Flexible Snooping: Adaptive Forwarding and Filtering of Snoops
in Embedded-Ring Multiprocessors

Karin Strauss Xiaowei Sheri Josep Torrellas

Dept. of Computer Science
University of lllinois, Urbana-Champaign
{kstrauss, torrellgg@cs.uiuc.edu
http://iacoma.cs.uiuc.edu

fIBM T. J. Watson Research Center
Yorktown Heights, NY
xwshen@us.ibm.com

Abstract a snoopy protocol with a unidirectional ring [2]. In this case, coher-
ence transactions are serialized by sending snoop messages along
A simple and low-cost approach to supporting snoopy cache cehe ring.
herence is to logically embed a unidirectional ring in the network of - Tjs |ast approach is particularly attractive if vesgically em-
amultiprocessor, and use it to transfer snoop messages. Other Mgsgthe ring in whatever network topology the machine uses. Snoop
sages can use any link in the network. While this scheme works fgiessages use the logical ring, while other messages can use any link
any network topology, a naive implementation may result in long, the network. The resulting design is simple and low cost. Specif-
response times or in many snoop messages and snoop operatiofigg|ly, it places no constraints on the network topology or timing. In
To address this problem, this paper propoBsible Snoop-  aqdition, it needs no expensive hardware support such as a broad-
ing algorithms, a family of adaptive forwarding and filtering snoop-¢ast bus or a directory module. Moreover, the ring’s serialization
ing algorithms. In these algorithms, a node receiving a snoop rgoperties enable the use of a simple cache coherence protocol. Fi-
quest may either forward it to another node and then perform theyy while it is not highly scalable, it is certainly appropriate for
snoop, or snoop and then forward it, or simply forward it Withou‘medium-range machines — for example, systems with 8-16 nodes.

snooping. The resulting design space offers trade-offs in number Perhaps the main drawback of this approach is that snoop re-
of snoop operations and messages, response time, and energy :{.%{é

ion. O Ivsis using SPLASH-2. SPECibb. and SPEC sts may suffer long latencies or induce many snoop messages
sumption. Our analysis using e J0b, an WeRd operations. For example, a scheme where each CMP snoops

Worklgads finds several snooping glgonthms that are more ?Oﬁﬁe request before forwarding it to the next CMP in the ring induces
effective than curre_nt ones.. Sp(_emflcally, our choice for a hlghI'ong request latencies. Alternatively, a scheme where each CMP
performance snooping algorithm is faster than the currently faStel?l]imediately forwards the request and then performs the snoop

algorithm while consuming 9-17% less energy; our choice for alill be shown to induce many snoop messages and snoop oper-

energy-efficient algorithm is only 3-6% slower than the previou%tions. This is energy inefficient. Unfortunately, as technology
one while consuming 36-42% less energy. '

advances, these shortcomings become more acute: long latencies
. are less tolerable to multi-GHz processors, and marginally-useful
1. Introduction energy-consuming operations are unappealing in energy-conscious

The wide availability of Chip Multiprocessors (CMPS) is en_systems. . )
abling the design of inexpensive, multi-CMP shared-memory ma- Ideally, we would like to forward the snoop request as quickly as

chines of medium size (32-128 cores). However, as in traditiond?,OSSible to the CMP that will provide the line while consuming as

less-integrated designs, supporting hardware cache coherencd!{iff €nergy as possible. To this end, this paper propé$esble
these machines requires a major engineering effort. _Snooplngglgorlthms, a family of adapt_lve forwardlng_ and filter- _
There are several known approaches to build cache cohererl@@ SN00ping algorithms. In these algorithms, depending on certain
support in medium-sized shared-memory machines [5]. One gpndlyons, a CMP node receiving a snoop request may either for-
them is a snoopy protocol with one or several buses to broadc&¥4grd it to another CMP and then perform the snoop, or snoop and
coherence operations. Another is a directory-based protocol, whiEen forward it, or simply forward it without snooping.
uses a distributed directory to record the location and state of cached We examine the design space of these algorithms and, based on
lines. Another scheme is Token Coherence [10], which extendste analysis, describe four general approaches for these algorithms.
protocol with tokens to make it easier to serialize concurrent tranghey represent different trade-offs in number of snoop operations
actions in any network topology. Finally, another approach is to ugd messages, snoop response time, energy consumption, and im-
plementation difficulty.

*This work was supported in part by the National Science Foun- . . _ . )
dation under grants EIA-0072102, EIA-0103610, CHE-0121357, ar;f Our analysis using SPLASH-2, SPECjbb, and SPECweb work

CCR-0325603; DARPA under grant NBCH30390004; DOE under granP@ds finds that several of these snooping algorithms are more
B347886; and gifts from IBM and Intel. Karin Strauss was supported bgost-effective than current ones. Specifically, our choice for a
an Intel PhD Fellowship. high-performance snooping algorithm is faster than the currently




fastest algorithm while consuming 9-17% less energy; moreoveexample, Sun’s Starfire [21] uses four fast buses for snoop mes-

our choice for an energy-efficient algorithm is only 3-6% slowesages; data transfers are performed on another network.

than the previous one while consuming 36-42% less energy. A drawback of buses is their limited scalability. Buses can only
The contribution of our paper is three-fold. First, we introducesupport one transaction per cycle, require global arbitration cycles

a family of adaptive snooping algorithms for embedded-ring multito be allocated, and have physical effects that limit their frequency,

processors and describe the primitive operations they rely on. Seéich as signal propagation delays, signal reflection and attenua-

ond, we analyze the design space of these algorithms. Finally, wien. While manufacturers have engineered ever better designs, it is

evaluate them and show that some of them are more cost-effectfi@rd to imagine buses as the best interconnect for a high-frequency
than current snooping algorithms. multi-CMP machine with 64-128 processors.

This paper is organized as follows: Section 2 provides backz
ground information; Section 3 describes the hardware primitives for’
Flexible Snooping algorithms; Section 4 presents the design space In directory protocols, all transactions on a memory linare
and implementation of the algorithms; Sections 5 and 6 evaluate tH&€ected to the directory at the home node of that line [5]. The
algorithms; and Section 7 discusses related work. directory serializes the transactions — for example, by bouncing

or buffering the transaction that arrives second until the one that
2. Message Qrdering & Ring-Based Protocols arrived first completes. While directory protocols such as that in

Silicon Graphics’s Altrix [19] are scalable, they add non-negligible
2.1. Arbitration of Coherence Messages overhead to a mid-range machine — directories introduce a time-

consuming indirection in all transactions. Moreover, the directory

A key_ requirement for correct operation of a cache coherenq%elf is a complicated component, with significant state and logic.
protocol is that concurrent coherence transactions to the same ad-

dress must be completely serialized. Moreover, all processors m@tl.3. Token Coherence
see the transactions execute in the same order. To see why, con-
sider Figure 1. Processafs B, andC cache linel in state shared
(S). Suppose thaA writesL and that, after the invalidation frods
reachesB, B readsL. In this case, if the read froB obtains the
line from processo€ before the invalidation frorA reache<, the
system becomes incohereAtwill cache the data in state dirt{Dj
andB will cache it in state shared®). This problem occurs because
the system has failed to serialize the two transactions.

1.2. Directory

In Token Coherence, each memory line, whether in cache or
in memory, is associated with N tokens, where N is the number
of processors [10]. A processor cannot read a line until its cache
obtains at least one of the line’s tokens. A processor cannot write
to a line unless its cache obtains all of its tokens. This convention
ensures that two transactions to a line are serialized, irrespective of
the network used. Partial overlap results in failure of one or both
transactions to obtain all necessary tokens. These transactions then

A B c retry.
@ @ @ While conceptually appealing, the scheme has some potentially
ime w inv difficult implementation issues. One of them is that retries may
inv @ result in continuous collisions, potentially creating live-lock. A so-
ack R \rdA lution based on providing some queuing hardware to ensure that
colliding transactions make progress is presented in [11]. Another
@ data issue is that every line needs token storage in main memory, since
@ some of the line’s tokens may be stored there. Unless special ac-
@/ tlops are takgn, suc.h tokgn memory may neeld to bg accessed at
ack write transactions. Finally, in multiprocessors with multiple CMPs,
the scheme needs to be extended with additional storage and state
Final States @ @ @ to allow a local cache in the CMP to supply data to another local

cache. Some of these issues are addressed in [11].
Figure 1. Incorrect execution due to failure to serialize two ) o ] ]
transactions to the same address. 2.1.4. Snoopy with Embedded Unidirectional Ring

Diff t t coh tocol ¢ . _In this approach, coherence transactions are serialized by send-
literent types of conerence protocols ensure transaction Se”%‘g control messages along a unidirectional ring connecting all pro-

|zat|o!1 dlﬁgrently. Next, we examine snoopy protocols with broad'cessors. Collisions of two transactions directed to the sameé.line
cast I'r,'k’ directory protggols,.token.coherence, and snoopy protg?e easily detectable because all snoop requests go around the ring
cols with embedded unidirectional ring. and can be seen by all the processors. A collision can be detected by
a processor that issued one of the two requests, or by the processor
supplying a response. At that point, the processor marks one of the
In this approach, transactions obtain a shared broadcast limkessages as squashed. Squashed messages are retried later. With a
which all processors snoop [5]. Only one transaction can use tlggven algorithm of message priorities, collisions are resolved with
link each cycle. If two transactions to the same linattempt to the squash of only one message; there is no need to retry both.
grab the bus, only one succeeds, and the other is forced to wait, Older designs use a ring netwddpology[2, 24] and constrain
serializing the transactions. Modern designs use advanced imptae timing of transactions with time slots. However, in practice,
mentations, such as split-transaction buses and multiple buses. Bus approach works with any network topology — as long as we

2.1.1. Snoopy with Broadcast Link



embed a unidirectional ring in the network connecting all nodes. We use a MESI coherence protocol [5] enhanced with additional
Snoop messages are forced to use this network, while other masgates. In addition to the typical Invalid); Shared ), Exclusive
sages can use any links in the network. This general approach(is), and modified (or Dirty D)) states of a MESI scheme, we add
used in IBM’s Power 4 [22]. the Global/Local Master qualifier to the Shared sta&te andSy)

An advantage of this approach is its simplicity and low costand the TaggedI() state.
it places no constraints on the network topology, can use a simple To understand the Global Master qualifier, consider a set of
cache coherence protocol, and needs no extra modules like a dirédches with a Shared line. If a cache outside the set reads the
tory. While it is not scalable to large numbers of processors, it iéne, at most one of the caches can supply the line — the one with
appropriate for CMP-based machines with 64-128 processors. the Global Master qualifierdc). In our protocol, the cache that
drawback is that this approach may induce long snoop latencies @jiought the line from memory retains the Global Master qualifier
need many snoop operations and additional traffic. For example Uil it evicts the line or gets invalidated.
each node snoops a request before passing it on to the next node inSince the machine has multiple CMPs, performance would im-
the ring, the snoop request takes long to go around the ring. Altgprove if reads were satisfied by a local cache (i.e., one in the same
natively, if each node passes on the snoop request, then snoops, &MP). even if it did not have the Global Master qualifier for that
finally sends a reply, we may end up snooping all nodes and gehipe. Consequently, we allow one cache per CMP to have the Local
erating extra traffic, which is inefficient. In this paper, we addresMaster qualifier ). The cache that brings in the line from outside

this problem. the CMP retains the Local Master qualifier until it evicts the line or
gets invalidated.
2.2. Multi-CMP Multiprocessor with Embedded The T state is used to support the sharing of dirty dataZ’In
Ring state, the line is dirty, but coherent copies can also be found in other

caches (inS or S, state). On eviction, a line ifi" state is written
Before we address the problem described, we briefly outline thsack to memory.
snoopy protocol in the embedded unidirectional ring that we con- Figure 2-(b) shows which states are compatible with which other
sider. The multiprocessor is built out of CMPs (Figure 2-(a)). Eaclines. It should be noted that, for each read request, at most one
CMP has several cores, each with a private L2 cache, and is attachgfhe (or none) can supply the data. In the following, we give two
to a portion of the shared memory. The CMPs can be interconnect@giamp|es of transactions.
by any physical network, on which we embed one or more unidiread Satisfied by Another Cache. When a processor issues a
rectional rings for snoop requests (Figure 2-(a)). If more than ongad, the local caches are snooped. If the line is founkinSe,
u_n|d|rect|o_nal rnng s e_mbedded_, Snoop requests may be_ mappedAo p, or T state, it is supplied. Otherwise, the snoop reqiRest
different rings according to their memory address. This helps {g forwarded to the ring. AR reaches a node, it enters the CMP
balance the load on the underlying physical network. Data-transfgrd checks all the caches. If no cache has the line in State?,
messages do not use the logical ring. D, or T, the request moves to the next node, repeating the process.
Otherwise, a copy of the line is sent to the requester using the reg-

e ular routing algorithm (not the snoop ring). In parallRlis marked

U ] as a reply message and traverses the remainder of the ring without
Processor Memory inducing any more snoops until it reaches the requester. It can be
+L2 SharedBus | — shown that, when the data line (not the snoop reply) reaches the
) N requester, the processor can use it, since it is guaranteed that the
C‘_' | Gateway | transaction will not be squashed. More details on the protocol can

be found in [17].

Read Satisfied by Memory. If R returns to the requester with a
negative response, the requester sends a read message to the mem-
ory at the home node. Both this message and the memory reply
use the regular routing algorithm. To minimize the latency of this
DRAM access, we may choose (with certain heuristics) to initiate a
memory prefetch wheR is snooped at its home node. This would

@

State | Compatible States
I |1,5,5.,5,E,D, T
S 1,S,5.,5,T
St | I1,S8,5;,586,T"

% ;7 5,51 reduce the latency of a subsequent memory access.

D 7 In the rest of the paper, we focus mrad snoop requests. While

T I our contribution also applies to write snoop requests, it is more rel-
y My P L

evant to reads due to their higher number and criticality.

(b)
3. Toward Flexible Snooping

Figure 2 Machine arch?tecture modeled (a) and matrix of 3 1 Eager and Lazy Forwarding

compatible cache states in the coherence protocol used (b). In

the network, the darker line shows the embedded ring. Inthe ~ We call the algorithm described in Section 2.2zy Forward-

protocol table, “*” means that a line can be in this state only if ing or Lazy The actions of a snoop request in this algorithm are

it is in adifferentCMP. shown in Figure 3-(a). In the figure, a requester node sends a re-
guest that snoops at every node until it reaches the supplier node.



Supplier Supplier Supplier
riode node iode

Snoop
reply

@ CMP node

. Forward-Then
Snoop

Snoop . - Snoop-Then

request Snoop - Snoop - MForward

request request
—= Message

Reﬁgggter Reﬂggger Reﬁgggter
(a) Lazy (b) Eager (c) Oracle
Figure 3. Actions of a snoop request in three different algorithms. Each node is a CMP.

Algorithm Snoop Request Latency| Avg. # of Snoop Operations Avg. # of Messages
(Unloaded Machine) per Snoop Request per Snoop Request

Lazy Forwarding High (N-1)/2 1

Eager Forwarding Low N-1 ~2

Oracle Low 1 1

Adaptive Forwarding & Filtering|| Between Oracle and Lazy Between Oracle and Eagef Between Oracle and Eagef

Table 1. Comparing different snooping algorithms. The table assumes a perfectly-uniform distribution of the accesses and that one
of the nodes can supply the dabdis the number of CMP nodes in the machine.

After that, the message proceeds without snooping until it reaché@s shown in Table 1, Oracle’s latency is low and there is a single
the requester. snoop operation and message.
Lazy has two limitations: the long latency of snoop requests and
the substantial number of snoop operations performed. The firdt2. Adaptive Forwarding and Filtering
limitation slows down program execution because lines take long to

be obtained; the second one results in high energy consumption andWe W|OUId like ]E?Edevelolp: srfwooplng algorithms that have} :_he low q
may also hinder performance by inducing contention in the CMP§equeSt atency of Eager, the few messages per request of Lazy, an

Table 1 shows the characteristics of Lazy. If we assume tgefew snoop operations per request of Oracle. Toward this end, we

perfectly-uniform distribution of the accesses and that one of t roposeAdaptwe Forwarding and_ Fllterlng_ilgorlthms fdaptivg. .
hhese algorithms use two techniques. First, when a node receives

node_s can supply the data, the supplier is found ha_If-wa_y throu snoop request, depending on the likelihood that it can provide the
the ring. Consequently, the number of snoop operations is (N-1)/ N L
e, it will perform the snoop operation first and then the request-

where N is the number of CMP nodes in the ring. . . . . .
L ) forwarding operation or vice-versa (Adaptive Forwarding). Second,
An alternative is to forward the snoop request from node . o ) S
if the node can prove that it will not be able to provide the line, it

node_z + 1 before startnn_g the snoop operatlon onWe call this will skip the snoop operation (Adaptive Filtering).
algorithm Eager Forwardingor Eager. It is used by Barroso and . Co Y
Dubois for a slotted ring [2]. For the non-slotted, embedded ring Adaptive forwarding is original. Adaptive filtering has been pro-

that we consider, we slightly change the implementation. posed in schemes such as JETTY [14] and Destination-Set Predic-

When a snoop request arrives at a node, it is immediately fo

jon [9], but our proposal is the first to integrate it with adaptive
warded to the next one, while the current node initiates a snoop o rwarding in a taxonomy of adaptive algorithms.

eration. When the snoop completes, the outcome is combined with Adaptivehopes to attain the behavior of Oracle. In practice, for

a Snoop Replynessage coming from the preceding nodes in theach of the metrics listed in TableAdaptivewill exhibit a behavior

ring, and is then forwarded to the next node (Figure 3-(b)). Soniat is somewhere between Oracle and the worst of Lazy and Eager

temporary buffering may be necessary for the incoming snoop repigr that metric.

or for the outcome of the local snoop. All along the ring, we have Adaptiveworks by adding a hardwaupplier Predictoiat each

two messages: a snoop request that moves ahead quickly, initiatimgde that predicts if the node has a copy of the requested line in any

a snoop at every node, and a snoop reply that collects all the replie$.the supplier statesS¢, E, D, andT’). When a snoop request
Table 1 compares Eager to Lazy. Eager reduces snoop requagives at a node, this predictor is checked and, based on the predic-

latency. Since the snoop operations proceed in parallel with réon, the hardware performs one of three possible primitive opera-

quest forwarding, the supplier node is found sooner, and the ddians: Forward Then SnoggSnoop Then Forwaycr Forward.

is returned to the requester sooner. However, the disadvantages ofTable 2 describes the actions taken by these primitives. At a high

Eager are that it causes many snoop operations and messages.ldvel, Forward Then Snooplivides a snoop message into a Snoop

deed, Eager snoops all the nodes in the ring (N-1). Moreover, whRequest sent before initiating the snoop operation and a Snoop Re-

was one message in Lazy, now becomes two — except for the fifslly sent when the current node and all its predecessors in the ring

ring segment (Figure 3-(b)). These two effects increase the enerfgive completed the snoop. On the other h&mhop Then Forward

to service a snoop request. combines the incoming request and reply messages into a single
A third design point is th®racle algorithm of Figure 3-(c). In message issued when the current snoop completes. We call this

this case, we know which node is the supplier and only snoop themaessageCombined Request/Reply (R/Rnsequently, in a ring



Number of Action
Ring Messages CMP Can Supply Line CMP Cannot Supply Line
Primitive || Arriving and Snoop Request Snoop Operation | Snoop Reply Snoop Operation Snoop Reply
Leaving a Node|| or Combined R/R|| Completes at Node Arrives at Node || Completes at Node Arrives at Node
per Request Arrives at Node (if Applicable) (if Applicable) (if Applicable) (if Applicable)
Forward Arriving: 1 or 2 || Forward Send Discard If had received combined R/R Forward
Then Leaving: 2 shoop request, snoop snoop then send snoop reply snoop
Snoop then snoop reply reply else wait for snoop reply reply
Snoop Arriving: 1 or 2 Send Discard If had received combined R/R Forward it as
Then Leaving: 1 Snoop combined R/R snoop then send new combined R/R combined R/R
Forward reply else wait for snoop reply
Arriving: 1 or 2
Forward Leaving: same || Forward N/A Forward N/A Forward
as arriving

Table 2. Actions taken by each of the primitive operatidfe@ward Then Snogpsnoop Then ForwardandForward. In the table,
R/R stands for Request/Reply. Recall that at most one CMP has the line in a supplier state.

where different nodes choose a different primitive, a snoop meé. Algorithms for Flexible Snooping
sage can potentially be divided into two and recombined multipl .
times. In all cases, as soon as the requested line is found in a su 1. Design Space

plier state, the line is sent to the requester through regular network To understand the design space for these algorithms, consider
paths. the types of Supplier Predictors that exist. One type is predictors

ConsiderForward Then Snoojn Table 2. As soon as the node that keep astrict subsglof the lines that are in _s_upplier states in
receives a snoop request or a combined R/R, it forwards a snoglf CMP. These predictors have no false pf’s'“"es* but may have
request and initiates the snoop operation. If the CMP can suppfl Ise _negatlves. They can be |n_1plemented with a cache. We call the
8orlthm that uses these predict@gbset

the line, the node sends a snoop reply message through the r ¢ i h hat keefri
with this information and the line through regular network paths; if A second_ type of predictors are those that kesfriat supe_rset
gtthe supplier lines. Such predictors have no false negatives, but

the node later receives a snoop reply message, it simply discard§ . . -
because it contains no new informatioff, instead, the snoop op- may have false positives. They can be implemented with a form of

eration shows that the CMP cannot supply the line, the node sent sshempg)gr’esc‘ilijgg)gsuzglsoec;rlgrgg?crtgsl g;lfh(i::g/?:r?;?/grgI;Znt:izsiﬁs
a negative snoop reply (if it had received a combined R/R messaggg_l__l_Y [14] and RegionScout [13] to save energy in a broadcast-

or waits for a reply message (if it had received a request messag sed Multiprocessor
In the latter case, when it receives the reply, it augments it with the P '

. . The third type of predictors are those that keepehact sedf
negative outcome of the local snoop and forwards it. Overall, the "~ " . - .
. supplier lines. They have neither false positives nor false negatives.
node will always send a snoop request and a snoop reply.

They can be implemented with an exhaustive table. We call the al-
On the other hand, witBnoop Then Forwardvhen a node re- gorithm that uses these predict@sact Note that there is a fourth

ceives a snoop request or a combined R/R, it starts to snoop. If thgpe of predictors, namely those that suffer both false positives and

CMP can supply the line, the node sends a combined R/R messdgise negatives. These predictors are uninteresting because they are

through the ring with this information and the line through regulatess precise than all the other types, while those that suffer either

network paths; if the node later receives a reply from the precedirfglse positives or false negatives are already reasonably inexpensive

nodes in the ring, it discards it. If, instead, the snoop shows th& implement.

the CMP cannot provide the line, the node sends a combined R/R Table 3 compares these algorithms in terms of latency of snoop

with the negative information (if it had received a combined R/Requests, number of snoop operations, snoop traffic, and implemen-

message) or waits for a reply message (if it had received a requéstion difficulty. In the following, we examine them in detail (Sec-

message). In the latter case, when it receives the reply, it augmetits 4.2) and then present implementations (Section 4.3).

it as usual and forwards it as a combined R/R. Overall, the node will Lo .

always send a single message, namely a combined R/R. 4.2. Description of the Algorithms

The Forward primitive simply forwards the two messages We first consider th&ubselgorithm (Table 3). On a positive
(snoop request and reply) or one message (combined R/R) that C@ﬁediCtion, since the supplier is guaranteed to be in the CMP, the al-
stitute this request. gorithm usesSnoop Then ForwardOn a negative prediction, since

) ) . ) ) . ) there is still chance that the supplier is in the CMP, the algorithm

Itis possible to design differedtdaptivealgorithms by simply selectsForward Then SnoapThe latency of the snoop requests is
chposing between thgse three primitives at diﬁerent times or CORw because requests are not slowed down by any snoop operation
ditions. In the following, we examine the design space of thesgs yhey travel from the requester to the supplier nodes. The number
algorithms. of snoops is higher than in Lazy because at least all the CMPs up to

the supplier are snooped. In addition, if the supplier node is falsely
11t only contains the information “I have not been able to find the line”,predicted negative, more snoops may occur on subsequent nodes.
which is already known. Consequently, Table 3 shows that the number of snoopazg+




Characteristics
Algorithm False | False | ActionIf | Action If Snoop Request Avg # Snoop Avg # Msgs | Implementation
Pos? | Neg? | Predict Predict Latency Operations per per Snoop Difficulty
Positive | Negative || (Unloaded Machine)] Snoop Request Request
Snoop | Forward Medium
Subset N Y Then Then Low (Lazy +a x F'N) 1-2 Low
Forward Snoop
Snoop Low
Con Then Forward Medium (1+ax FP) 1 Medium
Superset Y N Forward
Forward Low
Agg Then Forward Low (1+ax FP) 1-2 Medium
Snoop
Snoop
Exact N N Then Forward Low 1 1 Medium
Forward

Table 3. Proposed Flexible Snooping algorithms. This characterization assumes that one of the nodes supplies the data and, therefore,
the request does not go to memory. In the table, FN and FP stand for the number of false negatives and false positives, respectively.

ax FalseNegativesThe number of messages per snoop request is

between 1 and 2 because negative predictions produce 2 messages % Eager
but the positive prediction combines them. @ N-1

Figure 4-(a) shows, in a shaded pattern, the design space of Flex- ;
ible Snooping algorithms in a graph of snoop request latency versus g
the number of snoop operations per request. The figure also shows g Lafy
the placement of the baseline algorithms. Figure 4-(b) repeats the §
figure and adds the data points corresponding to the algorithms pro- S
posed. Based on the previous discussion, we ffatdesetn the Y g
axis and above Lazy. f 1 22

Consider theSupersealgorithm in Table 3. On a negative pre- Link Iatency Sﬂlﬁﬁ‘sdf;’pﬁe”f EEUF;‘;““E“ Latency
diction, since there are no false negatives, it Usmsvard. On a to supplier
positive prediction, since there is still a chance that the supplier @
is not in the CMP, we have two choices. A conservative approach Snoop Request
(Superset Corassumes that the CMP has the supplier and performs g Forwarding
Snoop Then ForwardAn aggressive approacBiiperset Aggper- E{ Eager ?irl‘t(s)a?i’:\g
forms Forward Then SnoapThe latency of the snoop requests is g
medium inSuperset Cotbecause false positives introduce snoop 5 Subset
operations in the critical path of getting to the supplier node; the la- ia Lazy
tency is low inSuperset Agbecause requests are not slowed down 5 .
by any snoop operation as they travel to the supplier node. The i SupersetAgg
number of snoops is low in both algorithms: 1 plus a number pro- = SupersetCon
portional to the number of false positives. Such term is lower in V§, oracle *
Super_set Coni_wan mSuperset AggSuperset Cownly checks the * UBadt ynoaded Snoop Request Latency
Supplier Predictor in the nodes between the requester and the sup- Until Supplier Found
plier, while Superset Agghecks the Supplier Predictor in all the (b)

nodes. The number of messages per snoop request iSuperset
Conand 1-2 inSuperset AggBased on this analysis, we place these ¢ qing 10 the snoop request latency and the number of snoop
algorithms in the design space of Figure 4-(b). N operations per request. Chart (a) shows the baseline algo-
The Exactalgorithm usesSnoop Then Forwar®n a positive  rithms, with the shade covering the area of Flexible Snoop-
prediction andForward in a negative one (Table 3). Since it has jng algorithms. Chart (b) places the proposed algorithms. The

perfect prediction, the snoop request latency is low and the numbercharts assume that one of the nodes provides the line.
of snoops and messages is 1. Figure 4-(b) places it in the origin

with the Oracle algorithm.

Figure 4. Design space of Flexible Snooping algorithms ac-

dictor. When a snoop request arrives at the CMP, the predictor is
checked. The predictor predicts whether the CMP contains the re-
4.3. Implementation of the Algorithms quested line in any of the supplier statés:( £, D, or T). Based
on the predictor’'s outcome and the algorithm used, an action from
The proposed snoopy algorithms enhance the gateway moddlable 3 is taken. Next, we describe possible implementations of the
of each CMP (Figure 2-(a)) with a hardware-based Supplier Pr&upplier Predictors we study.



4.3.1. Subset Algorithm state is brought into the CMP, the Exclude cache is checked and
The predictor forSubsetcan be implemented with a set- potentially one of its entries is invalidated. With this support, when

associative cache that contains the addresses of lines known toZha'00P request Is received, its address is checked agqinst bqth the
in supplier states in the CMP (Figure 5-(a)). When a line is brouglﬁloom filter and the Explude caf:he. If one the counters in the flltgr
to the CMP in a supplier state, the address is inserted into the pfa-2&"° Of the add_ress is found in the Exclude cache, the prediction
dictor. If possible, the address overwrites an invalid entry in th& declared negative.

predictor. If all the lines in the corresponding set are valid, the LRY; 3 3 Exact Algorithm

one is overwritten. This opens up the possibility of false negatives. ) ) )
The predictor forExactcan be implemented by enhancing the

Physical Address Subsetdesign of Section 4.3.1. We eliminate false negatives as
e | Tag | Index | Block | follows: every time that a valid entry in the Supplier Predictor is
Vaig e I ‘ overwritten due to a conflict, the hardware downgrades the supplier
N \ Y — Y v state of the corresponding line in the CMP to a non-supplier state.
Specifically, if the line is inS¢ or E, it is silently downgraded to

Sp;ifthe lineisinD or T state, the line is written back to memory
and kept cached if, state.

This support eliminates false negatives but can hurt the perfor-
mance of the application. Specifically, a subsequent snoop request
for the downgraded line from any node will have to be serviced from
memory. Moreover, if the downgraded cache attempts to write one
of the lines downgraded frorft, D, or T', it now needs one more

Exclude
Cach
‘ ‘ e network transaction to upgrade the line to its previous state again

(a)
Physical Address
Index Index Index Index Block

before the write can complete.

Overall, the performance impact of this implementation depends
on two factors: the size of the predictor table relative to the number
of supplier linesin a CMP, which affects the amount of downgrad-
ing, and the program access patterns, which determine whether or

Counter ®) not the positive effects of downgrading dominate the negative ones.

Figure 5. Implementation of the Supplier Predictor. 4.3.4. Difficulty of Implementation

We claim in Table 3 thaSuperseandExactare more difficult

A line in a supplier state in the CMP can only lose its state ito implement tharSubset The reason is that these algorithms have
it is evicted or invalidated. Note that, at any time, only one copyo false negatives, where&sibsethas no false positives. To see
of a given line can be in a supplier state. Consequently, when amhy this matters, assume that a hardware race induces an unnoticed
of these lines is evicted or invalidated, the hardware removes tifidse negative itsuperseandExact and an unnoticed false positive
address from the Supplier Predictor if it is there. This operatiom Subset In the first case, a request skips the snoop operation at
eliminates the possibility of false positives. the CMP that has the line in supplier state; therefore, execution is
. incorrect. In the second case, the request unnecessarily snoops a
4.3.2. Superset Algorithm CMP that does not have the line; therefore, execution is slower but

The predictor for the twBupersetalgorithms of Table 3 can still correct.
be implemented with a Bloom filter [3] (Figure 5-(b)). The Bloom  Consequently, implementations 8fiperseand Exacthave to
filter is implemented by logically breaking down the line addresguarantee that no hardware race ever allows a false negative to oc-
into P fields. The bits in each field index into a separate table. Eaatur. Such races can occur at two time windows. The first window is
entry in each table has a count of the number of lines in a supplibetween the time the CMP receives a line in supplier state and the
state in the CMP whose address has this particular bit combinaticime theSupersebr Exactpredictor tables are updated to include
Every time that a line in supplier state is brought into the CMPhe line. Note that the line may be received from local memory
the correspondin@ counters are incremented; when one such linéFigure 2-(a)) or through other network links that do not go through
is evicted or invalidated, the counters are decremented. Wherttee gateway. The second race window is between the timexaet
snoop request is received, the address requested is hashed andtkdictor table removes an entry due to a conflict and the time the
corresponding entries inspected. If at least one of the countersdsrresponding line in the CMP is downgraded. Careful design of
zero, the address is guaranteed not to be in the CMP. However, dhe logic involved will ensure that these races are eliminated.
to aliasing, this scheme can incur false positives. .

To reduce the number of false positives, we can follow thd®. Evaluation Methodology
JETTY design [14.] and augmeqt the Bloom fl|t6I.’ with an EXdquS.]f. Architecture and Applications Evaluated
cache. The latter is a set-associative cache storing the addresses 0
lines that are known not to be in supplier states in the CMP. Ev- We evaluate the proposed algorithms for Flexible Snooping us-
ery time a false positive is detected, the corresponding addressing detailed simulations of out-of-order processors and memory
inserted in the Exclude cache. Every time that a line in suppliesubsystems. The baseline system architecture is a multiprocessor



[ Processor and Private Caches [ CMmP [ Global Network [ Memory 0
Frequency: 6.0 GHz Fetch/issue/comm width: 6/4/4 Processors/CMP: E%ﬂsg;g&impifmt)rk, RT to local memory: 350 cyc
Branch penalty: 17 cyc (min) | I-window/ROB size: 80/176 SPLASH-2: 4 9 . RT to remote memory (max):

RAS: 32 entries
BTB: 2K entries, 2-way assoc.
Branch predictor:
bimodal size: 16K entries
gshare-11 size: 16K entrieg
Int/FP registers: 176/130

LdSt/Int/FP units: 2/3/2

Ld/St queue entries: 64/64

D-L1 size/assocl/line:
32KB/4-way/64B

D-L1 RT: 2 cyc

L2 size/assocl/line:
512KB/8-way/64B

L2 RT: 11 cyc

SPECjbb, SPECweb: 1
Per-processor L2
Intra-CMP network:

Topology: shared bus

Bandwidth: 64 GB/s

RT to another L2: 55 cyc

CMP to CMP latency: 39 cyc
Link bandwidth: 8GB/s
CMP bus access & L2
snoop time: 55 cyc
Data network:
Topology: 2D torus
Link bandwidth: 32GB/s

With prefetch: 312 cyc
Without prefetch: 710 cyc
Main memory:

Frequency: 667MHz

Width: 128bit

DRAM bandwidth: 10.7GB/s
DRAM latency: 50ns

SubsePredictor

[ Superset Coor Superset Agéredictor

ExactPredictor 1

Assoc: 8-way
Ports: 1

Size: 512, 2K, or 8K entries
Entry size: 20, 18, or 16 bits
Total size: 1.3, 4.8, or 17KB
Access time: 2, 2, or 3 cyc

Bloom filter:
nfilter:

y filter:

Access time: 2 cyc

Fields: 9,9,6 bits. Total size: 2.3KB

Fields: 10,4,7 bits. Total size: 2.5KH
Size of filter entry: 16 bits + Zero bit

Ports: 1

Exclude cache:
Size: 512 or 2K entries
Entry size: 20 or 18 bits
Total size: 1.3 or 4.8KB
Access time: 2 cyc
Assoc: 8-

way

Size: 512, 2K, or 8K entries
Entry size: 20, 18 or 16 bits
Total size: 1.3, 4.8 or 17KB
Access time: 2, 2, or 3 cyc

Assoc: 8-way

Ports: 1

Table 4. Architectural parameters used. In the table, RT means minimum Round-Trip time from the processor. Cycle counts are in

processor cycles.

with 8 CMPs, where each CMP has 4 processors (Figure 2-(a)). Thee shown in the lower part of Table 4. The three predictors for
CMPs are interconnected with a 2-dimensional torus, on which weubsetre an 8-way cache with either 512, 2K, or 8K entries. We
embed two unidirectional rings for snoop messages. The snoop &l themSub512Sub2k andSub8k
quests and replies are assigned to rings based on their address. Thehe three predictors foBuperset Comnd Superset Aggre as
interconnect inside each CMP is a high-bandwidth shared bus. Thgllows: y512 has they Bloom filter of Table 4 and a 512-entry
cache coherence protocol used is described in Section 2.2. Tablgdclude cachey2k has the same Bloom filter and a 2K Exclude

details most of the architectural parameters used.

in [8].

cache; andi2k has then Bloom filter of Table 4 and a 2K Exclude
We estimate that a message in the embedded ring network needghe. We call the resulting predictd®sipCy512 SupCy2k and
55 cycles at 6 GHz to access the CMP bus and snoop the cach8apCn2kor the Conservative algorithm ar@lpAy512SupAy2k
This includes 38 cycles for on-chip network transmission (transmisndSupAn2Kor the Aggressive one.
sion from gateway to arbiter, from arbiter to L2 CaCheS, and from Fina"y’ the predictors foExactare an 8_Way predictor cache

L2 caches to gateway), 10 cycles for on-chip network arbitrationyith 512, 2K, or 8K entries. We call thefEixa512 Exa2k and
and 7 cycles for L2 snooping plus buffering. All on-chip L2 cachegyagk

are snooped in parallel. These numbers are consistent with those
5.3. Handling Write Snoop Requests

We run 11 SPLASH-2 applications [26] (all except Volrend, ) ) )
which has calls that our simulator does not support), SPECjbb 2000, Write snoop requests cannot use our predictors of Section 4.3.
and SPECweb 2005 [20]. The SPLASH-2 applications run with 33he reason is that writes need to invalidatethe cached copies of

processors (8 CMPs of 4 cores each). Due to limitations in our si

ulation infrastructure, we can only run the SPECjbb and SPECweBther than.one O_f line in supplier sta_te.
workloads with 8 processors; we assume that they are in 8 different In our simulations, we handle write snoop requests as follows.
CMPs. The SPLASH-2 applications are simulated in executiorRecall from Table 3 that our Flexible Snooping algorithms fall into
driven mode by SESC [15], while the SPEC applications are sinfwo classes: those that do not decouple read snoop messages into

ulated in trace-driven mode by a combination of Simics [23] an#iequest and rephySuperset CoandExact together witiLazy), and
those that doRubsetindSuperset Aggogether withEagei). Con-

The SPLASH-2 applications use the input sets suggested in [26gduently, for the former, we do not decouple write snoop messages
SPEC]bb runs with 8 warehouses and is measured for over 750 rrfiither. For the latter, we think it is fair to always decouple write
lion instructions after skipping initialization. SPECweb runs withS"0OPS into request and reply — it enables parallel invalidation of
the e-commerce workload for over 750 million instructions aftefh® nodes. Also, since we are not concerned with the implemen-
skipping initialization. Since the SPEC workloads are simulated itation feasibility ofOracle and we use it to estimate the potential
trace-driven mode, we compare the different snooping algorithniR€rformance improvement of our techniques, we allow write snoop

with exactly the same traces, and do not re-run multiple instanc83essages to decouple fOracle as well. In any case, writes are
less critical and numerous than reads.

SESC.

of the same workload.

5.2. Supplier Predictors Used

6. Evaluation

niline. As a result, they would need a predictor of lpresence

For our experiments, we use three different Supplier Predictors In this section, we first compare our Flexible Snooping algo-
for each of our Flexible Snooping algorithms. The predictors usedthms to each other and to Lazy, Eager, and Oracle. Then, we per-



form a brief sensitivity analysis of the impact of various Supplie6.1.2. Number of Read Messages in the Ring

Predictor organizations. The total number of read snoop requests and replies in the ring

for the different algorithms is shown in Figure 7. In the figure, the
bars for SPLASH-2 correspond to the geometric mean. Within an
plication, the bars are normalized.azy

6.1. Comparison of Flexible Snooping Algorithms

For our main comparison between the schemes, we use AR
Sub2k SupCy2kSupAy2kandExa2kpredictors for the&SubsetSu-

2
perset ConSuperset AggandExactalgorithms, respectively. In all g 818 : Ei;yer
cases, the per-node predictors have 2K entries in their cache or Eg—% b 7| = oracle
clude cache — although the Superset algorithms additionally ad@= o8 ~| ™ Subset
a Bloom filter. The predictor sizes are 4.8 Kbytes Subseand £ 9 2352:22:2;;
Exact and 7.3 Kbytes for th8upersealgorithms. 2% 02 -| O Exact

. . . . SPLASH-2 SPECjbb SPECweb
In the following, we compare our Flexible Snooping algorithms : "

to Lazy, Eager, and Oracle along four dimensions: number of snoopFigure 7. Total number of read snoop requests and replies in
operations per read snoop request, number of read messages in thibe ring for different algorithms. The bars are normalized to
ring, total execution time, and energy consumption. We consider Lazy

each dimension in turn.

The figure shows tha&Eagerhas the most read messages in the
ring. As indicated in Table Eagergenerates nearly twice the num-

The number of snoop operations per read snoop request for ther of messages dfazy The number is not exactly twice because
different algorithms is shown in Figure 6. The figure shows abtequestand reply travel together in the first ring segment (Figure 3-
solute values for the arithmetic mean of SPLASH-2 applicationdb))- In any casef-agerconsumes a lot of energy in the ririgazy,

6.1.1. Number of Snoops per Read Request

SPECjbb, and SPECweb. on the other hand, uses a single message per request and, therefore,
is frugal.
. The relative number of messages in Flexible Snooping algo-
o7 : E’f{er rithms follows the discussion in Table 3. The number of messages
“gg 2 o,fde in SubsetindSuperset Agés between that oEagerandLazy The
€3 g = Subset reason is that, whil&Subsebften produces two messages per re-
5% 2 zﬂgz:zzisg quest, it merges them when it predicts that a line can be supplied
; | O Exact by the local node.Superset Agagllows the request and the reply
SPLASH-2 SPECibb SPECweb to travel in the same message until it first predicts that the line
Figure 6. Average number of snoop operations per read snoop My be supplied by the local node. From Figure 7, we see that
request for different algorithms. tsrﬁ?(a:%ci)hemes induce a similar number of messages — except in
jbb.

Finally, as indicated in Table Juperset Cormand Exacthave
The figure shows thaagersnoops the most. As expected, itthe same number of read messaged @zy (and Oracle). This
snoops all 7 CMPs in every request. As a result, it consumes sigives these schemes an energy advantage. The figure also shows
nificant energy. If there is a supplier nodeazyshould snoop on that downgrades do not seem to affect the number of read messages
average about half of the nodes, namely 3-4. In practice, since matfyExact— only the location from where they are supplied.

requests do not find a supplier node and need to go to meiremy, 6.1.3. Total Execution Time
snoops more. In particular, in SPECjbb, threads do not share much =

data, and many requests go to memory. For this worklbady The total execution time of the applications for the different al-
incurs an average number of snoops close to 7. gorithms is shown in Figure 8. In the figure, the SPLASH-2 bars
show the geometric mean of the applications. The bars are normal-

The relative snoop frequency of the Flexible Snooping algoi-Zed tolaz
rithms follows the graphical representation of Figure 4-(b). For ¥

example,Subsetsnoops slightly more thahazy As indicated in . m Lazy
Table 3, its snoops ovérazydepend on the number of false nega- gi“g’ 08l .| m Eager
tives. On the other hand, tf&upersealgorithms have many fewer 5 s oef- 1a g;zcs';
snoops, typically 2-3. As indicated in Figure 4-(Superset Con Eg 0.4f- SupersetCon
snoops slightly less thaBuperset Agg & o2t - :iggse“\gg

Oraclehas a very low value. Its number of snoops is less than ~ ° SPLASH-2 SPECjbb SPECweb

one because when the line needs to be obtained from me@ory,
acle does not snoop at all. Finallfgxactis very close toOra-

cle. It has in fact fewer snoops tharacle because, as indicated
in Section 4.3.3, its Supplier Predictor induces some line down-
grades. These downgrades result in relatively fewer lines supplied To understand the results, consider Figure 4-(b), which qual-
by caches. itatively shows the relative snoop request latency in the different

Figure 8. Execution time of the applications for different al-
gorithms. The bars are normalizedltazy.



algorithms. In therel.azyhas the longest latency, whifguperset 2 22

Conhas somewhat longer latency than the other Flexible Snoopin@L5 e : ;Zyer

algorithms. @ Oracle
Figure 8 is consistent with these observations. The figure show% ! " iﬂﬁifietcon

that, on averagé,azyis the slowest algorithm, and that most of the Eosf- SupersetAgg

other algorithms track the performancemEdger Of the Flexible = | O Exact

Snooping schemeExactis slow when running SPLASH-2 and, to SPLASH-2 SPECibD SPECweb

a lesser extent, SPECweb. This is because it induces dOanradeFigure 9. Energy consumed by read and write snoop requests
in these workloads, which result in more requests being satisfiedand replies for different algorithms. The bars are normalized
by main memory than before. On the other haBgactdoes not to Lazy.

hurt the performance of SPECjbb because many accesses in this

workload would not find the data in caches anyway.

Among the remaining three Flexible Snooping algorith®s; Exactis not an attractive algorithm energy-wise. While it needs
perset Coris the slightly slower one, as expected. When it runs théew snoop messages and snoop operations, it induces cache-line
SPEC workloads, it suffers delays caused by false positives, whickowngrading. As indicated in Section 4.3.3, some of these lines
induce snoop operations in the critical path. need to be written back to memory and later re-read from memory.

Superset Aggs the fastest algorithm. It is always very close toAs shown in Figure 9, this increases the energy consumption sig-
Oracle, which is a lower execution bound. On avera§eperset nificantly, especially for applications with frequent cache-to-cache
Aggis faster tharEager Compared td_azy, it reduces the execu- transfers such as SPLASH-2.
tion time of the SPLASH-2, SPECjbb, and SPECweb workloads by Finally, Superset Coris the most efficient algorithm. Its en-

14%, 13%, and 6%, respectively. ergy consumption is the lowest, thanks to needing the same num-
. ber of messages aszyand fewer snoop operations. Compared to
6.1.4. Energy Consumption Lazy, however, it adds the energy consumed in the predictors. In

Finally, we compute the energy consumed by the different alggparticular, the predictors used by tBepersealgorithms consume
rithms. We are interested in the energy consumed by the read agigPstantial energy in both training and prediction. As a reSuit,
write snoop requests and replies. Consequently, we add up the @grset Cots energy is only slightly lower thahazys. Compared
ergy spent snooping nodes other than the requester, accessing #ridgager, however, it consumes 48%, 47%, and 47% less energy for
updating the Supplier Predictors, and transmitting request and rePLASH-2, SPECjbb, and SPECweb, respectively.
ply messages along the ring Ilnk_s. In_ add!tlon, Eoract we also 6.1.5. Summary of Results
add the energy spent downgrading lines in caches and, most im-
portantly, the resulting additional cache line write backs to main Based on this analysis, we argue tBaiperset Aggnd Super-
memory and eventual re-reads from main memory. These accesses Conare the most cost-effective algorithnSuperset Agés the
are counted because they are a direct resuifixaicts operation. choice algorithm for a high-performance system. It is the fastest

To estimate this energy we use several tools. We use mod@ligorithm — faster thaiagerwhile consuming 9-17% less energy
from CACTI [18] to estimate the energy consumed accessing cacHeanEager For an energy-efficient environment, the choice algo-
structures (when snooping or downgrading lines) and predictordthm is Superset Conlt is only 3-6% slower tharBuperset Agg
We use Orion [25] to estimate the energy consumed to access thbile consuming 36-42% less energy.
on-chip network. We use the HyperTransport I/O Link Specifica- Interestingly, bottSuperset CoandSuperset Aggse the same
tion [7] to estimate the energy consumed by the transmission &upplier Predictor. The only difference between the two is the ac-
messages in the ring interconnect. Finally, we use Micron’s Systerfion taken on a positive prediction (Table 3). Therefore, we envision
Power Calculator [12] to estimate the energy consumed in mai adaptive system where the action is chosen dynamically. Typi-
memory accesses. cally, the action would be that uperset Agg However, if the

As an example of the numbers obtained, transferring one snoggstem needs to save energy, it would use the actidBupkrset
request message on a single ring link is estimated to consurk@®n
3.17 nJ. In contrast, the energy of a CMP snoop is estimated to pe s .
only 0.69 nJ. We can see, therefore, that a lot of the energy is disglz' Sensitivity Analysis
pated in the ring links. Finally, reading a line from main memory is In this section, we evaluate the impact of the Supplier Predictor
estimated to consume 24 nJ. size on the performance of the Flexible Snooping algorithms. We

Figure 9 shows the resulting energy consumption for the differevaluate the predictors described in Section 5.2, narfBaly512
ent algorithms. As usual, the SPLASH-2 bar is the geometric me&ub2k and Sub8kfor Subset SupCy512 SupCy2k and SupCn2k
of the applications, and all bars are normalizetlaay. The figure for Superset CanSupAy512SupAy2k and SupAn2Kor Superset
shows thaEagerconsumes about 80% more energy thamy This  Agg andExa512 Exa2k andExa8kfor Exact
is because it needs more messages and more snoop operations thaRigure 10 compares the execution time of the workloads for the
Lazy Of the Flexible Snooping algorithm§ubsetand Superset different Supplier Predictor sizes and organizations. For each algo-
Aggare also less efficient thdrazy, as they induce more messagesrithm and application, we normalize the three bars to the one for the
thanLazyand, in the case &ubsetmore snoop operations as well. predictor used in Section 6.1 (in all cases, the central bar).

Still, Superset Aggonsumes 14%, 17%, and 9% less energy than From the figure, we see that these environments are not very
Eagerfor SPLASH-2, SPECjbb, and SPECweb, respectively. sensitive to the size and organization of the Supplier Predictor —



B Sub512 W SupAy512
Sub2k B SupAy2k
. Sub8k O SupAn2k
B SupCy512H Exa512
‘| ® SupCy2k M Exa2k
SupCn2k Exa8k

Normalized
Execution Time

Sub SupC SupA Exa Sub SupC SupA Exa Sub SupC SupA Exa
SPLASH-2 SPECjbb SPECweb

Figure 10. Execution time ofSubsetSuperset CorSuperset AggandExactalgorithms with different Supplier Predictor sizes and
organizations.

] m False Negatives
% o False Positives
oge) True Negatives
3 <

afg m True Positives
33

a<

o

>

(%)

S J W S Jw S J W S Jw S J W s Jw S J W s J W S Jw s J W
Perfect Sub512 Sub2k Sub8k SupCy512  SupCy2k  SupCn2k Exa512 Exa2k Exa8k

Figure 11. Supplier Predictor accuracy for the different implementations oSthiesetSupersetandExactalgorithms. In the figure,
S J, andW stand for SPLASH-2, SPECjbb, and SPECweb, respectively.

at least for the ranges considered. The only exception iEXaet number of false positives. The Exclude cache helps for SPLASH-2
algorithm for the SPLASH-2 applications. In this case, larger Supand for SPECweb. However, it does not help for SPECjbb, where
plier Predictors reduce the execution time noticeably. The reasdinere are few cache-to-cache transfers — as seen from the perfect
is that small predictor caches cause many line downgrades. Thigedictor. Since there are few cache-to-cache transfers, the Exclude
hurts performance in applications with significant cache-to-cacheache thrashes and never helps.

data transfers such as SPLASH-2. Overall, based on Figure 10, we Finally, the bars for th&xactpredictors give an idea of the im-

conF:Iude 'Fhat the predictor sizes used in Section 6.1 represent g%t of downgrades. In Figure 11, the difference between these pre-
design points. _ _ dictors and the perfect one is due to downgrades. Specifically, the
To gain further insight into how these predictors work, Figure 11,56 gowngrades issued, the lower the fraction of true positives.
shows the fraction of true positive, true negative, false positive, ar\};\i,e can see from the figure that, for an 8K entry predictor cache,
false negative predictions issued by read snoop requests using eﬁ'@effect of the downgrades is relatively small. However, as we de-

of these Supplier Predictors. The figure includes a perfect prediCt&rease the predictor size, more downgrades mean a lower fraction
that is checked by the snoop request at every node, until the request o positives

finds the supplier node. The predictors for the tBigpersetlgo-
rithms behave very similarly and, therefore, we only show one
them. In the figureS J, andW stand for SPLASH-2, SPECjbb, and
SPECweb, respectively. . .
The perfect predictor in Figure 11 shows how soon a read sno Our work is related to sevc_aral _schemes that improve per-
request finds the supplier node. Specifically, in SPLASH-2 an rmance or energy consumption in coherence protocals.  In

SPECweb, the predictor makes about 4 negative predictions for GBpstination-Set Prediction [9], reguester caches predict \{vhich other
ery positive prediction. This means that the supplier is found oﬁaches need t‘? o_bse_rve a certain memory request. Unlike our pro-
average about 5 nodes away from the requester. In SPECjbb hda\p_sal, the prediction is performed at the source node, rather than at

ever, there is rarely a supplier node, and the request typically gé[ge de_stlnatlon node. Moreover, destination-set pr_e_dlctlon_ targets
the line from memory. a multicast network environment. It leverages specific sharing pat-

The next three sets of bars show that Bubsepredictors have terns like pairwise sharing to send multicasts to only a few nodes in
few false negatives. As we increase the size of the predictor frofi® System.
512 entries to 8K entries, the number of false negatives decreases.JETTY [14] is a filtering proposal targeted at snoopy bus-based
For 8K entries, false negatives practically disappear. SMP systems. A data presence predictor is placed between the

On the other hand, thBupersepredictors in the next three sets shared bus and each L2 cache, and filters part of the snoops to the
of bars have a significant fraction of false positives. For the be$f2 tag arrays. The goal of the mechanism is exclusively to save
configuration SupCy2k false positives account for 20-40% of the energy. While we used one of the structures proposed by JETTY,
predictions. While we have tried many different bit-field organizaour work is more general: we leverage snoop forwarding in addi-
tions for the Bloom filter, we find that it is difficult to reduce the tion to snoop filtering; we use a variety of structures; we use these

0?. Related Work



techniques to improve both performance and energy; and finally wacknowledgments

use a supplier predictor.

Power Efficient Cache Coherence [16] proposes to perforrRC
snoops serially on an SMP with a shared hierarchical bus. Lever-
aging the bus hierarchy, close-by caches are snooped in sequergee

We thank the anonymous reviewers and members of the I-
OMA group for their valuable comments. Special thanks go
Luis Ceze, Paul Sack, Smruti Sarangi and James Tuck for their

insights and help with the simulation infrastructure and energy con-

potentially reducing the number of snoops necessary to service a
read miss. Our work is different in the following ways: our work:
focuses on a ring, on which we detail a race-free coherence proto-
col; we present a family of adaptive protocols; finally we focus o
both high performance and low energy.

Ekman et al [6] evaluate JETTY and serial snooping in the con-
text of a cache-coherent CMP (private L1 caches and shared LB
cache) and conclude these schemes are not appropriate for this kind
of environment. @

Owner prediction has been used to speed-up cache-to-cache in-
terventions in a CC-NUMA architecture [1]. The idea is to shortcut[3]
the directory lookup latency in a 3-hop service by predicting which[4]
cache in the system would be able to supply the requested data and
sending the request directly to it, only using the home directory t%]
validate the prediction.

Barroso and Dubois [2] propose the use of a slotted ring as &
substitute for a bus in an SMP system. As indicated in Section 2.1.4,
their work is different in that they look at a ring network topology [7]
(while we use a logically-embedded ring) and that they use sIottian]
(while we do not have these timing constraints). They use the Eager
algorithm, which we use as a baseline here. Another system th
uses a slotted ring topology is Hector [24]. Hector uses a hierarch
of rings.

Moshovos [13] and Cantiet al. [4] propose coarse-grain mech- [0l
anisms to filter snoops on memory regions private to the requesting
node. They differ from our work in that they are source-filtering**!
mechanisms. In addition, these mechanisms work at a coarser gran-
ularity and target only a certain category of misses (cold misses Bfl
misses to private data). These techniques may be combined witl;
our techniques to further improve performance and energy saving?ls‘i]

8. Conclusions

While snoopy protocols using logically-embedded rings in th([elsl
network are simple and low cost, straightforward implementatio 316]
may suffer from long snoop request latencies or many snoop mes-
sages and operations. To address this problem, this paper m&dg
three contributions. First, it introduceéexible Snoopingalgo-
rithms, a family of adaptive forwarding and filtering snooping algo{1s]
rithms, and described the primitive operations they rely on. Second,
it analyzed the design space of these algorithms and described fgig
general approaches, namedybset Superset ConSuperset Agg
andExact These approaches have different trade-offs in number

1

sumption estimations. Karin Strauss thanks IBM Research for her
internship at the Scalable Server Network and Memory System De-
rpartment at the IBM T. J. Watson Research Center.

References

M. E. Acacio, J. Gonalez, J. M. Garia, and J. Duato. Owner Prediction for Ac-
celerating Cache-to-Cache Transfer Misses in a cc-NUMA Architectutdigin
Performance Computing, Networks and Storage Conference &@)2002.

L. Barroso and M. Dubois. The Performance of Cache-Coherent Ring-based
Multiprocessors. Innternational Symposium on Computer Architeciuviay
1993.

B. Bloom. Space/time Trade-offs in Hash Coding with Allowable Err@@sm-
munications of the ACML1(7):422—426, July 1970.

J. F. Cantin, M. H. Lipasti, and J. E. Smith. Improving Multiprocessor Perfor-
mance with Coarse-Grain Coherence TrackingInbernational Symposium on
Computer ArchitectureJune 2005.

D. E. Culler and J. P. Singh. Parallel Computer Architecture; A Hard-
ware/Software ApproachMorgan Kaufmann, 1999.

M. Ekman, F. Dahlgren, and P. Steristr. Evaluation of Snoop-Energy Reduc-
tion Techniques for Chip-Multiprocessors. \IWorkshop on Duplicating, Decon-
structing, and Debunkingviay 2002.

HyperTransport Technology ConsortiunHyperTransport 1/0 Link Specifica-
tion, 2.00b edition, April 2005.

R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in Multi-Core Archi-
tectures: Understanding Mechanisms, Overheads and Scalirigtetnational
Symposium on Computer Architectudene 2005.

M. Martin, P. Harper, D. Sorin, M. Hill, and D. Wood. Using Destination-Set
Prediction to Improve the Latency/Bandwidth Tradeoff in Shared-Memory Mul-
tiprocessors. linternational Symposium on Computer Architeciulene 2003.

M. Martin, M. Hill, and D. Wood. Token Coherence: Decoupling Performance
and Correctness. Imternational Symposium on Computer Architecfulene
2003.

M. Marty, J. Bingham, M. Hill, A. Hu, M. Martin, and D. Wood. Improving
Multiple-CMP Systems Using Token Coherence. Iiternational Symposium

on High-Performance Computer Architectufeeb 2005.

Micron Technology, IncSystem-Power Calculator
http://www.micron.com/products/dram/syscalc.html.

A. Moshovos. RegionScout: Exploiting Coarse Grain Sharing in Snoop-Based
Coherence. Ihnternational Symposium on Computer Architectuene 2005.

A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. JETTY: Filtering Snoops
for Reduced Energy Consumption in SMP Serverdntarnational Symposium

on High-Perfomance Computer Architectudan 2001.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, K. Strauss,
S. Sarangi, P. Sack, and P. Montesinos. SESC Simulator, Jan 2005.
http://sesc.sourceforge.net.

C. Saldanha and M. Lipasti. Power Efficient Cache Coherencélohkshop on
Memory Performance Issueiune 2001.

X. Shen. A Snoop-and-Forward Cache Coherence Protocol for SMP Systems
with Ring-based Address Networks. Technical report, IBM T. J. Watson Re-
search Center, June 2004.

P. Shivakumar and N. Jouppi. CACTI 3.0: An Integrated Cache Timing, Power
and Area Model. Technical Report 2001/2, Compaq Computer Corporation, Aug
2001.

Silicon Graphics. Silicon Graphics Altrix 3000 Scalable 64-bit Linux Platform.
http://www.sgi.com/products/servers/altix/.

Standard Performace Evaluation Corporation (SPEC). http://www.spec.org.
Sun  Microsystems.  Sun  Enterprise 10000 Server  Overview.

snoop operations and messages, Snoop response time, energy Con-http://www.sun.com/servers/highend/e10000/.

sumption, and implementation difficulty. [22]
Finally, we used SPLASH-2, SPECjbb, and SPECweb work-
loads to evaluate these approaches. Our analysis found sevé#al
snooping algorithms that are more cost-effective than current ond&!

Specifically, our choice for a high-performance snooping algorithm
(Superset Agwith a 7.3-Kbyte per-node predictor) was faster thari25!
the currently fastest algorithnEégen, while consuming 9-17%
less energy; moreover, our choice for an energy-efficient algorithiz6l
(Superset Cowith the same predictor) was only 3-6% slower than
Superset Aggwvhile consuming 36-42% less energy.

J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4
System Microarchitecture. [BBM Journal of Research and Developmed&an
2002.

Virtutech. Virtutech Simics. http://www.virtutech.com/products.

Z. Vranesic, M. Stumm, D. Lewis, and R. White. Hector: A Hierarchically
Structured Shared-Memory Multiprocessor. IREE Computer Magazinelan
1991.

H. S. Wang, X. P. Zhu, L. S. Peh, and S. Malik. Orion: A Power-Performance
Simulator for Interconnection Networks. International Symposium on Mi-
croarchitecture Nov 2002.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Pro-
grams: Characterization and Methodological Considerationdntérnational
Symposium on Computer Architectudene 1995.



