
1

Lecture 3: Snooping Protocols

• Topics: snooping-based cache coherence implementations

2

Design Issues, Optimizations

• When does memory get updated?
demotion from modified to shared?
move from modified in one cache to modified in another?

• Who responds with data? – memory or a cache that has
the block in exclusive state – does it help if sharers respond?

• We can assume that bus, memory, and cache state
transactions are atomic – if not, we will need more states

• A transition from shared to modified only requires an upgrade
request and no transfer of data

• Is the protocol simpler for a write-through cache?

3

4-State Protocol

• Multiprocessors execute many single-threaded programs

• A read followed by a write will generate bus transactions
to acquire the block in exclusive state even though there
are no sharers

• Note that we can optimize protocols by adding more
states – increases design/verification complexity

4

MESI Protocol

• The new state is exclusive-clean – the cache can service
read requests and no other cache has the same block

• When the processor attempts a write, the block is
upgraded to exclusive-modified without generating a bus
transaction

• When a processor makes a read request, it must detect
if it has the only cached copy – the interconnect must
include an additional signal that is asserted by each
cache if it has a valid copy of the block

5

Design Issues

• When caches evict blocks, they do not inform other
caches – it is possible to have a block in shared state
even though it is an exclusive-clean copy

• Cache-to-cache sharing: SRAM vs. DRAM latencies,
contention in remote caches, protocol complexities
(memory has to wait, which cache responds), can be
especially useful in distributed memory systems

• The protocol can be improved by adding a fifth
state (owner – MOESI) – the owner services reads
(instead of memory)

6

Update Protocol (Dragon)

• 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

• Write-back update is not the same as write-through –
on a write, only caches are updated, not memory

• Goal: writes may usually not be on the critical path, but
subsequent reads may be

7

4 States

• No invalid state

• Modified and Exclusive-clean as before: used when there
is a sole cached copy

• Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

• Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory – only one block can be in Sm state

• In reality, one state would have sufficed – more states
to reduce traffic

8

Design Issues

• If the update is also sent to main memory, the Sm
state can be eliminated

• If all caches are informed when a block is evicted, the
block can be moved from shared to M or E – this can
help save future bus transactions

• Having an extra wire to determine exclusivity seems
like a worthy trade-off in update systems

9

State Transitions

To
From

NP I E S M

NP 0 0 1.25 0.96 1.68
I 0.64 0 0 1.87 0.002
E 0.20 0 14.0 0.02 1.00
S 0.42 2.5 0 134.7 2.24
M 2.63 0.002 0 2.3 843.6

To
From

NP I E S M

NP -- -- BusRd BusRd BusRdX
I -- -- BusRd BusRd BusRdX
E -- -- -- -- --
S -- -- Not possible -- BusUpgr
M BusWB BusWB Not possible BusWB --

State transitions
per 1000 data

memory references
for Ocean

Bus actions
for each state

transition

NP – Not Present

10

Basic Implementation

• Assume single level of cache, atomic bus transactions

• It is simpler to implement a processor-side cache
controller that monitors requests from the processor and
a bus-side cache controller that services the bus

• Both controllers are constantly trying to read tags
tags can be duplicated (moderate area overhead)
unlike data, tags are rarely updated
tag updates stall the other controller

11

Reporting Snoop Results

• Uniprocessor system: initiator places address on bus, all
devices monitor address, one device acks by raising a
wired-OR signal, data is transferred

• In a multiprocessor, memory has to wait for the snoop
result before it chooses to respond – need 3 wired-OR
signals: (i) indicates that a cache has a copy, (ii) indicates
that a cache has a modified copy, (iii) indicates that the
snoop has not completed

• Ensuring timely snoops: the time to respond could be
fixed or variable (with the third wired-OR signal), or the
memory could track if a cache has a block in M state

12

Non-Atomic State Transitions

• Note that a cache controller’s actions are not all atomic: tag
look-up, bus arbitration, bus transaction, data/tag update

• Consider this: block A in shared state in P1 and P2; both
issue a write; the bus controllers are ready to issue an
upgrade request and try to acquire the bus; is there a
problem?

• The controller can keep track of additional intermediate
states so it can react to bus traffic (e.g. S M, I M, I S,E)

• Alternatively, eliminate upgrade request; use the shared
wire to suppress memory’s response to an exclusive-rd

13

Livelock

• Livelock can happen if the processor-cache handshake
is not designed correctly

• Before the processor can attempt the write, it must
acquire the block in exclusive state

• If all processors are writing to the same block, one of
them acquires the block first – if another exclusive request
is seen on the bus, the cache controller must wait for the
processor to complete the write before releasing the block
-- else, the processor’s write will fail again because the
block would be in invalid state

14

Split Transaction Bus

• What would it take to implement the protocol correctly
while assuming a split transaction bus?

• Split transaction bus: a cache puts out a request, releases
the bus (so others can use the bus), receives its response
much later

• Assumptions:
only one request per block can be outstanding
separate lines for addr (request) and data (response)

15

Split Transaction Bus

Proc 1

Cache

Proc 2

Cache

Proc 3

Cache

Request lines

Response lines

16

Design Issues

• When does the snoop complete? What if the snoop takes
a long time?

• What if the buffer in a processor/memory is full? When
does the buffer release an entry? Are the buffers identical?

• How does each processor ensure that a block does not
have multiple outstanding requests?

• What determines the write order – requests or responses?

17

Design Issues II

• What happens if a processor is arbitrating for the bus and
witnesses another bus transaction for the same address?

• If the processor issues a read miss and there is already a
matching read in the request table, can we reduce bus
traffic?

18

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

