sort (subsequent steps of the column sort may
not produce fewer mixed rows as the rows are not sorted)

Each pair of mixed rows produces at least one pure row
when sorted

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

