Lecture 21: Router Design

Papers:

* Power-Driven Design of Router Microarchitectures
In On-Chip Networks, MICRO’03, Princeton

A Gracefully Degrading and Energy-Efficient Modular
Router Architecture for On-Chip Networks, ISCA'06,
Penn-State

* ViChaR: A Dynamic Virtual Channel Regulator for
Network-on-Chip Routers, MICRO’06, Penn-State



Router Pipeline

 Four typical stages:
= RC routing computation: compute the output channel
= VA virtual-channel allocation: allocate VC for the head flit
= SA switch allocation: compete for output physical channel
= ST switch traversal: transfer data on output physical channel
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Flow Control

« VC allocation: when the tail flit is sent, the router knows that the
downstream VC is free (or will soon be); the VC is therefore
assigned to the next packet and those flits carry the VCid with them;
the two routers need not exchange signals to agree on the VCid

» Head-of-Line (HoL) blocking: a flit at the head of the queue blocks
flits (belonging to a different packet) behind it that could have
progressed... example: if a VC holds multiple packets because the
upstream node assumed the previous packet was handled (as above)

* Flow control mechanisms:
= Store-and-Forward: buffers/channels allocated per packet
= Cut-through: buffers/channels allocated per packet
= Wormbhole: buffers allocated per flit; channels per packet
= Virtual channel: buffers/channels allocated per flit



Data Points

* On-chip network’s power contribution
INn RAW (tiled) processor: 36%
In network of compute-bound elements (Intel): 20%
In network of storage elements (Intel): 36%
bus-based coherence (Kumar et al. '05): ~12%

e Contributors:
RAW: links 39%: buffers 31%: crossbar 30%
TRIPS: links 31%: buffers 35%: crossbar 33%
Intel: links 18%: buffers 38%: crossbar 29%: clock 13%



Network Power
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Ex = router energy H = number of hops

E.ire = Wire transmission energy D = physical Manhattan distance
E,: = router buffer energy E.... = router crossbar energy

E_, = router arbiter energy

xbar

 This paper assumes that E,;. . D Is ideal network
energy (assuming no change to the application and how
It Is mapped to physical nodes)

» Optimizations are attempted to E; and H



Segmented Crossbar
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(a) A 4x4 matrix crossbar. (b) A 4x4 segmented cross-

bar with 2 segments per line.

* By segmenting the row and column lines, parts of these lines need not
switch = less switching capacitance (especially if your output and input
ports are close to the bottom-left in the figure above)

* Need a few additional control signals to activate the tri-state buffers
(~2 control signals, ~64 data signals)

 Overall crossbar power savings: ~15-30%



Cut-Through Crossbar
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tristate buffers

 Some combinations of turns are not allowed: suchasE > N and N> W
(note that such a combination cannot happen with dimension-order routing)

» Crossbar energy savings of 39-52%; at full-load, with a worst-case routing

algorithm, the probability of a conflict is ~50%
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Write-Through Input Buffer

* Input flits must be buffered in case there is a conflict in a later pipeline stage

* If the queue is empty, the input flit can move straight to the next stage: helps
avoid the buffer read

* To reduce the datapaths, the write bitlines can serve as the bypass path

* Power savings are a function of rd/wr energy ratios
and probability of finding an empty queue
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Express Channels

* Express channels connect non-adjacent nodes — flits traveling a long distance
can use express channels for most of the way and navigate on local channels
near the source/destination (like taking the freeway)

* Helps reduce the number of hops

» The router in each express node is much bigger now
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Express Channels

e Routing: in a ring, there are 5 possible routes and the best is chosen;
in a torus, there are 17 possible routes

* A large express interval results in fewer savings because fewer
messages exercise the express channels

hop count reduction
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Results

* Uniform random traffic (synthetic)

» Write-thru savings are small

* Exp-channel network has half
the flit size to maintain the same
bisection-bandwidth as other
models (express interval of 2)

» Baseline model power breakdown:
link 44%, crossbar 33%, buffers 23%

« Express cubes also improve
O-load latency by 23% -- the
others have a negligible impact
on performance
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Table 3. Average total network power savings (rel-
ative to net_base configuration).
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8x8 torus | 4x4 torus | TRIPS

(random) (random) traces
net_cut | 22.4% 21.6% 20.4%
net_seg | 7.2% 6.9% 6.6%
net_wrt | 4.9% 4.5% 3.8%
net_exp | 36.3% 27.2% 30.9%
net_all | 44.9% 36.3% 37.9%
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The RoCo Router
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ViIChaR

* Router buffers are a bottleneck:
= consume 64% of router leakage power
= consume up to 46% (54%) of total network power (area)
= high buffer depth (buffers per VC) prevents a packet
from holding resources at multiple routers
= large number of VCs helps reduce contention under
high load

e Primary contribution: instead of maintaining k buffers for
each of the v virtual channels, maintain a unified storage
of vk buffers and allow the number of VCs to dynamically
vary between v and vk (buffer depth of k to 1)
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Proposed Architecture
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Figure 4. The Proposed ViChaR Architecture



Unified Buffer Design

* A table to maintain the buffer entries for each VC
* Pointers to the head and tail of each VC

* A list of free buffer entries; a list of free VCs (some VCs are used
as escape routes to avoid deadlock)

* The VCs are allocated in the upstream router — hence, when a VC is
freed at a router, the upstream router is informed (this is not done in a
conventional router) (process similar to credit flow to estimate buffer
occupancy)

* Arbitration mechanism so packets can compete for the next channel
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Results

Salient results:

« With 16 buffers per input port, ViChaR out-performs the
generic router by ~25%, with a 2% power increase

« With 8 buffers, ViChaR matches the performance of a

16-buffer generic router, yielding area/power savings of
30%/34%
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