
1

Lecture 10: TM Pathologies

• Topics: scalable lazy implementation, paper on TM
performance pathologies

2

Scalable Lazy Commit Algorithm

• Transactions that deal with different directories must
proceed in parallel; transactions that deal with the same
directory must necessarily be serialized

• Before committing, a transaction must make sure there are
no conflicts for its directories

• Each directory has a token and a transaction can proceed
with commit after acquiring every token for directories in
its read and write sets

• Tokens must be acquired in ascending order to avoid
deadlocks; mechanisms are required to avoid starvation

3

Considered Implementations

• LL: lazy versioning, lazy conflict detection, committing
transaction wins conflicts

• EL: lazy versioning, eager conflict detection, requester
succeeds and others abort

• EE: eager versioning, eager conflict detection, requester
stalls

4

• Two conflicting transactions that
keep aborting each other

• Can do exponential back-off to
handle livelock

• Fixable by doing requester stalls?

• VM: any
• CD: eager
• CR: requester wins

Pathology 1: Friendly Fire

5

• A writer has to wait for the reader
to finish – but if more readers keep
showing up, the writer is starved
(note that the directory allows new
readers to proceed by just adding
them to the list of sharers)

• VM: any
• CD: eager
• CR: requester stalls

Pathology 2: Starving Writer

6

• If there’s a single commit token,
transaction commit is serialized

• There are ways to alleviate this problem

• VM: lazy
• CD: lazy
• CR: any

Pathology 3: Serialized Commit

7

• A transaction is stalling on another
transaction that ultimately aborts and
takes a while to reinstate old values

• VM: any
• CD: eager
• CR: requester stalls

Pathology 4: Futile Stall

8

• Small successful transactions can
keep aborting a large transaction

• The large transaction can eventually
grab the token and not release it
until after it commits

• VM: lazy
• CD: lazy
• CR: committer wins

Pathology 5: Starving Elder

9

• A number of similar (conflicting)
transactions execute together – one
wins, the others all abort – shortly,
these transactions all return and
repeat the process

• VM: lazy
• CD: lazy
• CR: committer wins

Pathology 6: Restart Convoy

10

• If two transactions both read the
same object and then both decide to
write it, a deadlock is created

• Exacerbated by the Futile Stall pathology

• Solution?

• VM: eager
• CD: eager
• CR: requester stalls

Pathology 7: Dueling Upgrades

11

Four Extensions

• Predictor: predict if the read will soon be followed by a
write and acquire write permissions aggressively

• Hybrid: if a transaction believes it is a Starving Writer, it
can force other readers to abort; for everything else, use
requester stalls

• Timestamp: In the EL case, requester wins only if it is the
older transaction (handles Friendly Fire pathology)

• Backoff: in the LL case, aborting transactions invoke
exponential back-off to prevent convoy formation

12

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

