
1

Lecture 2: Intro and Snooping Protocols

• Topics: multi-core cache organizations, programming
models, cache coherence (snooping-based)

2

Multi-Core Cache Organizations

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

CCC CCC

CCC CCC

Private L1 caches
Shared L2 cache
Bus between L1s and single L2 cache controller
Snooping-based coherence between L1s

3

Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Scalable network
Directory-based coherence between L1s

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

4

Multi-Core Cache Organizations

Private L1 caches
Shared L2 cache, but physically distributed
Bus connecting the four L1s and four L2 banks
Snooping-based coherence between L1s

P

C

P

C

P

C

P

C

5

Multi-Core Cache Organizations

Private L1 caches
Private L2 caches
Scalable network
Directory-based coherence between L2s
(through a separate directory)

P

C

P

C

P

C

P

C

P

C

P

C

P

C

P

C

D

6

Shared-Memory Vs. Message Passing

• Shared-memory
single copy of (shared) data in memory
threads communicate by reading/writing to a shared
location

• Message-passing
each thread has a copy of data in its own private
memory that other threads cannot access
threads communicate by passing values with SEND/
RECEIVE message pairs

7

Ocean Kernel

Procedure Solve(A)
begin
diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

8

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

9

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)

SEND(&myA[1,0], n, pid-1, ROW);
if (pid != nprocs-1)

SEND(&myA[nn,0], n, pid+1, ROW);
if (pid != 0)

RECEIVE(&myA[0,0], n, pid-1, ROW);
if (pid != nprocs-1)

RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)

SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

10

Models for SEND and RECEIVE

• Synchronous: SEND returns control back to the program
only when the RECEIVE has completed

• Blocking Asynchronous: SEND returns control back to the
program after the OS has copied the message into its space
-- the program can now modify the sent data structure

• Nonblocking Asynchronous: SEND and RECEIVE return
control immediately – the message will get copied at some
point, so the process must overlap some other computation
with the communication – other primitives are used to
probe if the communication has finished or not

11

Deterministic Execution

• Need synch after every anti-diagonal
• Potential load imbalance

• Shared-memory vs. message passing
• Function of the model for SEND-RECEIVE
• Function of the algorithm: diagonal, red-black ordering

12

Cache Coherence

A multiprocessor system is cache coherent if

• a value written by a processor is eventually visible to
reads by other processors – write propagation

• two writes to the same location by two processors are
seen in the same order by all processors – write
serialization

13

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies
Write-update: when a processor writes, it updates other
shared copies of that block

14

Protocol-I MSI

• 3-state write-back invalidation bus-based snooping protocol

• Each block can be in one of three states – invalid, shared,
modified (exclusive)

• A processor must acquire the block in exclusive state in
order to write to it – this is done by placing an exclusive
read request on the bus – every other cached copy is
invalidated

• When some other processor tries to read an exclusive
block, the block is demoted to shared

15

Design Issues, Optimizations

• When does memory get updated?
demotion from modified to shared?
move from modified in one cache to modified in another?

• Who responds with data? – memory or a cache that has
the block in exclusive state – does it help if sharers respond?

• We can assume that bus, memory, and cache state
transactions are atomic – if not, we will need more states

• A transition from shared to modified only requires an upgrade
request and no transfer of data

• Is the protocol simpler for a write-through cache?

16

4-State Protocol

• Multiprocessors execute many single-threaded programs

• A read followed by a write will generate bus transactions
to acquire the block in exclusive state even though there
are no sharers

• Note that we can optimize protocols by adding more
states – increases design/verification complexity

17

MESI Protocol

• The new state is exclusive-clean – the cache can service
read requests and no other cache has the same block

• When the processor attempts a write, the block is
upgraded to exclusive-modified without generating a bus
transaction

• When a processor makes a read request, it must detect
if it has the only cached copy – the interconnect must
include an additional signal that is asserted by each
cache if it has a valid copy of the block

18

Design Issues

• When caches evict blocks, they do not inform other
caches – it is possible to have a block in shared state
even though it is an exclusive-clean copy

• Cache-to-cache sharing: SRAM vs. DRAM latencies,
contention in remote caches, protocol complexities
(memory has to wait, which cache responds), can be
especially useful in distributed memory systems

• The protocol can be improved by adding a fifth
state (owner – MOESI) – the owner services reads
(instead of memory)

19

Update Protocol (Dragon)

• 4-state write-back update protocol, first used in the
Dragon multiprocessor (1984)

• Write-back update is not the same as write-through –
on a write, only caches are updated, not memory

• Goal: writes may usually not be on the critical path, but
subsequent reads may be

20

4 States

• No invalid state

• Modified and Exclusive-clean as before: used when there
is a sole cached copy

• Shared-clean: potentially multiple caches have this block
and main memory may or may not be up-to-date

• Shared-modified: potentially multiple caches have this
block, main memory is not up-to-date, and this cache
must update memory – only one block can be in Sm state

• In reality, one state would have sufficed – more states
to reduce traffic

21

Design Issues

• If the update is also sent to main memory, the Sm
state can be eliminated

• If all caches are informed when a block is evicted, the
block can be moved from shared to M or E – this can
help save future bus transactions

• Having an extra wire to determine exclusivity seems
like a worthy trade-off in update systems

22

Examples

P1 P2
MSI MESI Dragon MSI MESI Dragon

• P1: Rd X
• P1: Wr X
• P2: Rd X
• P1: Wr X
• P1: Wr X
• P2: Rd X
• P2: Wr X

Total transfers:

23

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

