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Abstract

Sequentialconsisteng (SC) is the simplestprogram-
ming interface for shared-memorysystemsbut imposes
programorderamongall memoryoperationspossiblypre-
cluding high performancemplementationsReleasecon-
sisteny (RC), however, enablesthe highestperformance
implementationgut putsthe burdenon the programmeto
specifywhich memoryoperationsieedto beatomicandin
programordet This papershaws, for thefirst time, thatSC
implementationgan perform aswell as RC implementa-
tionsif the hardware providesenoughsupportfor specula-
tion. Both SC andRC implementationsgely on reordering
andoverlappingmemoryoperationdor high performance.
To enforceorder when necessaryan RC implementation
usessoftware guaranteeswhereasan SC implementation
relies on hardware speculation.Our SC implementation,
called SC++, closesthe performancegap because(l) the
hardwareallows not just loads,assomecurrentSCimple-
mentationslo, but alsostoreso bypassachotherspecula-
tively to hide remotelatencies,(2) the hardware provides
large speculatie statefor not just processqraspreviously
proposedput alsomemoryto allow out-of-ordermemory
operations(3) the supportfor hardware speculationdoes
not add excessve overheadgo processoipipeline critical
paths,and (4) well-behaed applicationsincur infrequent
rollbacks of speculatie execution. Using simulation, we
shav that SC++achievesan RC implementatiors perfor-
mance in all the six applications we studied.

1 Introduction

Multiprocessorsare becomingwidely available in all
sectorof the computingmarket from desktopgo high-end
seners. To simplify programmingmultiprocessorsmary
vendorsmplementsharednemoryasthe primary system-
level programmingabstraction.To achieze high perfor-
mance the shared-memongbstractions typically imple-
mentedin hardware.Shared-memorgystemsomewith a
variety of programminginterfaces—alscknown as mem-
ory consisteng models—ofering a trade-of betweerpro-
gramming simplicity and high performance.

Sequentialconsisteng (SC) is the simplestand most
intuitive programming interface [9]. An SC-compliant
memorysystemappears$o executememoryoperationne
atatime in programorder SC’s simple memorybehaior
is what programmeroften expectfrom a shared-memory

multiprocessobecausef its similarity to the familiar uni-
processomemorysystem.Traditionally, SCis believedto
preclude high performance because corventional SC
implementations would conseratively impose order
amongall memoryoperationsto satisfy the requirements
of themodel.Suchimplementationsvould beprohibitively
slow especially in distributed shared memory (DSM)
where remote memory accessesan take several times
longer than local memory accesses.

To mitigate performancempactof long lateng opera-
tionsin sharednemoryandto realizetheraw performance
of the hardware, researcherand systemdesignershave
inventedseveral relaxed memorymodels[3,2,6]. Relaed
memory models significantly improve performanceover
conventional SC implementationgy requiring only some
memoryoperationgo performin programorder By other-
wise overlappingsomeor all other memory operations,
relaxed modelshide muchof the memoryoperationslong
latencies.Rela>ed models, however, complicatethe pro-
gramminginterface by burdeningthe programmerswith
the details of annotatingmemory operationsto specify
which operations musiecute in program order

Modern microprocessoremploy aggressie instruction
executionmechanism#o extractlargerlevelsof instruction
level parallelism(ILP) andreduceprogramexecutiontime.
To maximizelLP, thesemechanismsllow instructionsto
executeboth speculatiely and out of programorder The
ILP mechanismshbuffer the speculatie state of such
instructionsto maintainsequentiakemanticaipona mis-
speculationor an exception. The ILP mechanismshave
reopenedthe debateaboutthe memory models because
they enableSC implementationgo relax speculatrely the
memory order and yet appearto executememory opera-
tions atomically and in program order [5,14,7].

An aggressie SC implementationcan speculatiely
performall memoryoperationsn a processocache.Such
an implementatiorrolls backto the ‘‘sequentially-consis-
tent” memorystateif anothemprocessors aboutto obsere
thatthe modelconstraintsareviolated(e.g.,a storeby one
processotto a memoryblock loadedspeculatrely out of
orderby another).In the absencef frequentrollbacks,an
SCimplementationcan performpotentiallyaswell asthe
best of relaxed models—ReleaseConsisteng (RC)—
becausdt emulatesan RC implementatiors behaior in
every other aspect.



Gharachorloeet al., [5] first madethe obsenration that
exploiting ILP mechanismsallows optimizing SC’s per-
formance.Their proposedechniquesare implementedn
HP PA-8000, Intel PentiumPro,andMIPS R10000.Ran-
ganatharetal., re-evaluatedhesetechnique$13] andpro-
posed further optimizations [14] but concludedthat a
significant gap between SC and RC implementations
remainsfor someapplicationsandidentified someof the
factorscontributing to the difference.Hill [7], however,
arguesthatwith currenttrendstowardslargerlevelsof on-
chip integration, sophisticatedmicroarchitecturainnova-
tion, andlarger cachesthe performancegap betweenthe
memory models shouldrentually \anish.

This paperconfirmsHill’ s conjectureby shaving, for
the first time, that an SC implementationcan performas
well as an RC implementationif the hardware provides
enoughsupportfor speculation.The key obsenation is
that both SC and RC implementationgely on reordering
and overlappingmemoryoperationsto achieve high per-
formance . While RC implementationgprimarily usesoft-
ware guaranteeso enforce program order only when
necessarySC implementationsely on hardware specula-
tion to provide the guaranteeSolong ashardware specu-
lation enablesSC implementationgo relax all memory
ordersspeculatrely and “emulate” RC implementations,
SCimplementationsanreachRC implementationsper-
formance.Any shortcomingin the hardware supportfor
speculationprevents SC implementationsrom reaching
RC implementations’ performance.

In this paper we identify the fundamentahrchitectural
andapplicationrequirement&nablingan SCimplementa-
tion to perform as well as RC implementations:

¢ Full-fledgedspeculationHardware shouldallow both
loadsand storesto bypasseachother speculatiely to
avoid stoppingthe instructionflow throughthe proces-
sor pipeline. Current techniques[14,5] allow only
loadsto bypasspendingloadsandstoresspeculatiely;
storesare not allowed to bypassothermemoryopera-
tions. We presentnovel mechanismsto allow both
loadsandstoresto bypasseachotherspeculatrely and
yet appearto executememory operationsin program
order

¢ Largespeculatie state:Hardwareshouldprovide large
enoughspeculatre statefor both processoandmem-
ory to allow out-of-order operationsto hide long
remotelatenciesWithout studyingthe requiredsize of
speculatre state for processoror memory previous
studiesproposedextensionsto the re-orderbuffer for
speculatre processorstate[14], but did not provide
ary supportfor speculatre memorystatebeyond con-
ventionalload/storequeuesWe quantify the required
sizeof speculatre statefor processoandmemory and
provide speculatie state supportfor both processor
and memory

* Fastcommoncase:Hardware supportfor speculation
should not introduce overhead (e.g., associatie
searchesjo the executions critical path.Previous pro-
posalsdetectmemory order violation for speculatie
loads[5,14]. We presenfastandefficient mechanisms
to detectmemoryorder violation for both speculatie
loadsandstoreswithout excessie deterioratiorof pro-
cessor pipeline critical paths.

* Infrequentrollbacks:Theapplicationshouldinherently
incur infrequentrollbacksof speculatre execution.We
armgue that well-behaed applications—i.e.,applica-
tions benefittingfrom parallel executionon multipro-
cessors—indeed will not incur frequent rollbacks.
In our performanceevaluation, we assumeaggressie

remote caching mechanismsand a large repository for

remote data as suggestedn most recent proposalsfor

DSMs [10,11,4]. Using simulation of shared-memory

applicationswe shav thatour SC implementationgcalled

SC++, achieves an RC implementatiors performancen

all the six applications we studied.

In Section2, we describethe currentimplementation
optimizationsfor SC and RC. In Section3, we describe
SC++.We presenta qualitative comparisorof currentSC
and RC implementations,and SC++ in Section4. In
Section6, we report experimentalresultsof our simula-
tions, and in Sectior, we drav some conclusions.

2 Current ILP Optimizations

A memoryconsisteng modeldefinesthe programming
interfacefor a shared-memorynachine.Sequentialcon-
sisteny (SC) provides the most intuitive programming
interfaceby requiringthat all memoryoperationsxecute
in programorder To relax SC’s requiremenion ordering
memoryoperationsandincreaseperformanceresearchers
and system designersinvented mary relaxed memory
models. Relaxed memory modelsallow memory opera-
tionsto executeout of programorder but requirethe pro-
grammerto annotatethosememory operationshat must
execute in program order to result in correaaution.

Processorvendorsvary with respectto the memory
modelsthey provide [1]. HP and MIPS both adoptSC as
the primary programmingnterface.Othersprovide a vari-
ety of relaxed modelsvaryingin the extentto which they
relax memory ordering. Intel processorsuse Processor
Consisteng (PC) which allows loads(to one block) fol-
lowing a store(to a differentblock) to executeout of pro-
gram order Sun SFARC processorgprovide Total Store
Order (TSO) which only relaxes store followed by load
orderand enforcesorderamongall othermemoryopera-
tions. Sun SRARC, DEC Alpha, IBM PowerPC,all pro-
vide RC, which is the mostrelaxed memory model. RC
allows memoryoperationgto differentaddressesp exe-
cuteoutof programordet All relaxed modelsincludespe-
cial synchronizatioroperationgo allow specificmemory
operations toxecute atomically and in program order

Corventionalimplementation®of memoryconsisteng
modelsexecutedthe memoryoperationsaccordingto the
models constraint. For instance, SC implementations
would executememory operationsaccordingto the pro-
gram order and one at a time. Modern microprocessors,
however, exploit high degreesof instructionlevel parallel-
ism (ILP) through branch prediction, execute multiple
instructionsper cycle, usenon-blockingcachego overlap
multiple memoryaccesdatencies,and allow instructions
to executeout of order To implementpreciseexceptions
and speculatre executionin accordancewith sequential
semantics,modern microprocessorsuse an instruction
reorderbuffer [15] to rollback and restorethe processor
state on an exception or a misspeculation.Aggressie
implementation®f a memorymodelcanemploy all these
ILP technigueswhich enablememoryoperationgo over-
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FIGURE 1: Speculative execution in current
microprocessors.

lap and execute out of order but appear to comply with the
memory model’s constraints [14,5].

2.1 Mechanismsfor Speculative Execution

In this section, we fist describe speculative instruction
execution using ILP mechanisms in modern processors.
We then present current memory model optimizations
using these ILP mechanisms. We use the same pipeline
model as Ranganathan et a., [13], which closely approxi-
mates the MIPS R10000 pipeline [17]. Figure 1 depicts
the use of the reorder buffer (also referred to as an active
window, or instruction window) to implement speculative
execution and precise exceptions in modern microproces-
sors which issue instructions out of order.

The branch prediction and instruction fetch unit fetches
and issues instructions. Upon issue, instructions are
inserted in the reorder buffer. Upon availability of an
instruction’s operands, the instruction's (architectural)
destination register is mapped to a physical register and is
forwarded to a reservation station at each functional unit.
The reorder buffer maintains the original program order
and the register rename mapping for each instruction.
L oads and stores are placed in the load/store queue, which
acts as areservation station but also maintains the program
order among memory operations until the accesses are
performed in the cache.

The pipeline forwards new register values generated by
instructions to the reservation stations, and writes them to
the reorder buffer and/or the physical registers. Instruc-
tions retire from the head of the reorder buffer in program
order. Upon an exception or branch misprediction, all
instruction entries in the reorder buffer following the
mispredicted branch or the excepting instruction are rolled
back and not allowed to retire from the reorder buffer [15].
Register rename-maps modified by the rolled back instruc-
tions are restored and execution is restarted at the offend-
ing instruction.

22 SC

In conventional SC implementations, the processor
would faithfully implement SC’s ordering constraints, per-
forming memory operations atomically and in program
order by issuing one memory operation at a time and
blocking on cache misses. Such an implementation would
be prohibitively slow in today’s aggressive microproces-
sors because the processor must issue memory operations

one at atime and the first cache miss would block both the
cache and the instruction flow through the reorder buffer.

Gharachorloo et a., [5] proposed two ILP optimiza-
tions to improve shared memory’s performance by pre-
venting memory operations from frequently blocking the
reorder buffer. Several current SC implementations (e.g.,
HP PA 8000, and MIPS R10000) include these optimiza-
tions. The idea is to use hardware prefetching and non-
blocking caches to overlap fetching and placing cache
blocksin the cache (or fetching block ownership requests)
for the loads and stores that are waiting in the reorder
buffer. Upon availability of the blocks in the cache, the
loads and stores perform subsequently (and quickly) in the
cache. Because the loads and stores retire atomically and
in program order from the head of the reorder buffer, the
prefetching optimization does not violate the memory
model. Some implementations also retire pending stores
from the reorder buffer but maintain program order in the
|oad/store queue until they are performed.

Current aggressive SC implementations also allow
loads to execute speculatively out of program order. Spec-
ulative execution allows loads to produce values that can
be consumed by subsequent instructions while other mem-
ory operations (preceding the load in program order) are
pending. The speculative load optimization is based on the
key observation that as long as other processorsin the sys-
tem do not detect a speculatively loaded block, all memory
operations appear to have executed atomically and in pro-
gram order.

To guarantee the model’'s constraints, the speculative
load optimization prevents other processors in the system
from observing a speculative block. It is conservatively
assumed that a speculatively loaded block may be exposed
if it leaves processor caches—e.g., due to an invalidation
message from or a writeback to the directory node in dis-
tributed shared memory (DSM). Therefore, the caches
must hold a speculatively loaded block until the load
retires. Upon a cache replacement signal from the L2
cache for a speculatively loaded block, however, the pro-
cessor rolls back the load and all subsequent instructions
(much as a branch misprediction) to restore the processor
and memory to a‘‘ sequentially-consistent” state.

Because speculatively performed loads cannot retire
from the reorder buffer until al pending memory opera-
tions are performed, a store at the head of the reorder
buffer may block the instruction flow due to long remote
latencies. But increasing the reorder buffer size to accom-
modate remote latencies may slow down processor critical
paths involving associative searches through the buffer in a
single cycle [12]. To dleviate this problem, speculative
retirement [14] moves speculatively performed loads and
subsequent instructions from the head of the reorder buffer
to a separate history buffer before they retire. The history
buffer maintains the information required to roll back, in
case of an invalidation to a speculatively accessed block.
Although speculative retirement narrows the performance
gap between SC and RC implementations, a significant
gap remainsin some applications.

Store buffering [6] further enhances memory system
performance by removing pending store instructions from
the reorder buffer and placing them in the load/store
queue. Relaxed models may redlize the full benefits of
store buffering by alowing loads in the reorder buffer to



bypass pending stores. In conventional SC implementa-
tions, however, the reorder buffer stops retiring instruc-
tions at a load if there are pending stores and therefore,
store buffering may not be as beneficial. Nevertheless,
some commercial systems (e.g., HP processors) support
store buffering for SC.

Both SC and RC implementations rely on reordering
and overlapping memory operations to achieve high per-
formance. The key difference between SC and RC imple-
mentations is that while RC implementations use software
guarantees to guide the reordering and overlapping of
memory operations, SC implementations use hardware
speculation to reorder and overlap memory operations due
to lack of any software guarantees. In spite of the above
optimizations, SC implementations lag behind RC imple-
mentations because:

¢ the inability of stores to bypass other memory opera
tions speculatively cause the load/store queue to fill up,
eventually stopping instruction flow;

* long latency remote stores cause the relatively small
reorder buffer (or the history buffer, in the case of spec-
ulative retirement) and load/store queue to fill up with
speculative processor and memory state, respectively,
stalling the pipeline;

¢ the capacity and conflict misses of small L2 caches
cause replacements of speculatively loaded blocks,
resulting in rollbacks.

23 RC

RC modifies the programming interface to allow the
programmer to specify the ordering constraints among
specific memory operations, so that in the absence of such
constraints memory operations can overlap in any arbi-
trary order. Many microprocessors provide special fence
instructions (e.g., the MEMBAR instruction in SPARC
V9, or the MB and WMB instructions in Alpha) to enforce
specific ordering of memory operations wherever needed.
Typical RC implementations use special fence instructions
at the lowest level to enforce memory ordering [6] but pro-
vide higher level programming abstractions for synchroni-
zation.

Conventional RC implementations achieved high per-
formance primarily by using store buffering in the load/
store queue to allow loads and stores to bypass pending
stores and would maintain program order among memory
operations only on executing a fence instruction. Modern
RC implementations can additionally take advantage of
hardware prefetching and non-blocking caches to fetch
multiple cache blocks or make block ownership requests
(for stores). Unlike SC implementations, RC implementa-
tions can use binding prefetches so that the loads can be
performed before reaching the head of the reorder buffer.
Moreover, RC implementations, like SC implementations,
can also speculatively relax ordering across fence instruc-
tions and use rollback mechanisms if a memory model
violation is detected by other processors.

3 SC++: SC Programmability with RC
Perfor mance

SC++, our implementation of SC, is based on the
observation that SC implementations can approach RC
implementations' performance if: (1) the hardware pro-
vides efficient mechanisms to relax order speculatively for
not only loads, as donein [5], but also stores, (2) the sys-
tem provides enough space to maintain not only specula-
tive processor state, as proposed in [14], but aso
speculative memory state of reordered memory operations,
(3) the support for speculation does not add excessive
overhead to the processor pipeline, and (4) rollbacks are
infrequent so that in the common case memory operations
execute and complete with no ordering constraints, much
asin RC implementations.

3.1 Speculative Execution in SC++

To fully emulate an RC implementation, SC++ relaxes
al memory orders speculatively and allow instructions to
continue to issue and execute at full speed even in the pres-
ence of pending long-latency store operations. To guaran-
tee SC's constraints, SC++ maintans the state
corresponding to all speculatively executed instructions
between a pending store and subseguent (in-program-
order) memory operations until the pending store com-
pletes. If there is an external coherence action (e.g., an
invalidation of speculatively loaded data or external read
of speculatively stored data) on speculatively accessed
data, a misspeculation is flagged and execution is rolled
back to the instruction that performed the speculative
access. Thus, speculative state of loads and stores is not
exposed to the other processors in the system, much as
speculative loads are handled in [5].

Figure 2 illustrates SC++. SC++ supplements the reor-
der buffer with the Speculative History Queue (SHiQ) to
maintain the speculative state for stores, much as specula-
tive retirement does for loads. The SHiQ removes com-
pleted instructions as well asissued or ready to issue store
instructions from the reorder buffer, allows instructions to
retire and update the processor state and L 1 cache specula-
tively, and maintains a precise log of the modifications to
enable rolling back and restoring to the state conforming
to SC's congtraints. Thus, SC++ performs speculative
stores to the cache itself instead of buffering the stores in
the load/store queue, avoiding stalls caused by the filling
up of the store queue due to long remote latencies. Upon
completion of the earliest (in program order) pending store
operation, the hardware disposes of all of the SHiQ’'s con-
tents from the head until the next pending store operation.
Since loads are moved to the SHIQ only after they com-
pletein the reorder buffer, stores are the only operationsin
the SHiQ that may be pending; all other instructionsin the
SHiQ are (speculatively) completed instructions.

When an instruction retires from the reorder buffer, if
there is a preceding pending store with respect to the
instruction, the hardware inserts a modification log at the
end of the SHiQ, recording the old architectural state that
the instruction modifies. For instance, for an arithmetic
instruction, the log maintains the physical register number,
the old renaming map (i.e., the map prior to the instruc-
tion’s execution), and the old value of the instruction’s
destination register.
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FIGURE 2: SC++ Hardware.

To speculatrely retire store instructionswhile a pre-
cedingprogram-ordesstoreis pending,the hardware per-
forms a read-modify-write cache accessmuch as a
cachable synchronization instruction (e.g., SWAP in
SFARC) in modernmicroprocessordfkead-modify-writes,
however, typically requireanadditionalcycle to accesshe
cache(e.g., RossHyperSRARC). To prevent the slightly
longer accesslateny of a read-modify-write operation
from blocking accessto the cache,the hardware can
employ several well-known bandwidth optimizationsto
theL1 cache Alternatively, by carefullyschedulingspecu-
lative storesthe hardwarecanprioritize cacheaccesseto
allow loadsaccesghe cachewith a higher priority than
speculatre storesand thereby minimize the load-to-use
latengy among instructions.

3.2 Detecting Memory Order Violation

SCmodelrequireghe SC++hardwareto guarante¢hat
relaxingthe memoryorderis not obsered by or exposed
to the restof the system.Our implementation(Figure2)
providesthis guarantedy rolling backall executionstate
whena speculatiely loadedor storedblock is invalidated
(by the DSM homedirectory),read(by a remotenode,in
the caseof speculatiely storeddata),or replaced(dueto
capacityor conflict missesfrom thelowerlevel L2 cache.
In general, such an approachis conserative because
SC++needonly to ensurghataspeculatre block doesnot
leave a DSM node. Recentproposalsfor DSMs with
aggressie remotecachingtechniquegprovide a large spe-
cial-purposeremote accesscacheeither in the network
interface[10], or in both main memoryand the network
interface[11,4]. SC++may limit the rollbacksto the less
frequent case of speculatie blocks leaving the remote
cache.

Upon every invalidation, replacementor downgrade
from L2, the hardware mustdeterminewhetherthe block
has been accessedspeculatiely by a load or store.
Becausdhe SHiQ mustbe large enoughto storethe com-
plete history of instruction execution during a pending
remotememoryoperation,the queuemay be too large to
allow a fastassociatie search.Moreover, there may be
frequentinvalidationsor replacementfrom L2 to blocks
that are not speculatrely accessednecessitatinga fast
lookup.

To provide afastlookup, SC++usesa smallassociatie
buffer, calledthe Block Lookup Table(BLT), to hold alist
of all the uniqueblock addresseaccessedby speculatie
loads and storesin the SHiQ. Unlike currentSC imple-
mentationswhich identify speculatrely loadedblocks by

directly searchingthe reorder buffer and the load/store
queuestheBLT decoupleshesearcimechanismso iden-
tify speculatie blocks from the rollback mechanismsn

the SHIQ that maintainall the speculatie processotand
memorystate.The BLT is basedon the key obsenation
that loads and storesare only a fraction of all executed
instructionsandthereis a high temporalandspatiallocal-

ity in nearneighborload and store instructions.As a
result, a block lookup table can significantly reducethe
search space as compared to the SHiQ.

3.3 Rolling Back Processor & Memory State

SC++mustroll backthe processoandmemorystateto
a “sequentiallyconsistent’stateupon a lookup matchin
the BLT. To guarantegorward progressand avoid live-
locks/deadlocksthe hardware must restoreall processor
and memory stateup to the first instructionin program
order that speculatrely accessedthe matching block.
Restoringthe processorstateinvolves stoppingthe pipe-
line and accessingthe appropriatehardware structures.
Restoringthe speculatrely storeddatarequiresaccesses
to the local cachehierarcly, which may move the data
from the lower levelsto L1, if the speculatie datais dis-
placedfrom L1 to thelower levels.Becausall of thedata
accessetly theinstructionsin the SHiQ areguaranteedo
be presenton the node, restoring the data can proceed
without involving the coherence protocol.

Upon restoring the processorand memory state, the
hardwareinhibits further speculatre retirementof instruc-
tionsinto the SHiQ until all pendingstoreshave beenper-
formed. Such a policy guaranteedorward progressby
allowing the instruction causingthe rollback to execute
and retire (non-speculatiely) in programorder During
rollback, the processoralso inhibits further coherence
message processing teoad deadlocks.

Dependingon the rollback frequeng and the desired
performancein the presenceof frequentrollbacks, the
implementatiorcanoptimizetherollback processA slow
rollback will slow down both the faulting processorand
ary processorsendingcoherencenessaget thefaulting
processarOneway to acceleratéherollbackprocesss to
exploit the processotLP mechanismso roll back multi-
ple instructionsper cycle. Another optimizationincludes
allowing invalidationmessagefor read-onlyblocksto be
immediately serviced eliminating the rollback waiting
time for the responsemessageFor blocks with specula-
tively storeddata,a further optimizationto eliminatethe
waiting time includesrestoringthe requesteddlock first
before the rollback process starts.

4 Qualitative Analysis

The primary differencebetweenRC implementations
andSC++is that RC implementationsely on softwareto
enforcethe memoryordernecessaryo guaranteeorrect-
nesswhereasSC++relieson hardwareto provide sucha
guaranteeWhile RC changesthe programinterface to
relax memory order SC++ employs speculatie mecha-
nismsin hardware.In this section we identify theapplica-
tion and systemcharacteristicshat enableSC++to reach
RC implementations’ performance.

To relax memory orders fully, SC++ must provide
enoughspaceto maintainthe processoandmemorystate
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Table 1: Comparison of implementations.

corresponding to al (out-of-program-order) speculatively
executed instructions while a memory operation is pend-
ing. The state includes the processor cache hierarchy (and
the remote cache) maintaining the speculatively accessed
remote blocks, and the special-purpose buffers (e.g., SHiQ
and BLT) maintaining the modification logs for the specu-
latively executed instructions. SC++ must also provide a
fast mechanism to detect rollbacks because there may be
frequent remote block replacements or invalidation mes-
sages in a communication-intensive application even
though rollbacks are infrequent because processors tend to
access different memory blocks at a given time.

Given al the speculative state, the only impediment for
SC++ to achieve RC implementations’ performance is the
fraction of execution time lost to rollbacks. Unfortunately,
the rollback penalty in SC++ may be rather high, because
long latencies of memory operations create potential for a
large number of speculatively executed instructions. How-
ever, we argue that rollback frequency in well-behaved
applications is negligible.

A rollback occurs because two or more processors
simultaneously access the same shared-memory blocks.
There are three scenarios in which rollback frequency can
be high: (1) there are true data races in the application, (2)
there is a significant amount of false sharing, and (3) inev-
itable cache conflicts. Applications for which a significant
fraction of execution timeis spent accessing such data typ-
icaly do not benefit from paralel execution in DSM
because the overhead of communicating memory blocks
across the processors dominates an execution time.

Table1l compares the extent to which the memory
model implementations relax memory order. Current
aggressive SC implementations only relax memory order
with respect to loads and use existing architectural mecha-

nisms to execute instructions speculatively. RC implemen-
tations primarily relax order by requiring the software to
guarantee correct placement of fence instructions. SC++
uses extra hardware to relax all orders speculatively and
fully emulate RC implementations.

5 Experimental M ethodology

Table 2 presents the shared-memory applications we
use in this study and the corresponding input parameters.
Em3d is a shared-memory implementation of the Split-C
benchmark. Lu (the non-contiguous version), radix, ray-
trace, water (the nsquared version) are from the SPLASH-
2 benchmark suite. Unstructured is a shared-memory
implementation of a computational fluid dynamics compu-
tation using an unstructured mesh.

Application Input Parameters

em3d 8192 nodes, 20% remote
lu 256 by 256 matrix, block 8
radix 512K keys

raytrace teapot

unstructured mesh 2K

water 343 molecules

Table 2: Applications and input parameter  s.

We use RSIM, a state-of-the-art DSM simulator devel-
oped at Rice university, to simulate an eight-node DSM.
Every DSM node includes a MIPS R10000 like processor,
first and second level caches, and main memory. Table 3
shows the base system configuration parameters used
throughout the experiments unless otherwise specified.
Our application data set sizes are selected to be small
enough so as not to require prohibitive simulation cycles,
while being large enough to maintain the intrinsic commu-
nication and computation characteristics of the paralel
applications. Woo et al., show that for most of the
SPLASH-2 applications, the data sets provided have a pri-
mary working set that fitsin a 16-Kbyte cache [16]. There-
fore, we assume 16-Kbyte (direct-mapped) processor
caches to compensate for the small size of the data sets.
We assume large L2 caches, as suggested by recent pro-
posals for DSMs [10,4], to eliminate capacity and conflict
misses, so that performance difference among the memory
modelsis solely due to the intrinsics of the models.

Processor Parameters

CPU 300MHz, 4-issue per cycle
reorder buffer 64 instructions

L oad/store queue 64 instructions

L1 cache 16-Kbyte, direct-mapped
L2 cache 8-Mbyte, 2-way

L2 fill latency local
L2 fill latency remote
Cachelinesize

52 processor cycles
133 processor cycles
64 bytes

Table 3: Base system configuration.

In our experiments, all the memory model implementa-
tions use non-blocking caches, hardware prefetching for
loads and stores, and speculative load execution. Neither
the SC nor RC implementation uses speculative retirement
(i.e., the history buffer). SC++ uses the SHiQ and BLT.
Rollbacks due to instructionsin the reorder buffer take one




cycle to restartexecutionat the offendinginstruction.Any
rollbackdueto instructionsn the SHiQ (for SC++)is per-
formed at the samerate as instructionretirement(i.e., 4
instructions perycle).

6 Results

We start with a performancecomparisonof an SC
implementation,an RC implementation,and SC++ in
Section6.1, which is the main result of this paper We
shawv thatwith unlimited SHiIQ, SC++doesreachthe RC
implementatiors performanceSC++performsaswell as
the RC implementatioreven after limiting the SHIQ to a
finite size. Section6.2 presentsresultson the impact of
network latengy on the relatve performanceof the sys-
tems.Our resultsindicatethat with larger network laten-
cies, SC++ still keepsup with the RC implementation,
albeit using larger speculatie state,even thoughthe gap
between the SC and RC implementationswgro

We shaw thatto closethe performanceyap, SC++must
closelyemulatethe RC implementatiorby overlappingall
memory operationsthat the RC implementationoverlaps
and requiring the entire set of SC++ hardware—alarge
SHiQ with the associatedBLT and a large cache.Future
processodesignsmay have large reorderbuffers, obviat-
ing the needfor the SHIQ and BLT. Section6.3 presents
resultsindicating that increasingthe reorder buffer size
narravs the gap betweerthe SC andRC implementations
for mary applications;the rest of the applicationsstill
require SC++ hardare to close theap.

Our results in Section6.4 indicate that performing
storesin strict programordercausesSC++to be consider-
ably slower thanthe RC implementationconfirming the
need to execute stores speculatrely. Finally, in
Section6.5, we shav that with smaller L2 cachesyoll-
backs due to replacementsof speculatrely accessed
blocks artificially widen the gap betweenthe SCandRC
implementations.

6.1 Base System

In Figure3, we shav the speedupof the RC imple-
mentation SC++usinganinfinitely large SHiQ (shovn as
SC++inf), and SC++ using a 512-entrySHiQ and a 64-
entry BLT (shavn as SC++S512B64)measuredacainst
thebasecaseof the SCimplementationAlthoughboththe
SCandRC implementationgreequippedvith non-block-
ing caches prefetching,and speculatie loads,thereis a
significantgap betweenthe SC and RC implementations.
Ontheaveragethe RCimplementatioris 18%betterthan
the SCimplementationand at most,the RC implementa-
tion is 38% betterthanthe SCimplementationThe main
reasorfor this gapis that, unlike the RC implementation,
the SC implementationcannotretire any memoryopera-
tions pasta pendingstore.The gapis large in the caseof
radix becausestore addresseslependon previous loads,
which stopsthe memory unit from issuing prefetches,
leadingto pipeline stalls for aslong as the entire store
lateng. In the rest of the applications,the gap is less
becauseboth the SC and RC implementationsstall for
loads, making stores less important.

SC++inf performsas well asthe RC implementation.
By allowing storesto bypassother memory operations,
SC++ closely emulatesthe RC implementation,closing
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FIGURE 3: Comparison of SC, RC, and SC++.

This figure compareghe speedup®f the RC implementation
and SC++ normalized to that of the SC implementation.
SC++infcorrespondso aninfinitely large SHiQ andBLT. The
SC++ S512B64 corresponddo SC++ with a SHIQ of 512
instructions and BL of 64 entries.

the performancegap. For all the applicationsthe number
of memoryorderviolationsdueto speculations too small
to have ary effect on werall performance.

For all theapplications SC++S512B64ealizesthefull
benefitsof SC++with aninfinitely large SHiQ. For em3d,
lu, water, and unstructured, a SHiQ with fewer than512
entriessuffices. For radix andraytrace, 512 entrieswere
neededto reachthe performanceof SC++inf. A BLT of
size 64 vas suficient for all applications.

In the caseof raytrace, SC++ performsbetterthanthe
RC implementatiorby a wide mamgin. In this application,
rollbacks in the SHIQ actually result in performance
improvement!Theserollbackscausedy looping readsof
lock variable,preventtheinjection of moremessagesito
the network, reducingboth network andlock contention.
Kagi etal., shavedthatby simply usingexponentialback-
off the performanceof raytrace canbeincreasedwo-fold
[8]. Although SC++doesnot introduceexponentialback-
off, the time taken to restorethe stateon a rollback pro-
duces a similar éct.

6.2 Network Latency

In this section,we study the effect of longer network
lateng on the performanceof the RC implementatiorand
SC++.We increasethe network lateng to four timesthe
remote lateny of the base configuration describedin
Table3. In Figure4, we shav the speedupsf the RC
implementation,SC++ using an infinitely large SHIiQ
(showvn as SC++inf), SC++usinga 512-entrySHiQ anda
64-entryBLT (shavn asSC++S512B64)andSC++using
a 8192-entry SHIQ and a 128-entry BLT (shawvn as
SC++S8192B128jneasuredagainstthe SC implementa-
tion. All the experiments use the longer nenk lateng.

Comparedo the performancegap betweernthe SC and
RC implementationsshovn in Figure3, the gap in
Figure4 is largerfor all theapplicationsOnincreasinghe
network lateng by afactorof four, the gapincrease$rom
18% to 31%, on the average.The RC implementation
hidesthelongernetwork lateng betterthanthe SCimple-
mentationby overlappingmore storelatenciesFor em3d,
raytrace, andunstructured, the overall performanceof the
RC implementation (and the other implementations)
decrease$our-fold whencomparedo the fasternetwork
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FIGURE 4: Impact of network latency.

The figure plots the speedups of the RC implementation and
SC++ normalized to that of the SC implementation. The net-
work latency was increased, for shown experiments, to eight
times the local memory latency. Numbers following the letters
‘S and ‘B’, in the legend, correspond to the sizes of the SHIQ
and BLT, respectively.

used in Section 6.1; for lu, radix, and water the decreasein
performance is only by a factor of two, indicating that
these three applications are less sensitive to remote
latency.

In spite of the longer network latency, SC++inf keeps
up with the RC implementation, showing that SC++ can
closely emulate the RC implementation, achieving similar
overlap of memory operations. Not surprisingly, the longer
network latency creates a performance gap between
SC++S512B64 and the RC implementation for radix and
raytrace, indicating that a 512-entry SHiQ is insufficient
to absorb the extra latency of remote memory operations.
By increasing the SHiQ size to 8192 entries and the BLT
to 128 entries, SC++ can perform aswell asthe RC imple-
mentation for radix and raytrace. For the rest of the appli-
cations, the smaller SHiQ and BLT configuration of SC++
performs as well as the RC implementation. Note that in
the case of raytrace, even SC++S8192B128 no longer per-
forms better than the RC implementation because the
longer network latency dominates the lock acquisition pat-
terns.

6.3 Reorder Buffer Size

To determine whether large reorder buffer sizes in
future ILP processors will obviate the SHiQ and BLT, we
study the effect of increasing the reorder buffer size on the
performance of the SC and RC implementations. In
Figure 5, we show the speedups of the SC and RC imple-
mentations at reorder buffer sizes of 64 and 1024 instruc-
tions, using the SC implementation with a 64-instruction
reorder buffer asthe base case. Note that although both the
SC and RC implementations use non-blocking caches,
hardware prefetching, and speculative loads, the SC
implementation cannot retire stores out-of-order but the
RC implementation can.

With a 64-instruction reorder buffer, there is a signifi-
cant performance gap between the SC and RC implemen-
tations, as aready mentioned in Section 6.1. Increasing
the reorder buffer size to 1024 instructions, the gap shrinks
for all the applications, except for raytrace and unstruc-
tured. Increasing the reorder buffer size from 64 to 1024
instructions shrinks the gap from 18% to 14%, on the aver-
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FIGURE 5: Impact of reorder buffer size.

The figure compares the speedups of the RC and SC implemen-
tations, for 64 and 1024 entry reorder buffer sizes, normalized
with respect to that of the SC implementation with a 64-entry
reorder buffer.

age. By hiding more store latencies through allowing more
timefor prefetchesin alarger reorder buffer, the SC imple-
mentation performs closer to the RC implementation,
although the RC implementation’s performance improves
as well. Although the gap between the SC and RC imple-
mentations shrinks on increasing the reorder buffer size,
there is dill a significant difference in performance
between the two, suggesting that the SC++ hardware—the
SHiQ and BLT—may be required to close the gap com-
pletely.

In the case of raytrace, increasing the reorder buffer
size helps neither the SC nor RC implementation. A reor-
der buffer of 64 instructions already exposes the critical
path through raytrace, so that larger reorder buffer sizesdo
not result in more overlap of memory operations. Perfor-
mance of raytrace is mostly determined by the time spent
in the critical sections of the program. Both the SC and RC
implementations overlap the instructions in the critical
section to the point where performance is limited by con-
tention for the lock. The RC implementation’s perfor-
mance is better than that of the SC implementation
because the RC implementation executes the critical sec-
tion faster than the SC implementation. The RC imple-
mentation retires the storesin the critical section at afaster
rate than the SC implementation, while the SC implemen-
tation incurs higher traffic due to more rollbacks. When
the reorder buffer size is increased from 64 to 1024
instructions, the total number of loads i ssued per processor
increases by 50% in the SC implementation, increasing the
traffic significantly.

In the case of unstructured, the gap between the SC and
RC implementations grows on increasing the reorder
buffer size because the number of rollbacks in the case of
SC increases. When the reorder buffer size is increased
from 64 to 1024 instructions, the number of rollbacks
increase by a factor of 35. These rollbacks increase the
traffic in the case of the SC implementation, leading to a
wider gap between the SC and RC implementations.

6.4 SHiQ Size and Speculative Stores

In this section, we show the importance of alarge SHiQ
and speculative stores to enable the SC implementation to
reach the RC implementation’s performance. In Figure 6,
we show the speedups of the RC implementation, SC++
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FIGURE 6: Impact of speculative stores.

The figure compareghe speedup®f the RC implementation,
SC++and SC++ without speculatie stores(SC++0),normal-
ized with respect to that of the SC implementation.

using a 512-entry SHiQ and a 64-entry BLT (shavn as
SC++S512B64)SC++usinga 512-entrySHiQ anda 64-
entry BLT without speculatie stores (shawvn as
SC++0S512B64)and SC++usinga 64-entrySHiQ with-
out speculatie stores(shovn as SC++0S64)measured
agpinstthe basecaseof the SC implementationThe RC
implementationand SC++S512B64were comparedin
Section6.1 and are stven here for reference.

Now, we compare SC++S512B64  with
SC++0S512B64which isolatesthe importanceof specu-
lative stores.SC++o canreachthe RC implementatiors
performancdor em3d, lu, unstructured, andwater, which
arenot store-intensie. But for the casesf radix andray-
trace, thereis a significantgap of 9% and 22%, respec-
tively, between the RC implementation and
SC++0S512B6decausef their store-intensie nature.In
thesetwo applications,the absenceof speculatie stores
causes significant performanceloss. Not overlapping
storeswith othermemoryoperationsn SC++oleadsto the
filling up of the load/storequeuewhich, in turn, blocks
instructionissue, exposing the pipeline to remote laten-
cies.

Reducingthe SHIQ size from 512 to 64 entriesin
SC++0 causessignificant performancedegradation for
em3d and radix. The smaller SHIQ size significantly
reducesthe overlap among (non-speculatie) storesand
speculatie loads, which exposesthe pipeline to remote
latenciesIn the casef em3d andradix, performanceof
SC++0S512B64s 7% and 16%, respectrely, betterthan
that of SC++0S64.

6.5 L2 Cache Size

So far, we have comparedthe different implementa-
tions using large L2 cachesfor our simulationsto avoid
ary capacityandconflict missessothat performancedif-
ferencesamongthe memorymodelsare solely dueto the
intrinsic behaior of the models.In this section,we shav
theimportanceof anL2 cachebeinglarge enoughto hold
all thespeculatre stateof the SCimplementationin order
for the SC implementationto reachthe RC implementa-
tion’s performanceln Figure7, we shawv the speedup®f
theRC implementatiorandSC++usinga512-entrySHiQ
anda 64-entryBLT (shavn as SC++S512B64)neasured

1.8
16 2.65 B W sc [ RC
1.4 [] SC++ S512 B64
2 1.2 M _
210 _ _
Sos
3 0.6
0.4
0.2
0.0

unstructured
raytrace water

lu y
FIGURE 7: Impact of the L2 cache size.

The figure shaws the impact of cachesize on the SCimple-
mentation,RC implementationand SC++ performance.The
L2 cachewas reducedto 4-way 64-Kbyte size for shavn
experiments.The resultswere normalizedwith respectto the
SC implementation.

em3d radix

againstthe basecaseof the SC implementationusing a
64-Kbyte, 4-vay associatie L2 cache.

Therearetwo effectsof a smallerL2 cacheon the per-
formancegap betweenthe SC and RC implementations.
On onehand,the gap maywiden becausehe cacheis not
largeenoughto hold all of the SCimplementatiors specu-
lative state.On the other hand,a smallerL2 cachemay
incur mary load misseswhich slowv down boththe SCand
RC implementationstesultingin a narraver performance
gap betweenthe two. For all the applications,exceptlu
andradix, the higherload miss rate of the 64-Kbyte L2
cachedeggradegperformancef boththe SCandRC imple-
mentations,reducingthe significanceof the differences
betweenthe memoryorderingconstraintsof SC and RC.
Comparedo the performancejapbetweerthe SCandRC
implementationausing the 8-Mbyte L2 cache(Figure3),
thegapbetweerthe SCandRCimplementationsisingthe
64-KbyteL2 cacheis wider for radix becauseonflictson
storesexposegemotelatenciesn the SCimplementation.

In the caseof lu, the striking gap betweenthe SC and
RC implementationausingthe 64-Kbyte L2 cacheis pri-
marily causedby rollbacks due to replacementgdue to
conflict missesin the cache)of speculatiely accessed
blocks. The number of rollbacks due to replacements
increasesnordinately (by a factorof 55,000),comparing
the 64-Kbyte L2 cachewith the 8-Mbyte L2 cache.For
both lu andradix, althoughSC++ performscloserto the
RC implementatiorthanthe SCimplementation SC++is
also sensitie to the rollbacks due to replacements.

7 Conclusions

This papershaws, for thefirst time, that SCimplemen-
tationscan performaswell asRC implementationsf the
hardware provides enoughsupportfor speculationBoth
SCandRC implementationsely on reorderingand over-
lappingmemoryoperationgo achieve high performance.
The key differenceis that while RC implementationgri-
marily usesoftware guaranteeso enforcememorymodel
constraints,SC implementationsrely on full hardware
speculationto provide the guaranteeFull-fledged hard-
ware speculationcanenableSC implementationgo relax
speculatrely all memoryordersand“emulate” RC imple-



mentations,enabling SC implementationsto reach RC
implementations’ performance.

The fundamentabrchitecturaland applicationrequire-
mentsthat enablean SC implementationto perform as
well as an RC implementationare: (1) hardware should
allow bothloadsandstoresto bypasseachotherspecula-
tively to hide long remotelatencies,(2) hardware should
provide large speculatie state,for both processorand
memory to allow out-of-order memory operations,(3)
supportfor hardwarespeculatiorshouldnot addexcessive
overheado processopipelinecritical paths,and(4) roll-
backsof speculatie executionshouldbe infrequent,asis
the case for well-belad applications.

Employing novel microarchitectural mechanisms,
SC++ alleviates the shortcomingsof current SC imple-
mentationsto completely close the performancegap
betweersCandRC implementationsSC++allows specu-
lative bypassingof both loadsand stores,yet appeargo
execute memory operationsatomically and in program
order SC++providesamplespeculatie statefor the pro-
cessorin the Speculatie History Queue(SHiQ), which
supplementghe reorderbuffer, to absorbremoteaccess
latencies.SC++ ensuressuficient speculatie state for
memory by placing speculatie datain the local cache
hierarcly itself andusinga large L2 cache,as suggested
by recent proposalsfor DSMs with aggressie remote
cachingtechniquesSC++ usesthe Block Lookup Table
(BLT) to allow fast lookups of pending speculatie
accesseB the SHIQ, on aninvalidation,dovngradesor a
replacementrom the L2 cache.The SHiQ andBLT help
minimize additional overheadsto the processorpipeline
critical paths.

Our experimentalresultsobtainedby software simula-
tion shav that SC++ achieves an RC implementatiors
performancen all the six applicationswe studied Evenat
longernetwork latencies SC++ cankeepup with the RC
implementationalbeit using larger speculatie state.For
SC++to reachthe RC implementatiors performanceall
the hardware of SC++—alarge SHiQ with the associated
BLT anda large cache—isneeded Simply increasingthe
reorderbuffer size,without usingthe SHiQ or BLT, nar-
rows thegapbetweerthe SCandRC implementationshut
the extra mechanism®f SC++ are requiredto closethe
gap completely Performing stores in program order
causesSSC++to beconsiderablyslover thantheRCimple-
mentation,confirmingthe needto executestoresspecula-
tively. Finally, smallerL2 cachescauserollback due to
replacement®f speculatie blocks, artificially widening
the cap between the SC and RC implementations.
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