Lecture 22: Fault Tolerance

Papers:

* Token Coherence: Decoupling Performance and
Correctness, ISCA'03, Wisconsin

* A Low Overhead Fault Tolerant Coherence Protocol
for CMP Architectures, HPCA'O7, Spain

 Error Detection Via Online Checking of Cache
Coherence with Token Coherence Signatures,
HPCA07, Duke

Faults

 Faults can be permanent or transient

 Transient faults are typically caused by high-energy
particles and noise in voltage levels

 Faults lead to two main errors: silent data corruption,
detected unrecoverable error

» A coherence protocol can yield errors in many ways:
* The delivered message contains corrupted data
= A message Is never delivered
= The coherence controller computes incorrectly
= Corrupted state/data in caches
= Human design error

Token Coherence

« Each memory block has N tokens

» A cache may read the contents of a block if it has at least one token

« A cache may write to a block only if it has all N tokens

e Simplifies the design of a correct protocol: the above abstraction
makes it easier to reason about correctness; much easier than
reasoning about every corner case as we did for various

conventional protocols

« Some inefficiencies: can’t silently evict the block — must send the
token to the memory controller first

 Need mechanisms to handle starvation

* One token is flagged as owner and is accompanied by valid data 3

Fault Tolerant Protocol (Paper #1)

* Assumes an underlying token coherence protocol

 Fault model: only handles faults in the interconnection
network; the faults manifest as dropped messages
(either the message never arrives or It is discarded
because CRC indicates corrupted data)

Potential Problems

 Loss of a token-less message (invalidation) will
eventually cause a timeout and the invocation of a
persistent request

 Loss of a message with a token will eventually cause a
deadlock when the next writer attempts to collect all
tokens

 Loss of a message that contains the owner token and data
will end up deadlocking and causing loss of valid data

Timeouts

e The token coherence protocol includes a timeout for
retry and persistent requests — these will be invoked
In case an invalidation message is lost

e If the above fall, another timeout signals a deadlock
(potential loss of token) and invokes a token recreation
process

* It IS possible that a token was never lost, so the token
recreation process must be careful to not increase the
number of tokens

Token Recreation Process

 The memory controller ensures that the requesting cache
ends up with a valid copy of data with all tokens — slow,

but correct

 Since tokens may be stuck in traffic (deadlock false
positive), the token-count invariant must not be violated
when this token is eventually delivered — hence, tokens
have serial numbers and a new serial number is used by

the token recreation process

* The memory controller first cancels all existing tokens,
Informs every node of the new serial number, and
collects valid copies of data; then creates the new serial
number and tokens, and passes data+tokens to requestor

Backup Data

* If a message carrying ownertoken+data is lost, the only
valid copy of data may be lost

* The block is not evicted from the sender’s cache until it
receives an ack for the above message (the block may
be placed in a small backup victim cache)

1 2 e The OAck and BDAck need not
H=--- GetX M hold up the write, but they will
_DataQ=» M->B hold up the transfer of the owner
>Mb [<4=. DAck token to the next writer — the
" oy _BDAck=> B->| system avoids multiple backup
copies to simplify recovery

Summary

Fault / Lost message Effect Detection and Recovery

Transient read/write | Harmless

request

Response with tokens | Deadlock Lost token timeout, to-
ken recreation

Response with tokens | Deadlock Lost token timeout, to-

and data

ken recreation

Response with a dirty
owner token and data

Deadlock and
data loss

Reliable transfer of
owned data using ac-
knowledgements, lost
data timeout

Persistent read/write Deadlock Lost token timeout, to-
requests ken recreation
Persistent request de- | Deadlock Lost persistent deactiva-

activations

tion timeout, persistent
request ping

Ownership acknowl-

Deadlock and

[ost data timeout

edgement cannot evict
line from cache
Backup deletion ac- | Deadlock Lost backup deletion ac-

knowledgement

knowledgement timeout

1.10

1.00
0.90
0.80 X
0.70 1
0.60
050
0.40
0.30
0.20
0.10 1
0.00 +

Results

* No injected faults in experiments below
» Potential performance loss: less cache space because of backup
copies; can’t service the next write request until the backup is deleted

16 core CMP Cel =0«
barnes fit radix tomcaty waternsg Average

cholesky ocear rayt-ace unstructured watersp

Figure 3. Execution time overhead of our pro-
posal compared to TOKENCMP for several
backup buffer sizes.

16 core CMP Oclid27]+4

120
1.10
1.00H
0.90
0.80
0.70—
0.60 —
0.50
040+
0.30
0.20

0,10
000—

barmes fft radix tomcaty watemsq Average
choles<y acsan raytrace unstructured watzrsp

Figure 4. Network traffic overhead of our pro-
tocol compared to TOKENCMP.

10

Results with Message Loss

16 core CMP [125 W250 []500 []1000 [2000]

4.50

4.00

3.50

3.00

2.50

2.00
1.50 | i

1.00

0.50

0.00 ~

barnes fft radix tomceatv waternsq Average
cholesky ocean raytrace unstructured watersp

Figure 5. Execution time overhead under sev-
eral message loss rates.

11

Token Coherence Signatures

Errors can be detected by checking each invariant in token coherence:

e Each block has T tokens, of which one is the owner token
there are initially T tokens for a block in the system
a node can never hold <0 and >T tokens for a block
If a node sends N, tokens for a block at time t, another node
must receive N, tokens for that block at time t (transfers are
not instantaneous, but we will assume that the receiver
owned the tokens since time t)

» A processor can write only if it has all T tokens

» A processor can read a block only if it has at least one
token and valid data

* If a coherence message contains the owner token, it also
contains valid data 12

Distributed Logical Time

 Each node has a time that is incremented on a message
send (or receive) — the message carries the sender’s
timestamp with it

* If the receiver’s time is less than the timestamp, the
receiver updates its clock to timestamp + 1

13

Token Coherence Signature Checker

« Confirm that the {tokens received, timestamp} at the
sender matches that at the receiver

e Over a given time interval, maintain a signature to
represent all received/sent tokens/timestamps and
confirm that they are consistent (allow a grace period as
a message with an old timestamp may not have been
delivered by the end of the interval — if the message is
stuck for a really long time, treat it as a fault)

* If not, rely on previously proposed checkpoint mechanisms
to rollback to valid state and re-execute

14

Signature

 Positive for a receive, negative for a send; the sum of
sighatures should total to zero

© TCS,pe B) = TN, (T+ 1)
tel
* | Is the time interval; t is every logical time step in |; N IS
the number of tokens received at time t; T is the total
number of tokens for a block; can limit the size of the
signature by making every computation modulo n

 Errors can also happen if the token is assigned to the
wrong block; an address signature helps detect such errors:

I'CS Yaddi; owner —[2A; (max{A}+1) f] mod n

15

Example

P1 P2 P3
send 1 token

receive | token 4// for addr 6 at (=2

for addr 6 at t=2 .
‘ ‘ send 1 token
for addr 2 at t=5

receive 1 token
ISR 0 [, TSI I of
11Ul AauUl J dLL—J

Pl P2 P3

TCS oken mon = |'sz2_;+:_1 x55_: : :Tx5_2 i Esgl =0 -> 0K
TCS, o = 6%97 +3x9% - 6x97 - 2x97'= 9° -> error
’ d L J b — —

Crirzszpem) | et PN la TMNAOM MNuvsavabiace Tl
FiYyuic 4. CLAAINPIC 1LVOoL UpPTCIdUVIL 111C
error is highlighted in bold. Only non-owner

tokens are transferred, Ty=4 and max{A}=8.

TCS a0 TCSipten, owner a1d TCS g4, gyoner 0mitted for clarity

Results summary: bandwidth overhead (timestamps and signature
collection) of less than 7% (negligible performance impact)16

Title

e Bullet

17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

