Lecture 9: TM Implementations

* Topics: wrap-up of “lazy” implementation (TCC),
eager implementation (LogTM)



Lazy Overview

Topics:

» Commit order

» Overheads

* Wback, WAR, WAW, RAW

» Overflow

 Parallel Commit

* Hiding Delay

*1/0

» Deadlock, Livelock, Starvation



Detecting Conflicts — Overview

* Writes can be cached (can’t be written to memory) — if the
block needs to be evicted, flag an overflow (abort transaction
for now) — on an abort, invalidate the written cache lines

« Keep track of read-set and write-set (bits in the cache) for
each transaction

* When another transaction commits, compare its write set
with your own read set — a match causes an abort

At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their
write-sets do not intersect)



“Lazy” Implementation (Partially Based on TCC)

* An implementation for a small-scale multiprocessor with
a snooping-based protocol

 Lazy versioning and lazy conflict detection

* Does not allow transactions to commit in parallel



Handling Reads/Writes

* When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

* When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

e If a line with wr-bit set Is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data) (or must acquire
commit permissions)



Commit Process

* When a transaction reaches its end, it must now make
Its writes permanent

A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted or written
again — must simply invalidate other readers of these lines)

* When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and

re-starts) :



Miscellaneous Properties

* While a transaction is committing, other transactions can
continue to issue read requests

* Writeback after commit can be deferred until the next
write to that block

* If we're tracking info at block granularity, (for various
reasons), a conflict between write-sets must force an abort



Summary of Properties

 Lazy versioning: changes are made locally — the “master copy” is
updated only at the end of the transaction

» Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

» Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

 Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

* No fear of deadlock/livelock — the first transaction to acquire the bus will
commit successfully

 Starvation is possible — need additional mechanisms



TCC Features

o All transactions all the time (the code only defines
transaction boundaries): helps get rid of the baseline
coherence protocol

 When committing, a transaction must acquire a central
token — when 1I/O, syscall, buffer overflow is encountered,
the transaction acquires the token and starts commit

« Each cache line maintains a set of “renamed bits” — this
Indicates the set of words written by this transaction —
reading these words is not a violation and the read-bit is
not set



TCC Features

e Lines evicted from the cache are stored in a write buffer:;
overflow of write buffer leads to acquiring the commit token

* Less tolerant of commit delay, but there is a high degree
of “coherence-level parallelism”

 To hide the cost of commit delays, it is suggested that a
core move on to the next transaction in the meantime —
this requires “double buffering” to distinguish between
data handled by each transaction

e An ordering can be imposed upon transactions — useful for

speculative parallelization of a sequential program 0



Parallel Commits

* Writes cannot be rolled back — hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

* One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

e Arbiter does not grant commit permissions Iif it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

e The “lazy” design can also work with directory protocols11



“Eager” Implementation (Based Primarily on LogTM)

« A write Is made permanent immediately (we do not wait
until the end of the transaction)

* This means that if some other transaction attempts a
read, the latest value is returned and the memory may
also be updated with this latest value

« Can't lose the old value (in case this transaction is
aborted) — hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This Is eager versioning

12



Versioning

* Every write first requires a read and a write to log the old
value — the log is maintained in virtual memory and will
likely be found in cache

* Aborts are uncommon — typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

e If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

e Log writes can be placed in a write buffer to reduce

contention for L1 cache ports -



Conflict Detection and Resolution

 Since Transaction-A’s writes are made permanent
rightaway, It is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

e At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at |least
one of them does a write

* One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B

- neither transaction needs to abort y



Deadlocks

e Can lead to deadlocks: each transaction is waiting for the
other to finish

* Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write 'Y
read Y read X

* Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction 15



Block Replacement

e If a block in a transaction’s rd/wr-set is evicted, the data
IS written back to memory If necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction

has committed before proceeding)

 The sticky pointers are lazily removed over time (commits
continue to be fast)
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Title

e Bullet
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