Lecture 9: TM Implementations

* Topics: wrap-up of “lazy” implementation (TCC),
eager implementation (LogTM)



Lazy Overview

Topics:

» Commit order

» Overheads

* Wback, WAR, WAW, RAW

» Overflow

 Parallel Commit

* Hiding Delay

*1/0

» Deadlock, Livelock, Starvation



Detecting Conflicts — Overview

* Writes can be cached (can’t be written to memory) — if the
block needs to be evicted, flag an overflow (abort transaction
for now) — on an abort, invalidate the written cache lines

« Keep track of read-set and write-set (bits in the cache) for
each transaction

* When another transaction commits, compare its write set
with your own read set — a match causes an abort

At transaction end, express intent to commit, broadcast
write-set (transactions can commit in parallel if their
write-sets do not intersect)



“Lazy” Implementation (Partially Based on TCC)

* An implementation for a small-scale multiprocessor with
a snooping-based protocol

 Lazy versioning and lazy conflict detection

* Does not allow transactions to commit in parallel



Handling Reads/Writes

* When a transaction issues a read, fetch the block in
read-only mode (if not already in cache) and set the
rd-bit for that cache line

* When a transaction issues a write, fetch that block in
read-only mode (if not already in cache), set the wr-bit
for that cache line and make changes in cache

e If a line with wr-bit set Is evicted, the transaction must
be aborted (or must rely on some software mechanism
to handle saving overflowed data) (or must acquire
commit permissions)



Commit Process

* When a transaction reaches its end, it must now make
Its writes permanent

A central arbiter is contacted (easy on a bus-based system),
the winning transaction holds on to the bus until all written
cache line addresses are broadcasted (this is the commit)
(need not do a writeback until the line is evicted or written
again — must simply invalidate other readers of these lines)

* When another transaction (that has not yet begun to commit)
sees an invalidation for a line in its rd-set, it realizes its
lack of atomicity and aborts (clears its rd- and wr-bits and

re-starts) :



Miscellaneous Properties

* While a transaction is committing, other transactions can
continue to issue read requests

* Writeback after commit can be deferred until the next
write to that block

* If we're tracking info at block granularity, (for various
reasons), a conflict between write-sets must force an abort



Summary of Properties

 Lazy versioning: changes are made locally — the “master copy” is
updated only at the end of the transaction

» Lazy conflict detection: we are checking for conflicts only when one of
the transactions reaches its end

» Aborts are quick (must just clear bits in cache, flush pipeline and
reinstate a register checkpoint)

 Commit is slow (must check for conflicts, all the coherence operations
for writes are deferred until transaction end)

* No fear of deadlock/livelock — the first transaction to acquire the bus will
commit successfully

 Starvation is possible — need additional mechanisms



TCC Features

o All transactions all the time (the code only defines
transaction boundaries): helps get rid of the baseline
coherence protocol

 When committing, a transaction must acquire a central
token — when 1I/O, syscall, buffer overflow is encountered,
the transaction acquires the token and starts commit

« Each cache line maintains a set of “renamed bits” — this
Indicates the set of words written by this transaction —
reading these words is not a violation and the read-bit is
not set



TCC Features

e Lines evicted from the cache are stored in a write buffer:;
overflow of write buffer leads to acquiring the commit token

* Less tolerant of commit delay, but there is a high degree
of “coherence-level parallelism”

 To hide the cost of commit delays, it is suggested that a
core move on to the next transaction in the meantime —
this requires “double buffering” to distinguish between
data handled by each transaction

e An ordering can be imposed upon transactions — useful for

speculative parallelization of a sequential program 0



Parallel Commits

* Writes cannot be rolled back — hence, before allowing
two transactions to commit in parallel, we must ensure
that they do not conflict with each other

* One possible implementation: the central arbiter can
collect signatures from each committing transaction
(a compressed representation of all touched addresses)

e Arbiter does not grant commit permissions Iif it detects
a possible conflict with the rd-wr-sets of transactions
that are in the process of committing

e The “lazy” design can also work with directory protocols11



“Eager” Implementation (Based Primarily on LogTM)

« A write Is made permanent immediately (we do not wait
until the end of the transaction)

* This means that if some other transaction attempts a
read, the latest value is returned and the memory may
also be updated with this latest value

« Can't lose the old value (in case this transaction is
aborted) — hence, before the write, we copy the old
value into a log (the log is some space in virtual memory
-- the log itself may be in cache, so not too expensive)

This Is eager versioning

12



Versioning

* Every write first requires a read and a write to log the old
value — the log is maintained in virtual memory and will
likely be found in cache

* Aborts are uncommon — typically only when the
contention manager kicks in on a potential deadlock; the
logs are walked through in reverse order

e If a block is already marked as being logged (wr-set), the
next write by that transaction can avoid the re-log

e Log writes can be placed in a write buffer to reduce

contention for L1 cache ports -



Conflict Detection and Resolution

 Since Transaction-A’s writes are made permanent
rightaway, It is possible that another Transaction-B’s
rd/wr miss is re-directed to Tr-A

e At this point, we detect a conflict (neither transaction has
reached its end, hence, eager conflict detection): two
transactions handling the same cache line and at |least
one of them does a write

* One solution: requester stalls: Tr-A sends a NACK to
Tr-B; Tr-B waits and re-tries again; hopefully, Tr-A has
committed and can hand off the latest cache line to B

- neither transaction needs to abort y



Deadlocks

e Can lead to deadlocks: each transaction is waiting for the
other to finish

* Need a separate (hw/sw) contention manager to detect
such deadlocks and force one of them to abort

Tr-A Tr-B
write X write 'Y
read Y read X

* Alternatively, every transaction maintains an “age” and a young
transaction aborts and re-starts if it is keeping an older transaction
waiting and itself receives a nack from an older transaction 15



Block Replacement

e If a block in a transaction’s rd/wr-set is evicted, the data
IS written back to memory If necessary, but the directory
continues to maintain a “sticky” pointer to that node
(subsequent requests have to confirm that the transaction

has committed before proceeding)

 The sticky pointers are lazily removed over time (commits
continue to be fast)

16



Title

e Bullet

17



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

