Lecture 3: Snooping Protocols

 Topics: snooping-based cache coherence implementations

Design Issues, Optimizations

 When does memory get updated?
» demotion from modified to shared?
» move from modified in one cache to modified in another?

* Who responds with data? — memory or a cache that has
the block in exclusive state — does it help if sharers respond?

* We can assume that bus, memory, and cache state
transactions are atomic — if not, we will need more states

A transition from shared to modified only requires an upgrade
request and no transfer of data

* |s the protocol simpler for a write-through cache? ,

4-State Protocol

* Multiprocessors execute many single-threaded programs

» Aread followed by a write will generate bus transactions
to acquire the block in exclusive state even though there
are no sharers

* Note that we can optimize protocols by adding more
states — increases design/verification complexity

MESI Protocol

e The new state is exclusive-clean — the cache can service
read requests and no other cache has the same block

* When the processor attempts a write, the block is
upgraded to exclusive-modified without generating a bus
transaction

* When a processor makes a read request, it must detect
If it has the only cached copy — the interconnect must
Include an additional signal that is asserted by each
cache If it has a valid copy of the block

Design Issues

* When caches evict blocks, they do not inform other
caches — it is possible to have a block in shared state
even though it is an exclusive-clean copy

« Cache-to-cache sharing: SRAM vs. DRAM latencies,
contention in remote caches, protocol complexities
(memory has to wait, which cache responds), can be
especially useful in distributed memory systems

* The protocol can be improved by adding a fifth
state (owner — MOESI) — the owner services reads
(instead of memory)

Update Protocol (Dragon)

 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

* Write-back update is not the same as write-through —
on a write, only caches are updated, not memory

« Goal: writes may usually not be on the critical path, but
subsequent reads may be

4 States

 No Invalid state

 Modified and Exclusive-clean as before: used when there
IS a sole cached copy

« Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

« Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory — only one block can be in Sm state

* In reality, one state would have sufficed — more states
to reduce traffic 7

Design Issues

e If the update Is also sent to main memory, the Sm
state can be eliminated

e If all caches are informed when a block Is evicted, the
block can be moved from shared to M or E — this can
help save future bus transactions

e Having an extra wire to determine exclusivity seems
like a worthy trade-off in update systems

State Transitions

To NP I E S M NP — Not Present
From
NP 0 0 1.25 0.96 1.68 State transitions
| 0.64 0 0 1.87 | 0.002 per 1000 data
memory references
E 0.20 0 14.0 0.02 1.00 for Ocean
S 0.42 2.5 0 134.7 2.24
M 2.63 0.002 0 2.3 843.6
To NP I E S M
From Bus actions
NP -- -- BusRd BusRd BusRdX | for each state

| - -- BusRd BusRd | BusRdX transition

Not possible -- BusUpgr

<|ln|m

BusWB | BusWB | Not possible | BusWB -- 9

Basic Implementation

« Assume single level of cache, atomic bus transactions

e It Is simpler to implement a processor-side cache
controller that monitors requests from the processor and
a bus-side cache controller that services the bus

* Both controllers are constantly trying to read tags
» tags can be duplicated (moderate area overhead)
» unlike data, tags are rarely updated
» tag updates stall the other controller

10

Reporting Snoop Results

* Uniprocessor system: initiator places address on bus, all
devices monitor address, one device acks by raising a
wired-OR signal, data is transferred

 In a multiprocessor, memory has to wait for the snoop
result before it chooses to respond — need 3 wired-OR
signals: (1) indicates that a cache has a copy, (ii) indicates
that a cache has a modified copy, (iii) indicates that the
snoop has not completed

e Ensuring timely snoops: the time to respond could be
fixed or variable (with the third wired-OR signal), or the

memory could track if a cache has a block in M state .

Non-Atomic State Transitions

* Note that a cache controller’s actions are not all atomic: tag
look-up, bus arbitration, bus transaction, data/tag update

* Consider this: block A in shared state in P1 and P2; both
Issue a write; the bus controllers are ready to issue an
upgrade request and try to acquire the bus; is there a
problem?

* The controller can keep track of additional intermediate
states so it can react to bus traffic (e.g. S=2>M, [=>M, |2S,E)

« Alternatively, eliminate upgrade request; use the shared

wire to suppress memory’s response to an exc:lusive-rd12

Livelock

e Livelock can happen if the processor-cache handshake
IS not designed correctly

» Before the processor can attempt the write, it must
acquire the block in exclusive state

e If all processors are writing to the same block, one of
them acquires the block first — if another exclusive request
IS seen on the bus, the cache controller must wait for the
processor to complete the write before releasing the block
-- else, the processor’s write will fail again because the
block would be in invalid state

13

Split Transaction Bus

* What would it take to implement the protocol correctly
while assuming a split transaction bus?

 Split transaction bus: a cache puts out a request, releases
the bus (so others can use the bus), receives its response
much later

e Assumptions:

» only one request per block can be outstanding
» separate lines for addr (request) and data (response)

14

Split Transaction Bus

Request lines

Response lines

15

Design Issues

* When does the snoop complete? What if the snoop takes
a long time?

e What if the buffer in a processor/memory is full? When
does the buffer release an entry? Are the buffers identical?

 How does each processor ensure that a block does not
have multiple outstanding requests?

* What determines the write order — requests or responses?

16

Design Issues ||

* What happens if a processor is arbitrating for the bus and
witnesses another bus transaction for the same address?

e If the processor issues a read miss and there is already a

matching read in the request table, can we reduce bus
traffic?

17

Title

e Bullet

18

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

