Lecture 15: Consistency Models

 Topics: seguential consistency, requirements to implement
sequential consistency, relaxed consistency models

Coherence Vs. Consistency

« Recall that coherence guarantees (i) that a write will
eventually be seen by other processors, and (ii) write
serialization (all processors see writes to the same location
In the same order)

e The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

Example Programs

Initially, A=B =0

P1 P2
A=1 B=1
if (B == 0) if (A == 0)

critical section critical section

P1 P2
Data = 2000 while (Head == 0)
Head =1 {}
... = Data

Initially, A=B =0

P1 P2 P3
A=1
if (A==1)
B=1
if (B==1)
register = A

Consistency Example - |

e Consider a multiprocessor with bus-based snooping cache
coherence and a write buffer between CPU and cache

Initially A=B =0
Pl P2

A<l B&1

if (B ==0) if (A==0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a
lock — because of write
buffering, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 4

Consistency Example - 2

P1 P2
Data = 2000 while (Head ==0) { }
Head =1 ... = Data

Sequential consistency requires program order
-- the write to Data has to complete before the write to Head can begin
-- the read of Head has to complete before the read of Data can begin

Consistency Example - 3

P1 P2 P3 P4

o >

2 while (B!'=1){} while (B!=1){}
1 while (C1=1){} while (C 1=1) { }
registerl = A register2 = A

n
=

A
C

e registerl and register2 having different values is a
violation of sequential consistency — possible if updates
to A appear In different orders

e Cache coherence guarantees write serialization to a
single memory location

Consistency Example - 4

Initially, A=B =0

P1 P2 P3
A=1
if (A==1)
B=1
if (B==1)
register = A

Sequential consistency can be had if a process makes sure that
everyone has seen an update before that value is read — else,
write atomicity is violated

Implementing Atomic Updates

* The above problem can be eliminated by not allowing a
read to proceed unless all processors have seen the last
update to that location

e Easy in an invalidate-based system: memory will not service
the request unless it has received acks from all processors

 In an update-based system: a second set of messages Is
sent to all processors informing them that all acks have been
received; reads cannot be serviced until the processor gets
the second message

Sequential Consistency

* A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

e The multiprocessors in the previous examples are not
sequentially consistent

e Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read — very intuitive for
the programmer, but extremely slow

Performance Optimizations

* Program order is a major constraint — the following try to
get around this constraint without violating seq. consistency
» If a write has been stalled, prefetch the block In
exclusive state to reduce traffic when the write happens
» allow out-of-order reads with the facility to rollback
If the ROB detects a violation

 Get rid of sequential consistency in the common case and
employ relaxed consistency models — if one really needs
sequential consistency in key areas, insert fence
Instructions between memory operations

10

Relaxed Consistency Models

« We want an intuitive programming model (such as
sequential consistency) and we want high performance

* We care about data races and re-ordering constraints for
some parts of the program and not for others — hence,
we will relax some of the constraints for sequential
consistency for most of the program, but enforce them
for specific portions of the code

* Fence instructions are special instructions that require
all previous memory accesses to complete before
proceeding (sequential consistency)

11

Potential Relaxations

* Program Order: (all refer to different memory locations)
» Write to Read program order
» Write to Write program order
» Read to Read and Read to Write program orders

« Write Atomicity: (refers to same memory location)
» Read others’ write early

* Write Atomicity and Program Order:
» Read own write early

12

Relaxations

Relaxation W->R | W->W/|R->RW| Rdothers’ Wr | Rd own Wr
Order Order Order early early
IBM 370 X
TSO X X
PC X X X
SC X

» IBM 370: a read can complete before an earlier write to a different address, but a
read cannot return the value of a write unless all processors have seen the write

» SPARC V8 Total Store Ordering (TSO): a read can complete before an earlier
write to a different address, but a read cannot return the value of a write by another
processor unless all processors have seen the write (it returns the value of own

write before others see it)

» Processor Consistency (PC): a read can complete before an earlier write (by any
processor to any memory location) has been made visible to all

13

Safety Nets

 To explicitly enforce sequential consistency, safety nets
or fence instructions can be used

* Note that read-modify-write operations can double up as
fence instructions — replacing the read or write with a
r-m-w effectively achieves sequential consistency — the
read and write of the r-m-w can have no intervening
operations and successive reads or successive writes
must be ordered in some of the memory models

14

Title

e Bullet

15

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

