
To appear in the Proceedings of the 26th International Symposium on Computer Architecture (ISCA 26), 1999.

Is SC + ILP = RC?

Chris Gniady, Babak Falsafi, and T. N. Vijaykumar
School of Electrical & Computer Engineering

Purdue University
1285 EE Building

West Lafayette, IN 47907
impetus@ecn.purdue.edu, http://www.ece.purdue.edu/~impetus

Abstract

Sequentialconsistency (SC) is the simplestprogram-
ming interface for shared-memorysystemsbut imposes
programorderamongall memoryoperations,possiblypre-
cluding high performanceimplementations.Releasecon-
sistency (RC), however, enablesthe highestperformance
implementationsbut putstheburdenon theprogrammerto
specifywhichmemoryoperationsneedto beatomicandin
programorder. This papershows, for thefirst time, thatSC
implementationscan perform as well as RC implementa-
tions if thehardwareprovidesenoughsupportfor specula-
tion. Both SC andRC implementationsrely on reordering
andoverlappingmemoryoperationsfor high performance.
To enforceorder when necessary, an RC implementation
usessoftware guarantees,whereasan SC implementation
relies on hardware speculation.Our SC implementation,
calledSC++,closesthe performancegap because:(1) the
hardwareallows not just loads,assomecurrentSCimple-
mentationsdo,but alsostoresto bypasseachotherspecula-
tively to hide remotelatencies,(2) the hardwareprovides
largespeculative statefor not just processor, aspreviously
proposed,but alsomemoryto allow out-of-ordermemory
operations,(3) the supportfor hardware speculationdoes
not addexcessive overheadsto processorpipelinecritical
paths,and (4) well-behaved applicationsincur infrequent
rollbacks of speculative execution.Using simulation,we
show that SC++achievesan RC implementation’s perfor-
mance in all the six applications we studied.

1 Introduction
Multiprocessorsare becomingwidely available in all

sectorsof thecomputingmarket from desktopsto high-end
servers. To simplify programmingmultiprocessors,many
vendorsimplementsharedmemoryastheprimarysystem-
level programmingabstraction.To achieve high perfor-
mance,the shared-memoryabstractionis typically imple-
mentedin hardware.Shared-memorysystemscomewith a
variety of programminginterfaces—alsoknown as mem-
ory consistency models—offering a trade-off betweenpro-
gramming simplicity and high performance.

Sequentialconsistency (SC) is the simplestand most
intuitive programming interface [9]. An SC-compliant
memorysystemappearsto executememoryoperationsone
at a time in programorder. SC’s simplememorybehavior
is what programmersoften expect from a shared-memory

multiprocessorbecauseof its similarity to thefamiliar uni-
processormemorysystem.Traditionally, SC is believed to
preclude high performance because conventional SC
implementations would conservatively impose order
amongall memoryoperationsto satisfy the requirements
of themodel.Suchimplementationswouldbeprohibitively
slow especially in distributed shared memory (DSM)
where remote memory accessescan take several times
longer than local memory accesses.

To mitigateperformanceimpactof long latency opera-
tionsin sharedmemoryandto realizetheraw performance
of the hardware, researchersand systemdesignershave
inventedseveral relaxed memorymodels[3,2,6]. Relaxed
memory modelssignificantly improve performanceover
conventionalSC implementationsby requiringonly some
memoryoperationsto performin programorder. By other-
wise overlappingsomeor all other memory operations,
relaxedmodelshidemuchof thememoryoperations’long
latencies.Relaxed models,however, complicatethe pro-
gramminginterface by burdeningthe programmerswith
the details of annotatingmemory operationsto specify
which operations must execute in program order.

Modernmicroprocessorsemploy aggressive instruction
executionmechanismsto extractlargerlevelsof instruction
level parallelism(ILP) andreduceprogramexecutiontime.
To maximizeILP, thesemechanismsallow instructionsto
executeboth speculatively andout of programorder. The
ILP mechanismsbuffer the speculative state of such
instructionsto maintainsequentialsemanticsupona mis-
speculationor an exception. The ILP mechanismshave
reopenedthe debateabout the memory modelsbecause
they enableSC implementationsto relax speculatively the
memoryorder and yet appearto executememoryopera-
tions atomically and in program order [5,14,7].

An aggressive SC implementationcan speculatively
performall memoryoperationsin a processorcache.Such
an implementationrolls back to the ‘‘sequentially-consis-
tent’’ memorystateif anotherprocessoris aboutto observe
that themodelconstraintsareviolated(e.g.,a storeby one
processorto a memoryblock loadedspeculatively out of
orderby another).In theabsenceof frequentrollbacks,an
SC implementationcanperformpotentiallyaswell asthe
best of relaxed models—ReleaseConsistency (RC)—
becauseit emulatesan RC implementation’s behavior in
every other aspect.

Gharachorlooet al., [5] first madethe observation that
exploiting ILP mechanismsallows optimizing SC’s per-
formance.Their proposedtechniquesare implementedin
HP PA-8000,Intel PentiumPro,andMIPS R10000.Ran-
ganathanetal., re-evaluatedthesetechniques[13] andpro-
posed further optimizations [14] but concludedthat a
significant gap between SC and RC implementations
remainsfor someapplicationsand identifiedsomeof the
factorscontributing to the difference.Hill [7], however,
arguesthatwith currenttrendstowardslargerlevelsof on-
chip integration,sophisticatedmicroarchitecturalinnova-
tion, andlarger caches,the performancegap betweenthe
memory models should eventually vanish.

This paperconfirmsHill’ s conjectureby showing, for
the first time, that an SC implementationcanperformas
well as an RC implementationif the hardware provides
enoughsupport for speculation.The key observation is
that both SC andRC implementationsrely on reordering
andoverlappingmemoryoperationsto achieve high per-
formance.While RC implementationsprimarily usesoft-
ware guaranteesto enforce program order only when
necessary, SC implementationsrely on hardwarespecula-
tion to provide theguarantee.So long ashardwarespecu-
lation enablesSC implementationsto relax all memory
ordersspeculatively and “emulate” RC implementations,
SC implementationscanreachRC implementations’per-
formance.Any shortcomingin the hardware supportfor
speculationprevents SC implementationsfrom reaching
RC implementations’ performance.

In this paper, we identify thefundamentalarchitectural
andapplicationrequirementsenablinganSCimplementa-
tion to perform as well as RC implementations:

• Full-fledgedspeculation:Hardwareshouldallow both
loadsandstoresto bypasseachotherspeculatively to
avoid stoppingtheinstructionflow throughtheproces-
sor pipeline. Current techniques[14,5] allow only
loadsto bypasspendingloadsandstoresspeculatively;
storesarenot allowed to bypassothermemoryopera-
tions. We presentnovel mechanismsto allow both
loadsandstoresto bypasseachotherspeculatively and
yet appearto executememoryoperationsin program
order.

• Largespeculative state:Hardwareshouldprovide large
enoughspeculative statefor both processorandmem-
ory to allow out-of-order operations to hide long
remotelatencies.Without studyingtherequiredsizeof
speculative state for processoror memory, previous
studiesproposedextensionsto the re-orderbuffer for
speculative processorstate [14], but did not provide
any supportfor speculative memorystatebeyondcon-
ventionalload/storequeues.We quantify the required
sizeof speculativestatefor processorandmemory, and
provide speculative state support for both processor
and memory.

• Fast commoncase:Hardware supportfor speculation
should not introduce overhead (e.g., associative
searches)to theexecution’s critical path.Previouspro-
posalsdetectmemory order violation for speculative
loads[5,14]. We presentfastandefficient mechanisms
to detectmemoryorderviolation for both speculative
loadsandstoreswithoutexcessivedeteriorationof pro-
cessor pipeline critical paths.

• Infrequentrollbacks:Theapplicationshouldinherently
incur infrequentrollbacksof speculativeexecution.We
argue that well-behaved applications—i.e.,applica-
tions benefittingfrom parallel executionon multipro-
cessors—indeed will not incur frequent rollbacks.
In our performanceevaluation,we assumeaggressive

remote caching mechanismsand a large repository for
remote data as suggestedin most recent proposalsfor
DSMs [10,11,4]. Using simulation of shared-memory
applications,we show thatour SC implementation,called
SC++, achieves an RC implementation’s performancein
all the six applications we studied.

In Section2, we describethe current implementation
optimizationsfor SC and RC. In Section3, we describe
SC++.We presenta qualitative comparisonof currentSC
and RC implementations,and SC++ in Section4. In
Section6, we report experimentalresultsof our simula-
tions, and in Section7, we draw some conclusions.

2 Current ILP Optimizations
A memoryconsistency modeldefinestheprogramming

interfacefor a shared-memorymachine.Sequentialcon-
sistency (SC) provides the most intuitive programming
interfaceby requiringthat all memoryoperationsexecute
in programorder. To relax SC’s requirementon ordering
memoryoperationsandincreaseperformance,researchers
and system designersinvented many relaxed memory
models.Relaxed memory modelsallow memory opera-
tions to executeout of programorderbut requirethepro-
grammerto annotatethosememoryoperationsthat must
execute in program order to result in correct execution.

Processorvendorsvary with respectto the memory
modelsthey provide [1]. HP andMIPS both adoptSC as
theprimaryprogramminginterface.Othersprovide a vari-
ety of relaxed modelsvarying in the extent to which they
relax memory ordering. Intel processorsuse Processor
Consistency (PC) which allows loads(to one block) fol-
lowing a store(to a differentblock) to executeout of pro-
gram order. Sun SPARC processorsprovide Total Store
Order (TSO) which only relaxes store followed by load
orderandenforcesorderamongall othermemoryopera-
tions. Sun SPARC, DEC Alpha, IBM PowerPC,all pro-
vide RC, which is the most relaxed memorymodel.RC
allows memoryoperations(to differentaddresses)to exe-
cuteoutof programorder. All relaxedmodelsincludespe-
cial synchronizationoperationsto allow specificmemory
operations to execute atomically and in program order.

Conventionalimplementationsof memoryconsistency
modelsexecutedthe memoryoperationsaccordingto the
model’s constraint. For instance, SC implementations
would executememoryoperationsaccordingto the pro-
gram order and one at a time. Modern microprocessors,
however, exploit high degreesof instructionlevel parallel-
ism (ILP) through branch prediction, execute multiple
instructionspercycle, usenon-blockingcachesto overlap
multiple memoryaccesslatencies,andallow instructions
to executeout of order. To implementpreciseexceptions
and speculative execution in accordancewith sequential
semantics,modern microprocessorsuse an instruction
reorderbuffer [15] to rollback and restorethe processor
state on an exception or a misspeculation.Aggressive
implementationsof a memorymodelcanemploy all these
ILP techniques,which enablememoryoperationsto over-

lap and execute out of order but appear to comply with the
memory model’s constraints [14,5].

2.1 Mechanisms for Speculative Execution
In this section, we fist describe speculative instruction

execution using ILP mechanisms in modern processors.
We then present current memory model optimizations
using these ILP mechanisms. We use the same pipeline
model as Ranganathan et al., [13], which closely approxi-
mates the MIPS R10000 pipeline [17]. Figure 1 depicts
the use of the reorder buffer (also referred to as an active
window, or instruction window) to implement speculative
execution and precise exceptions in modern microproces-
sors which issue instructions out of order.

The branch prediction and instruction fetch unit fetches
and issues instructions. Upon issue, instructions are
inserted in the reorder buffer. Upon availability of an
instruction’s operands, the instruction’s (architectural)
destination register is mapped to a physical register and is
forwarded to a reservation station at each functional unit.
The reorder buffer maintains the original program order
and the register rename mapping for each instruction.
Loads and stores are placed in the load/store queue, which
acts as a reservation station but also maintains the program
order among memory operations until the accesses are
performed in the cache.

The pipeline forwards new register values generated by
instructions to the reservation stations, and writes them to
the reorder buffer and/or the physical registers. Instruc-
tions retire from the head of the reorder buffer in program
order. Upon an exception or branch misprediction, all
instruction entries in the reorder buffer following the
mispredicted branch or the excepting instruction are rolled
back and not allowed to retire from the reorder buffer [15].
Register rename-maps modified by the rolled back instruc-
tions are restored and execution is restarted at the offend-
ing instruction.

2.2 SC
In conventional SC implementations, the processor

would faithfully implement SC’s ordering constraints, per-
forming memory operations atomically and in program
order by issuing one memory operation at a time and
blocking on cache misses. Such an implementation would
be prohibitively slow in today’s aggressive microproces-
sors because the processor must issue memory operations

one at a time and the first cache miss would block both the
cache and the instruction flow through the reorder buffer.

Gharachorloo et al., [5] proposed two ILP optimiza-
tions to improve shared memory’s performance by pre-
venting memory operations from frequently blocking the
reorder buffer. Several current SC implementations (e.g.,
HP PA 8000, and MIPS R10000) include these optimiza-
tions. The idea is to use hardware prefetching and non-
blocking caches to overlap fetching and placing cache
blocks in the cache (or fetching block ownership requests)
for the loads and stores that are waiting in the reorder
buffer. Upon availability of the blocks in the cache, the
loads and stores perform subsequently (and quickly) in the
cache. Because the loads and stores retire atomically and
in program order from the head of the reorder buffer, the
prefetching optimization does not violate the memory
model. Some implementations also retire pending stores
from the reorder buffer but maintain program order in the
load/store queue until they are performed.

Current aggressive SC implementations also allow
loads to execute speculatively out of program order. Spec-
ulative execution allows loads to produce values that can
be consumed by subsequent instructions while other mem-
ory operations (preceding the load in program order) are
pending. The speculative load optimization is based on the
key observation that as long as other processors in the sys-
tem do not detect a speculatively loaded block, all memory
operations appear to have executed atomically and in pro-
gram order.

To guarantee the model’s constraints, the speculative
load optimization prevents other processors in the system
from observing a speculative block. It is conservatively
assumed that a speculatively loaded block may be exposed
if it leaves processor caches—e.g., due to an invalidation
message from or a writeback to the directory node in dis-
tributed shared memory (DSM). Therefore, the caches
must hold a speculatively loaded block until the load
retires. Upon a cache replacement signal from the L2
cache for a speculatively loaded block, however, the pro-
cessor rolls back the load and all subsequent instructions
(much as a branch misprediction) to restore the processor
and memory to a ‘‘sequentially-consistent’’ state.

Because speculatively performed loads cannot retire
from the reorder buffer until all pending memory opera-
tions are performed, a store at the head of the reorder
buffer may block the instruction flow due to long remote
latencies. But increasing the reorder buffer size to accom-
modate remote latencies may slow down processor critical
paths involving associative searches through the buffer in a
single cycle [12]. To alleviate this problem, speculative
retirement [14] moves speculatively performed loads and
subsequent instructions from the head of the reorder buffer
to a separate history buffer before they retire. The history
buffer maintains the information required to roll back, in
case of an invalidation to a speculatively accessed block.
Although speculative retirement narrows the performance
gap between SC and RC implementations, a significant
gap remains in some applications.

Store buffering [6] further enhances memory system
performance by removing pending store instructions from
the reorder buffer and placing them in the load/store
queue. Relaxed models may realize the full benefits of
store buffering by allowing loads in the reorder buffer to

Register
Files &
Map
Tables

Reorder
Buffer

LD/ST ALU ALU

L1 Cache

FIGURE 1: Speculative execution in current
microprocessors.

L2 invalidations/
replacements

bypass pending stores. In conventional SC implementa-
tions, however, the reorder buffer stops retiring instruc-
tions at a load if there are pending stores and therefore,
store buffering may not be as beneficial. Nevertheless,
some commercial systems (e.g., HP processors) support
store buffering for SC.

Both SC and RC implementations rely on reordering
and overlapping memory operations to achieve high per-
formance. The key difference between SC and RC imple-
mentations is that while RC implementations use software
guarantees to guide the reordering and overlapping of
memory operations, SC implementations use hardware
speculation to reorder and overlap memory operations due
to lack of any software guarantees. In spite of the above
optimizations, SC implementations lag behind RC imple-
mentations because:

• the inability of stores to bypass other memory opera-
tions speculatively cause the load/store queue to fill up,
eventually stopping instruction flow;

• long latency remote stores cause the relatively small
reorder buffer (or the history buffer, in the case of spec-
ulative retirement) and load/store queue to fill up with
speculative processor and memory state, respectively,
stalling the pipeline;

• the capacity and conflict misses of small L2 caches
cause replacements of speculatively loaded blocks,
resulting in rollbacks.

2.3 RC
RC modifies the programming interface to allow the

programmer to specify the ordering constraints among
specific memory operations, so that in the absence of such
constraints memory operations can overlap in any arbi-
trary order. Many microprocessors provide special fence
instructions (e.g., the MEMBAR instruction in SPARC
V9, or the MB and WMB instructions in Alpha) to enforce
specific ordering of memory operations wherever needed.
Typical RC implementations use special fence instructions
at the lowest level to enforce memory ordering [6] but pro-
vide higher level programming abstractions for synchroni-
zation.

Conventional RC implementations achieved high per-
formance primarily by using store buffering in the load/
store queue to allow loads and stores to bypass pending
stores and would maintain program order among memory
operations only on executing a fence instruction. Modern
RC implementations can additionally take advantage of
hardware prefetching and non-blocking caches to fetch
multiple cache blocks or make block ownership requests
(for stores). Unlike SC implementations, RC implementa-
tions can use binding prefetches so that the loads can be
performed before reaching the head of the reorder buffer.
Moreover, RC implementations, like SC implementations,
can also speculatively relax ordering across fence instruc-
tions and use rollback mechanisms if a memory model
violation is detected by other processors.

3 SC++: SC Programmability with RC
Performance

SC++, our implementation of SC, is based on the
observation that SC implementations can approach RC
implementations’ performance if: (1) the hardware pro-
vides efficient mechanisms to relax order speculatively for
not only loads, as done in [5], but also stores, (2) the sys-
tem provides enough space to maintain not only specula-
tive processor state, as proposed in [14], but also
speculative memory state of reordered memory operations,
(3) the support for speculation does not add excessive
overhead to the processor pipeline, and (4) rollbacks are
infrequent so that in the common case memory operations
execute and complete with no ordering constraints, much
as in RC implementations.

3.1 Speculative Execution in SC++
To fully emulate an RC implementation, SC++ relaxes

all memory orders speculatively and allow instructions to
continue to issue and execute at full speed even in the pres-
ence of pending long-latency store operations. To guaran-
tee SC’s constraints, SC++ maintains the state
corresponding to all speculatively executed instructions
between a pending store and subsequent (in-program-
order) memory operations until the pending store com-
pletes. If there is an external coherence action (e.g., an
invalidation of speculatively loaded data or external read
of speculatively stored data) on speculatively accessed
data, a misspeculation is flagged and execution is rolled
back to the instruction that performed the speculative
access. Thus, speculative state of loads and stores is not
exposed to the other processors in the system, much as
speculative loads are handled in [5].

Figure 2 illustrates SC++. SC++ supplements the reor-
der buffer with the Speculative History Queue (SHiQ) to
maintain the speculative state for stores, much as specula-
tive retirement does for loads. The SHiQ removes com-
pleted instructions as well as issued or ready to issue store
instructions from the reorder buffer, allows instructions to
retire and update the processor state and L1 cache specula-
tively, and maintains a precise log of the modifications to
enable rolling back and restoring to the state conforming
to SC’s constraints. Thus, SC++ performs speculative
stores to the cache itself instead of buffering the stores in
the load/store queue, avoiding stalls caused by the filling
up of the store queue due to long remote latencies. Upon
completion of the earliest (in program order) pending store
operation, the hardware disposes of all of the SHiQ’s con-
tents from the head until the next pending store operation.
Since loads are moved to the SHiQ only after they com-
plete in the reorder buffer, stores are the only operations in
the SHiQ that may be pending; all other instructions in the
SHiQ are (speculatively) completed instructions.

When an instruction retires from the reorder buffer, if
there is a preceding pending store with respect to the
instruction, the hardware inserts a modification log at the
end of the SHiQ, recording the old architectural state that
the instruction modifies. For instance, for an arithmetic
instruction, the log maintains the physical register number,
the old renaming map (i.e., the map prior to the instruc-
tion’s execution), and the old value of the instruction’s
destination register.

To speculatively retire store instructionswhile a pre-
cedingprogram-orderstoreis pending,the hardwareper-
forms a read-modify-write cache access much as a
cachable synchronization instruction (e.g., SWAP in
SPARC) in modernmicroprocessors.Read-modify-writes,
however, typically requireanadditionalcycle to accessthe
cache(e.g., RossHyperSPARC). To prevent the slightly
longer accesslatency of a read-modify-writeoperation
from blocking accessto the cache, the hardware can
employ several well-known bandwidth optimizationsto
theL1 cache.Alternatively, by carefullyschedulingspecu-
lative stores,thehardwarecanprioritize cacheaccessesto
allow loadsaccessthe cachewith a higher priority than
speculative storesand therebyminimize the load-to-use
latency among instructions.

3.2 Detecting Memory Order Violation
SCmodelrequirestheSC++hardwareto guaranteethat

relaxingthe memoryorderis not observed by or exposed
to the rest of the system.Our implementation(Figure2)
providesthis guaranteeby rolling backall executionstate
whena speculatively loadedor storedblock is invalidated
(by theDSM homedirectory),read(by a remotenode,in
the caseof speculatively storeddata),or replaced(dueto
capacityor conflictmisses)from thelower-level L2 cache.
In general, such an approachis conservative because
SC++needonly to ensurethataspeculativeblockdoesnot
leave a DSM node. Recent proposalsfor DSMs with
aggressive remotecachingtechniquesprovide a largespe-
cial-purposeremoteaccesscacheeither in the network
interface[10], or in both main memoryand the network
interface[11,4]. SC++may limit the rollbacksto the less
frequent caseof speculative blocks leaving the remote
cache.

Upon every invalidation, replacementor downgrade
from L2, the hardwaremustdeterminewhetherthe block
has been accessedspeculatively by a load or store.
BecausetheSHiQ mustbelargeenoughto storethecom-
plete history of instruction execution during a pending
remotememoryoperation,the queuemay be too large to
allow a fast associative search.Moreover, there may be
frequentinvalidationsor replacementsfrom L2 to blocks
that are not speculatively accessed,necessitatinga fast
lookup.

To providea fastlookup,SC++usesasmallassociative
buffer, calledtheBlock LookupTable(BLT), to hold a list
of all the uniqueblock addressesaccessedby speculative
loadsand storesin the SHiQ. Unlike currentSC imple-
mentationswhich identify speculatively loadedblocksby

directly searchingthe reorder buffer and the load/store
queues,theBLT decouplesthesearchmechanismsto iden-
tify speculative blocks from the rollback mechanismsin
the SHiQ that maintainall the speculative processorand
memorystate.The BLT is basedon the key observation
that loadsand storesare only a fraction of all executed
instructionsandthereis a high temporalandspatiallocal-
ity in near-neighbor load and store instructions.As a
result, a block lookup table can significantly reducethe
search space as compared to the SHiQ.

3.3 Rolling Back Processor & Memory State
SC++mustroll backtheprocessorandmemorystateto

a “sequentiallyconsistent”stateupon a lookup matchin
the BLT. To guaranteeforward progressand avoid live-
locks/deadlocks,the hardware must restoreall processor
and memory stateup to the first instruction in program
order that speculatively accessedthe matching block.
Restoringthe processorstateinvolves stoppingthe pipe-
line and accessingthe appropriatehardware structures.
Restoringthe speculatively storeddatarequiresaccesses
to the local cachehierarchy, which may move the data
from the lower levels to L1, if the speculative datais dis-
placedfrom L1 to thelower levels.Becauseall of thedata
accessedby theinstructionsin theSHiQ areguaranteedto
be presenton the node, restoring the data can proceed
without involving the coherence protocol.

Upon restoring the processorand memory state, the
hardwareinhibits furtherspeculative retirementof instruc-
tionsinto theSHiQ until all pendingstoreshave beenper-
formed. Such a policy guaranteesforward progressby
allowing the instruction causingthe rollback to execute
and retire (non-speculatively) in programorder. During
rollback, the processoralso inhibits further coherence
message processing to avoid deadlocks.

Dependingon the rollback frequency and the desired
performancein the presenceof frequent rollbacks, the
implementationcanoptimizetherollbackprocess.A slow
rollback will slow down both the faulting processorand
any processorssendingcoherencemessagesto thefaulting
processor. Oneway to acceleratetherollbackprocessis to
exploit the processorILP mechanismsto roll backmulti-
ple instructionsper cycle. Another optimizationincludes
allowing invalidationmessagesfor read-onlyblocksto be
immediately serviced eliminating the rollback waiting
time for the responsemessage.For blocks with specula-
tively storeddata,a further optimizationto eliminatethe
waiting time includesrestoringthe requestedblock first
before the rollback process starts.

4 Qualitative Analysis
The primary differencebetweenRC implementations

andSC++is thatRC implementationsrely on softwareto
enforcethememoryordernecessaryto guaranteecorrect-
ness,whereasSC++relieson hardwareto provide sucha
guarantee.While RC changesthe program interface to
relax memory order, SC++ employs speculative mecha-
nismsin hardware.In thissection,we identify theapplica-
tion andsystemcharacteristicsthat enableSC++to reach
RC implementations’ performance.

To relax memory orders fully, SC++ must provide
enoughspaceto maintaintheprocessorandmemorystate

FIGURE 2: SC++ Hardware.

Register
Files &
Map
Tables

Reorder
Buffer

LD/ST
L1 Cache

L2 invalidations/
replacements

ALU ALU

Speculative History
Queue (SHiQ)

Block Lookup
Table (BLT)

corresponding to all (out-of-program-order) speculatively
executed instructions while a memory operation is pend-
ing. The state includes the processor cache hierarchy (and
the remote cache) maintaining the speculatively accessed
remote blocks, and the special-purpose buffers (e.g., SHiQ
and BLT) maintaining the modification logs for the specu-
latively executed instructions. SC++ must also provide a
fast mechanism to detect rollbacks because there may be
frequent remote block replacements or invalidation mes-
sages in a communication-intensive application even
though rollbacks are infrequent because processors tend to
access different memory blocks at a given time.

Given all the speculative state, the only impediment for
SC++ to achieve RC implementations’ performance is the
fraction of execution time lost to rollbacks. Unfortunately,
the rollback penalty in SC++ may be rather high, because
long latencies of memory operations create potential for a
large number of speculatively executed instructions. How-
ever, we argue that rollback frequency in well-behaved
applications is negligible.

A rollback occurs because two or more processors
simultaneously access the same shared-memory blocks.
There are three scenarios in which rollback frequency can
be high: (1) there are true data races in the application, (2)
there is a significant amount of false sharing, and (3) inev-
itable cache conflicts. Applications for which a significant
fraction of execution time is spent accessing such data typ-
ically do not benefit from parallel execution in DSM
because the overhead of communicating memory blocks
across the processors dominates an execution time.

Table 1 compares the extent to which the memory
model implementations relax memory order. Current
aggressive SC implementations only relax memory order
with respect to loads and use existing architectural mecha-

nisms to execute instructions speculatively. RC implemen-
tations primarily relax order by requiring the software to
guarantee correct placement of fence instructions. SC++
uses extra hardware to relax all orders speculatively and
fully emulate RC implementations.

5 Experimental Methodology
Table 2 presents the shared-memory applications we

use in this study and the corresponding input parameters.
Em3d is a shared-memory implementation of the Split-C
benchmark. Lu (the non-contiguous version), radix, ray-
trace, water (the nsquared version) are from the SPLASH-
2 benchmark suite. Unstructured is a shared-memory
implementation of a computational fluid dynamics compu-
tation using an unstructured mesh.

We use RSIM, a state-of-the-art DSM simulator devel-
oped at Rice university, to simulate an eight-node DSM.
Every DSM node includes a MIPS R10000 like processor,
first and second level caches, and main memory. Table 3
shows the base system configuration parameters used
throughout the experiments unless otherwise specified.
Our application data set sizes are selected to be small
enough so as not to require prohibitive simulation cycles,
while being large enough to maintain the intrinsic commu-
nication and computation characteristics of the parallel
applications. Woo et al., show that for most of the
SPLASH-2 applications, the data sets provided have a pri-
mary working set that fits in a 16-Kbyte cache [16]. There-
fore, we assume 16-Kbyte (direct-mapped) processor
caches to compensate for the small size of the data sets.
We assume large L2 caches, as suggested by recent pro-
posals for DSMs [10,4], to eliminate capacity and conflict
misses, so that performance difference among the memory
models is solely due to the intrinsics of the models.

In our experiments, all the memory model implementa-
tions use non-blocking caches, hardware prefetching for
loads and stores, and speculative load execution. Neither
the SC nor RC implementation uses speculative retirement
(i.e., the history buffer). SC++ uses the SHiQ and BLT.
Rollbacks due to instructions in the reorder buffer take one

Relaxing
Orders

Mechanisms to
Guarantee Order

Potential
for
Order
Violation

SC loads bypass
loads and
stores

speculative execu-
tion using reorder
buffer, load/store
queue, and specula-
tive placement of
data in cache

lower

RC loads and
stores bypass
each other
between
fences, loads
bypass loads
and stores
across fences

fence instruction,
speculative execu-
tion as in SC across
fences

lower

SC++ loads and
stores bypass
each other

speculative execu-
tion using reorder
buffer, load/store
queue, and specula-
tive placement of
instructions in
SHiQ, data
addresses in BLT
and data in cache

higher

Table 1: Comparison of implementations.

Application Input Parameters

em3d
lu
radix
raytrace
unstructured
water

8192 nodes, 20% remote
256 by 256 matrix, block 8
512K keys
teapot
mesh 2K
343 molecules

Table 2: Applications and input parameter s.

Processor Parameters

CPU
reorder buffer
Load/store queue

300MHz, 4-issue per cycle
64 instructions
64 instructions

L1 cache
L2 cache

16-Kbyte, direct-mapped
8-Mbyte, 2-way

L2 fill latency local
L2 fill latency remote
Cache line size

52 processor cycles
133 processor cycles
64 bytes

Table 3: Base system configuration.

cycle to restartexecutionat theoffendinginstruction.Any
rollbackdueto instructionsin theSHiQ(for SC++)is per-
formed at the samerate as instructionretirement(i.e., 4
instructions per cycle).

6 Results
We start with a performancecomparisonof an SC

implementation,an RC implementation,and SC++ in
Section6.1, which is the main result of this paper. We
show that with unlimited SHiQ, SC++doesreachthe RC
implementation’s performance;SC++performsaswell as
the RC implementationeven after limiting the SHiQ to a
finite size. Section6.2 presentsresultson the impact of
network latency on the relative performanceof the sys-
tems.Our resultsindicatethat with larger network laten-
cies, SC++ still keepsup with the RC implementation,
albeit using larger speculative state,even thoughthe gap
between the SC and RC implementations grows.

Weshow thatto closetheperformancegap,SC++must
closelyemulatetheRC implementationby overlappingall
memoryoperationsthat the RC implementationoverlaps
and requiring the entire set of SC++ hardware—alarge
SHiQ with the associatedBLT anda large cache.Future
processordesignsmay have large reorderbuffers,obviat-
ing the needfor the SHiQ andBLT. Section6.3 presents
results indicating that increasingthe reorderbuffer size
narrows thegapbetweentheSCandRC implementations
for many applications;the rest of the applicationsstill
require SC++ hardware to close the gap.

Our results in Section6.4 indicate that performing
storesin strict programordercausesSC++to beconsider-
ably slower than the RC implementation,confirming the
need to execute stores speculatively. Finally, in
Section6.5, we show that with smaller L2 caches,roll-
backs due to replacementsof speculatively accessed
blocksartificially widen the gap betweenthe SC andRC
implementations.

6.1 Base System
In Figure3, we show the speedupsof the RC imple-

mentation,SC++usinganinfinitely largeSHiQ (shown as
SC++inf), and SC++ using a 512-entrySHiQ and a 64-
entry BLT (shown as SC++S512B64)measuredagainst
thebasecaseof theSCimplementation.Althoughboththe
SCandRCimplementationsareequippedwith non-block-
ing caches,prefetching,and speculative loads,thereis a
significantgap betweenthe SC andRC implementations.
On theaverage,theRC implementationis 18%betterthan
theSC implementation,andat most,theRC implementa-
tion is 38% betterthanthe SC implementation.The main
reasonfor this gap is that,unlike theRC implementation,
the SC implementationcannotretire any memoryopera-
tions pasta pendingstore.The gap is large in the caseof
radix becausestoreaddressesdependon previous loads,
which stops the memory unit from issuing prefetches,
leading to pipeline stalls for as long as the entire store
latency. In the rest of the applications,the gap is less
becauseboth the SC and RC implementationsstall for
loads, making stores less important.

SC++inf performsas well as the RC implementation.
By allowing storesto bypassother memory operations,
SC++ closely emulatesthe RC implementation,closing

the performancegap.For all the applications,the number
of memoryorderviolationsdueto speculationis too small
to have any effect on overall performance.

For all theapplications,SC++S512B64realizesthefull
benefitsof SC++with aninfinitely largeSHiQ.For em3d,
lu, water, andunstructured, a SHiQ with fewer than512
entriessuffices.For radix and raytrace, 512 entrieswere
neededto reachthe performanceof SC++inf. A BLT of
size 64 was sufficient for all applications.

In the caseof raytrace, SC++performsbetterthanthe
RC implementationby a wide margin. In this application,
rollbacks in the SHiQ actually result in performance
improvement!Theserollbackscausedby loopingreadsof
lock variable,prevent the injectionof moremessagesinto
the network, reducingboth network and lock contention.
Kägi etal., showedthatby simplyusingexponentialback-
off theperformanceof raytrace canbeincreasedtwo-fold
[8]. AlthoughSC++doesnot introduceexponentialback-
off, the time taken to restorethe stateon a rollback pro-
duces a similar effect.

6.2 Network Latency
In this section,we study the effect of longer network

latency on theperformanceof theRC implementationand
SC++.We increasethe network latency to four timesthe
remote latency of the base configuration describedin
Table3. In Figure4, we show the speedupsof the RC
implementation,SC++ using an infinitely large SHiQ
(shown asSC++inf),SC++usinga 512-entrySHiQ anda
64-entryBLT (shown asSC++S512B64),andSC++using
a 8192-entry SHiQ and a 128-entry BLT (shown as
SC++S8192B128)measuredagainst the SC implementa-
tion. All the experiments use the longer network latency.

Comparedto theperformancegapbetweentheSCand
RC implementationsshown in Figure3, the gap in
Figure4 is largerfor all theapplications.Onincreasingthe
network latency by a factorof four, thegapincreasesfrom
18% to 31%, on the average.The RC implementation
hidesthelongernetwork latency betterthantheSCimple-
mentationby overlappingmorestorelatencies.For em3d,
raytrace, andunstructured, theoverall performanceof the
RC implementation (and the other implementations)
decreasesfour-fold whencomparedto the fasternetwork

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FIGURE 3: Comparison of SC, RC, and SC++.
This figure comparesthe speedupsof the RC implementation
and SC++ normalized to that of the SC implementation.
SC++infcorrespondsto aninfinitely largeSHiQ andBLT. The
SC++ S512B64correspondsto SC++ with a SHiQ of 512
instructions and BLT of 64 entries.

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

RC
SC++ inf

SC++ S512 B64

used in Section 6.1; for lu, radix, and water the decrease in
performance is only by a factor of two, indicating that
these three applications are less sensitive to remote
latency.

In spite of the longer network latency, SC++inf keeps
up with the RC implementation, showing that SC++ can
closely emulate the RC implementation, achieving similar
overlap of memory operations. Not surprisingly, the longer
network latency creates a performance gap between
SC++S512B64 and the RC implementation for radix and
raytrace, indicating that a 512-entry SHiQ is insufficient
to absorb the extra latency of remote memory operations.
By increasing the SHiQ size to 8192 entries and the BLT
to 128 entries, SC++ can perform as well as the RC imple-
mentation for radix and raytrace. For the rest of the appli-
cations, the smaller SHiQ and BLT configuration of SC++
performs as well as the RC implementation. Note that in
the case of raytrace, even SC++S8192B128 no longer per-
forms better than the RC implementation because the
longer network latency dominates the lock acquisition pat-
terns.

6.3 Reorder Buffer Size
To determine whether large reorder buffer sizes in

future ILP processors will obviate the SHiQ and BLT, we
study the effect of increasing the reorder buffer size on the
performance of the SC and RC implementations. In
Figure 5, we show the speedups of the SC and RC imple-
mentations at reorder buffer sizes of 64 and 1024 instruc-
tions, using the SC implementation with a 64-instruction
reorder buffer as the base case. Note that although both the
SC and RC implementations use non-blocking caches,
hardware prefetching, and speculative loads, the SC
implementation cannot retire stores out-of-order but the
RC implementation can.

With a 64-instruction reorder buffer, there is a signifi-
cant performance gap between the SC and RC implemen-
tations, as already mentioned in Section 6.1. Increasing
the reorder buffer size to 1024 instructions, the gap shrinks
for all the applications, except for raytrace and unstruc-
tured. Increasing the reorder buffer size from 64 to 1024
instructions shrinks the gap from 18% to 14%, on the aver-

age. By hiding more store latencies through allowing more
time for prefetches in a larger reorder buffer, the SC imple-
mentation performs closer to the RC implementation,
although the RC implementation’s performance improves
as well. Although the gap between the SC and RC imple-
mentations shrinks on increasing the reorder buffer size,
there is still a significant difference in performance
between the two, suggesting that the SC++ hardware—the
SHiQ and BLT—may be required to close the gap com-
pletely.

In the case of raytrace, increasing the reorder buffer
size helps neither the SC nor RC implementation. A reor-
der buffer of 64 instructions already exposes the critical
path through raytrace, so that larger reorder buffer sizes do
not result in more overlap of memory operations. Perfor-
mance of raytrace is mostly determined by the time spent
in the critical sections of the program. Both the SC and RC
implementations overlap the instructions in the critical
section to the point where performance is limited by con-
tention for the lock. The RC implementation’s perfor-
mance is better than that of the SC implementation
because the RC implementation executes the critical sec-
tion faster than the SC implementation. The RC imple-
mentation retires the stores in the critical section at a faster
rate than the SC implementation, while the SC implemen-
tation incurs higher traffic due to more rollbacks. When
the reorder buffer size is increased from 64 to 1024
instructions, the total number of loads issued per processor
increases by 50% in the SC implementation, increasing the
traffic significantly.

In the case of unstructured, the gap between the SC and
RC implementations grows on increasing the reorder
buffer size because the number of rollbacks in the case of
SC increases. When the reorder buffer size is increased
from 64 to 1024 instructions, the number of rollbacks
increase by a factor of 35. These rollbacks increase the
traffic in the case of the SC implementation, leading to a
wider gap between the SC and RC implementations.

6.4 SHiQ Size and Speculative Stores
In this section, we show the importance of a large SHiQ

and speculative stores to enable the SC implementation to
reach the RC implementation’s performance. In Figure 6,
we show the speedups of the RC implementation, SC++

RC
SC++ inf

SC++ S512 B64
SC++ S8192 B128

FIGURE 4: Impact of network latency.
The figure plots the speedups of the RC implementation and
SC++ normalized to that of the SC implementation. The net-
work latency was increased, for shown experiments, to eight
times the local memory latency. Numbers following the letters
‘S’ and ‘B’, in the legend, correspond to the sizes of the SHiQ
and BLT, respectively.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

FIGURE 5: Impact of reorder buffer size.
The figure compares the speedups of the RC and SC implemen-
tations, for 64 and 1024 entry reorder buffer sizes, normalized
with respect to that of the SC implementation with a 64-entry
reorder buffer.

0.0

0.4

0.8

1.2

1.6

2.0

2.4 SC 64
RC 64

SC 1024
RC 1024

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

using a 512-entrySHiQ and a 64-entry BLT (shown as
SC++S512B64),SC++usinga 512-entrySHiQ anda 64-
entry BLT without speculative stores (shown as
SC++oS512B64),andSC++usinga 64-entrySHiQ with-
out speculative stores(shown as SC++oS64)measured
against the basecaseof the SC implementation.The RC
implementationand SC++S512B64were comparedin
Section6.1 and are shown here for reference.

Now, we compare SC++S512B64 with
SC++oS512B64,which isolatesthe importanceof specu-
lative stores.SC++ocan reachthe RC implementation’s
performancefor em3d, lu, unstructured, andwater, which
arenot store-intensive. But for thecasesof radix andray-
trace, thereis a significantgap of 9% and 22%, respec-
tively, between the RC implementation and
SC++oS512B64becauseof their store-intensive nature.In
thesetwo applications,the absenceof speculative stores
causes significant performance loss. Not overlapping
storeswith othermemoryoperationsin SC++oleadsto the
filling up of the load/storequeuewhich, in turn, blocks
instruction issue,exposing the pipeline to remotelaten-
cies.

Reducing the SHiQ size from 512 to 64 entries in
SC++o causessignificant performancedegradation for
em3d and radix. The smaller SHiQ size significantly
reducesthe overlap among(non-speculative) storesand
speculative loads,which exposesthe pipeline to remote
latencies.In the casesof em3d andradix, performanceof
SC++oS512B64is 7% and16%, respectively, betterthan
that of SC++oS64.

6.5 L2 Cache Size
So far, we have comparedthe different implementa-

tions using large L2 cachesfor our simulationsto avoid
any capacityandconflict misses,so thatperformancedif-
ferencesamongthe memorymodelsaresolely dueto the
intrinsic behavior of the models.In this section,we show
theimportanceof anL2 cachebeinglargeenoughto hold
all thespeculativestateof theSCimplementation,in order
for the SC implementationto reachthe RC implementa-
tion’s performance.In Figure7, we show thespeedupsof
theRC implementationandSC++usinga512-entrySHiQ
anda 64-entryBLT (shown asSC++S512B64)measured

against the basecaseof the SC implementation,using a
64-Kbyte, 4-way associative L2 cache.

Therearetwo effectsof a smallerL2 cacheon theper-
formancegap betweenthe SC and RC implementations.
On onehand,thegapmaywidenbecausethecacheis not
largeenoughto holdall of theSCimplementation’sspecu-
lative state.On the other hand,a smallerL2 cachemay
incur many loadmisseswhich slow down boththeSCand
RC implementations,resultingin a narrower performance
gap betweenthe two. For all the applications,except lu
and radix, the higher load miss rate of the 64-Kbyte L2
cachedegradesperformanceof boththeSCandRCimple-
mentations,reducing the significanceof the differences
betweenthe memoryorderingconstraintsof SC andRC.
Comparedto theperformancegapbetweentheSCandRC
implementationsusing the 8-Mbyte L2 cache(Figure3),
thegapbetweentheSCandRCimplementationsusingthe
64-KbyteL2 cacheis wider for radix becauseconflictson
storesexposesremotelatenciesin theSCimplementation.

In the caseof lu, the striking gap betweenthe SC and
RC implementationsusing the 64-KbyteL2 cacheis pri-
marily causedby rollbacks due to replacements(due to
conflict missesin the cache)of speculatively accessed
blocks. The number of rollbacks due to replacements
increasesinordinately(by a factorof 55,000),comparing
the 64-Kbyte L2 cachewith the 8-Mbyte L2 cache.For
both lu and radix, althoughSC++ performscloserto the
RC implementationthantheSCimplementation,SC++is
also sensitive to the rollbacks due to replacements.

7 Conclusions
This papershows, for thefirst time, thatSCimplemen-

tationscanperformaswell asRC implementationsif the
hardware provides enoughsupportfor speculation.Both
SC andRC implementationsrely on reorderingandover-
lappingmemoryoperationsto achieve high performance.
The key differenceis that while RC implementationspri-
marily usesoftwareguaranteesto enforcememorymodel
constraints,SC implementationsrely on full hardware
speculationto provide the guarantee.Full-fledgedhard-
warespeculationcanenableSC implementationsto relax
speculatively all memoryordersand“emulate”RC imple-

FIGURE 6: Impact of speculative stores.
The figure comparesthe speedupsof the RC implementation,
SC++ andSC++ without speculative stores(SC++o),normal-
ized with respect to that of the SC implementation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 RC
SC++ S512 B64

SC++o S512 B64
SC++o S64

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

FIGURE 7: Impact of the L2 cache size.
The figure shows the impact of cachesize on the SC imple-
mentation,RC implementationand SC++ performance.The
L2 cachewas reducedto 4-way 64-Kbyte size for shown
experiments.The resultswerenormalizedwith respectto the
SC implementation.

2.65

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

S
pe

ed
up

SC RC

SC++ S512 B64

em3d
lu

radix
raytrace

unstructured
water

mentations,enabling SC implementationsto reach RC
implementations’ performance.

The fundamentalarchitecturalandapplicationrequire-
ments that enablean SC implementationto perform as
well as an RC implementationare: (1) hardware should
allow both loadsandstoresto bypasseachotherspecula-
tively to hide long remotelatencies,(2) hardwareshould
provide large speculative state, for both processorand
memory, to allow out-of-order memory operations,(3)
supportfor hardwarespeculationshouldnot addexcessive
overheadto processorpipelinecritical paths,and(4) roll-
backsof speculative executionshouldbe infrequent,asis
the case for well-behaved applications.

Employing novel microarchitectural mechanisms,
SC++ alleviates the shortcomingsof current SC imple-
mentations to completely close the performancegap
betweenSCandRCimplementations.SC++allowsspecu-
lative bypassingof both loadsand stores,yet appearsto
execute memory operationsatomically and in program
order. SC++providesamplespeculative statefor the pro-
cessorin the Speculative History Queue(SHiQ), which
supplementsthe reorderbuffer, to absorbremoteaccess
latencies.SC++ ensuressufficient speculative state for
memory by placing speculative data in the local cache
hierarchy itself andusinga large L2 cache,assuggested
by recent proposalsfor DSMs with aggressive remote
cachingtechniques.SC++ usesthe Block Lookup Table
(BLT) to allow fast lookups of pending speculative
accessesin theSHiQ,on aninvalidation,downgradesor a
replacementfrom the L2 cache.The SHiQ andBLT help
minimize additional overheadsto the processorpipeline
critical paths.

Our experimentalresultsobtainedby softwaresimula-
tion show that SC++ achieves an RC implementation’s
performancein all thesix applicationswe studied.Evenat
longernetwork latencies,SC++cankeepup with the RC
implementation,albeit using larger speculative state.For
SC++to reachthe RC implementation’s performance,all
the hardwareof SC++—alarge SHiQ with the associated
BLT anda large cache—isneeded.Simply increasingthe
reorderbuffer size,without using the SHiQ or BLT, nar-
rowsthegapbetweentheSCandRCimplementations,but
the extra mechanismsof SC++ are requiredto closethe
gap completely. Performing stores in program order
causesSC++to beconsiderablyslower thantheRCimple-
mentation,confirmingthe needto executestoresspecula-
tively. Finally, smaller L2 cachescauserollback due to
replacementsof speculative blocks, artificially widening
the gap between the SC and RC implementations.

8 Acknowledgements
We would like to thankSaritaAdve, Mark Hill, Alain

Kägi, Vijay Pai, andtheanonymousrefereesfor theirvalu-
able comments on earlier drafts of this paper.

9 References
[1] SaritaV. Adve andKouroshGharachorloo.Sharedmemory

consistencymodels:A tutorial. IEEE Computer, 29(12):66–
76, December 1996.

[2] SaritaV. Adve andMark D. Hill. WeakOrdering- A new
definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages2–14, May

1990.
[3] M. Dubois, S.Scheurich,and F. Briggs. Memory access

bufferingin multiprocessors.In Proceedings of the 13th An-
nual International Symposium on Computer Architecture,
pages 434–442, June 1986.

[4] BabakFalsafiandDavidA. Wood.ReactiveNUMA: A de-
signfor unifying S-COMAandCC-NUMA. In Proceedings
of the 24th Annual International Symposium on Computer
Architecture, pages 229–240, June 1997.

[5] KouroshGharachorloo,Anoop Gupta,andJohnHennessy.
Two techniquesto enhancetheperformanceof memorycon-
sistencymodels.In Proceedings of the 1991 International
Conference on Parallel Processing (Vol. I Architecture),
pages I–355–364, August 1991.

[6] Kourosh Gharachorloo,Daniel Lenoski, JamesLaudon,
Philip Gibbons,AnoopGupta,andJohnHennessy.Memory
consistencyandeventorderingin scalableshared-memory.
In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15–26, June 1990.

[7] Mark D. Hill. Multiprocessorsshouldsupportsimplemem-
ory consistency models. 31(8), August 1998.

[8] Alain Kägi, Nagi Aboulenein, DouglasC. Burger, and
JamesR. Goodman.Techniquesfor reducingoverheadsof
shared-memorymultiprocessing.In Proceedings of the 1995
International Conference on Supercomputing, pages11–20,
July 1995.

[9] Leslie Lamport. How to makea multiprocessorcomputer
thatcorrectlyexecutesmultiprocessprograms.IEEE Trans-
actions on Computers, C-28(9):690–691, September 1979.

[10] Daniel Lenoski, JamesLaudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber,AnoopGupta,JohnHennessy,Mark
Horowitz, andMonicaLam. ThestanfordDASH multipro-
cessor.IEEE Computer, 25(3):63–79, March 1992.

[11] Adrian Moga and Michel Dubois. The effectivenessof
SRAM networkcachesin clusteredDSMs. In Proceedings
of the Fourth IEEE Symposium on High-Performance Com-
puter Architecture, pages 103–112, February 1998.

[12] SubbaraoPalacharla,NormanP. Jouppi, and J.E. Smith.
Complexity-effectivesuperscalarprocessors.In Proceed-
ings of the 24th Annual International Symposium on Com-
puter Architecture, pages 206–218, June 1997.

[13] ParthasarathyRanganathan,Vijay S. Pai, Hazim Abdel-
Shafi, and SaritaV. Adve. The interaction of software
prefetchingwith ILP processorsin shared-memorysystems.
In Proceedings of the 24th Annual International Symposium
on Computer Architecture, pages 144–156, June 1997.

[14] ParthasarthyRanganathan,Vijay S.Pai,andSaritaV. Adve.
Usingspeculativeretirementandlargerinstructionwindows
tonarrowtheperformancegapbetweenmemoryconsistency
models.In Proceedings of the Ninth ACM Symposium on
Parallel Algorithms and Architectures (SPAA), June 1997.

[15] J.E. Smith andA. R. Plezkun.Implementingpreciseinter-
rupts in pipelinedprocessors.IEEE Transactions on Com-
puters, C-37(5):562–573, May 1988.

[16] StevenCameron Woo, Moriyoshi Ohara, Evan Torrie,
JaswinderPal Singh, and Anoop Gupta. The SPLASH-2
programs:Characterizationand methodologicalconsider-
ations. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages24–36,July
1995.

[17] KennethC. Yeager.The MIPS R10000superscalarmicro-
processor.IEEE Micro, 16(2), April 1996.

