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Abstract can be hindered by the increased rate of transient faults due
to the ever decreasing feature size and higher frequencies.
It is widely accepted that transient failures will appear To enable more useful chip multiprocessors to be designed,
more frequently in chips designed in the near future due to several fault tolerant techniques must be employed in their
several factors such as the increased integration scale. Onconstruction.

the other hand, chip-multiprocessors (CMP) that integrate  Moreover, the reliability of electronic components is
several processor cores in a single chip are nowadays thenever perfect. Electronic components are subject to sev-
best alternative to more efficient use of the increasing num-gg| types of failures due to a number of sources. Failures
ber of transistors that can be placed in a single die. Hence, can be either permanent, intermittent or transient. Perma-
it is necessary to design new techniques to deal with thesenent failures require the replacement of the component and
faultS to be able to bUI|d Suf‘fiCient|y l’eliable Ch|p MU'“' are caused by e|ectr0migrati0n among other causes. Inter-
processors (CMPs). In this work, we present a coherencemittent failures are mainly due to voltage peaks or falls.
protocol aimed at dealing with transient failures that affe Transient failures [11], also known as soft errors or sin-

the interconnection network of a CMP, thus assuming thatgle event upsets, occur when a component produces an er-

the nletwtorkdls not I(lzngebr rellgble. hln par:tlcular, ourtpro-l roneous output and it continues working correctly after the
posal extends a token-based cache coherence prolocol S .o - The causes of transient errors are multiple and in-

:hat noddata an be lost anS no dégﬁ/llgd]f ﬁan ciccur QUe clude alpha-particle strikes, cosmic rays, and radiatiomf
0 any dropped message. Using Uil System SIMU-.4gioactive atoms which exist in trace amounts in all mate-

lator, we compare our proposal against a similar protocol . ; - ;
o . rials and electrical sources like power supply noise, elec-
without fault tolerance TOKENCMP). We show that in ab- tromagnetic interference (EMI) or radiation from lightgin

§er:ce of faf|IL_Jres our groposalt_doe? not m%gducecol\\/l/irheadAny event which upsets the stored or communicated charge
In terms ot increased execution time OVEOKEN ) can cause soft errors in the circuit output.

Additionally, our protocol can tolerate message loss rates
much higher than those likely to be found in the real world
without increasing execution time more than 15%.

Transient failures are much more common than perma-
nent failures [13]. Currently, transient failures are altg
significant for some devices like caches, where error cor-
rection codes are used to deal with them. However, cur-
. rent trends of higher integration and lower power consump-
1. Introduction tion will increase the importance of transient failures. [6]

Since the number of components in a single chip increases

Chip Multiprocessors (CMPs) [4, 3] are currently ac- so much, it is no longer economically feasible to assume a
cepted as the best way to take advantage of the increasingvorst case scenario when designing and testing the chips.
number of transistors available in a single chip, since they Instead, new designs will target the common case and as-
provide better performance without excessive power con-sume a certain rate of transient failures. Hence, transient
sumption exploiting thread-level parallelism. failures will affect more components and more frequently

In many applications, high availability and reliabilityear  and will need to be handled across all the levels of the sys-
critical requirements. The use of CMPs in critical tasks tem to avoid actual errors.



Communication between processors in a CMP is very 5 presents an evaluation of the overhead introduced by our
fine-grained (at the level of cache lines), hence small andproposal and its effectiveness in presence of faults. Kinal
frequent messages are used. In order to achieve the besh section 6 we present some conclusions of our work.
possible performance it is necessary to use low-latency in-
terconnections and avoid acknowledgement messages ang_ Related work and background
other control-flow messages to ensure a reliable transmis-
sion.

In this work, we propose a way to deal with the tran-
sient failures that occur in the interconnection network of
CMPs. We can assume that these failures cause the loss
T e e e 18 MWICARER) 1] it i 117 delaped eror recovery

S ' echniques using private caches for recovering from pro-
destination node (or other node) corrupted. Messages cor-

ruoted by a soft error will be discarded Upon recention usin cessor transient faults in multiprocessor systems, Baeét
b ya: P P 9al. proposed &Recoverable Shared MemaffigSM) which
error detection codes.

’ deals with processor failures on shared-memory multipro-
We attack this proble_m at the cache coherence pro_to'cessors using shoopy protocols [2], while Sunetl. pro-
col level. We have designed a coherence protocol which

- ) - posedDistributed Recoverable Shared Memory with Logs
assumes an unreliable interconnection network and guarprsM-L) [15]. More recently, Pruvloviet al. presented

antees correct executip_n in presence of dropped messagegevive, which performs checkpointing, logging and mem-
Our proposal only modifies the coherence protocol and doesory based distributed parity protection with low overhead

not add any requirement to the interconnection network, so;“arror-free execution and is compatible with off-the4§he

it is applicable to current and future designs. Since the €0~ processors, caches and memory modules [12]. At the same
herence protocol is critical for good performance and Cor- ime sorinet al. presented SafetyNet [14] which aims at
rect execution of any workload in a CMP, it is important o gimijar objectives but has less overhead, requires custom
have a fast and reliable protocol. caches and can only recover from transient faults.

Up to the best of our knowledge, there has not been  Regarding the cache coherence protocol background,
any proposal dealing explicitly with transient faults in Token coherence [7, 8] is a framework for designing coher-
the interconnection network of multiprocessors or CMPs ence protocols whose main asset is that it decouples the cor-
from the point of view of the cache coherence protocol. yectness substrate from several different performance pol
Also, most fault tolerance proposals require some kind of cies. This allows great flexibility, making it possible to
checkpointing and rollback, while ours does not. Our pro- adapt the protocol for different purposes easily [7] sire t
posal could be used in conjunction with other techniques performance policy can be modified without worrying about

in the CMP to achieve full fault tolerance coverage inside the correctness substrate.

There have been several proposals for fault tolerance
targeting shared-memory multiprocessors. Most of them
Olfse variations of checkpointing and recovery: R.E. Ahmed
et al. developed Cache-Aided Rollback Errors Recovery

the chip. The main observation of the token framework is that sim-
The main contributions of this paper are the following: ple token counting rules can ensure that the memory system
we have identified the different problems posed to a token pehaves in a coherent manngsken countingpecifies that
based CMP cache coherence protocdd kKENCMP) bythe  each line of the shared memory has a fixed number of to-
loss of messages due to an unreliable interconnect, we havgens and that the system is not allowed to create or destroy
proposed modifications to the protocol and the architecturetokens. A processor is allowed to read a line only when it
to cope with these problems without adding excessive over-holds at least one of the line’s tokens and has valid data,
head, and we have implemented such solutions in a fulland a processor is allowed to write a line only when it holds
system simulator to measure their effectiveness and execuall of its tokens and valid data. One of the tokens is distin-
tion time overhead. We show that in absence of failures our guished as thewner token The processor or memory mod-
proposal does not introduce overhead in terms of increasedile which has this token is responsible for providing thedat
execution time over ®KENCMP. Additionally, our proto-  when another processor needs it or write it back to memory
col can tolerate message loss rates much higher than thos@hen necessary. The owner token can be either clean or
likely to be found in the real world without increasing exe- dirty, depending on whether the contents of the cache line
cution time more than 15%. are the same as in main memory or not, respectively. In
The rest of the paper is organized as follows. In sec- order to allow processors to receive tokens without data, a
tion 2 we present some related work. In sections 3 and 4valid-data bitis added to each cache line (independently of
we describe the problems posed by an unreliable intercon-the usual valid-tag bit). These simple rules preventa roce
nection network and the solutions that we propose. Sectionsor from reading the line while another processor is writing



it, ensuring coherent behavior at all times. incorrect execution would be caused, although some per-
Token coherence avoids starvation by issuing a persis-formance degradation may happen.

tent request when a processor detects potential starvation Since invalidations (which can be persistent or transient

Persistent requests, unlike transient requests, aregieach  requests) in the base protocol require acknowledgement (th

to eventually succeed. To ensure this, each token protocokaches holding tokens must respond to the requester)glosin

must define how it deals with several pending persistent re-a message cannot lead to an incoherence.

quests. Losing any other type of message, however, may lead to
Token coherence provides the framework for designing deadlock or _dgta loss. Particularly, losing coherence mes-
several particular coherence protocolsoKENCMP [10] sages containing one or more tokens would lead to a dead-

is a performance policy which targets hierarchical muétipl lock, because the total number of tokens in the whole sys-
CMP systems. It uses a distributed arbitration scheme fortém must remain constant to ensure correctness. More pre-
persistent requests, which are issued after a single retry t cisely, if the number of tokens decreases because a message

optimize the access to contended lines. carrying one or more tokens does not reach its destination,
no processor will be able to write to that line of memory
L ) ) anymore.
3. Problems arising in CMPs with an unreli- The same thing happens when a message carrying data
able interconnection network and tokens is lost, as long as it does not carry the owner

token. No data loss can happen because there is always
We consider a CMP system whose interconnection net-2 valid copy of the data at the cache which has the owner
work is not reliable due to the potential presence of trartsie  [OKenN- . .
errors. We assume that these errors cause the loss of mes- Another different case occurs if the lost coherence mes-
sages (either an isolated message or a burst of them) sinc829€ contains a dirty owner token, since it must also carry
they directly disappear from the interconnection netwark o the memory line.  Hence, if the owner token is lost, no
arrive to their destination corrupted and are discarded. processor (or memory module) would send the data and a
Instead of detecting faults and return to a consistent state‘lleadlock and p035|_bly _data loss would occur. In the T
KENCMP protocol, like in most cache coherence protocols,

previous to the occurrence of the fault, our aim is to design he data i ) Jated hwrite. b |
a coherence protocol that can guarantee the correct semarf'® a_talln memory 1S not updated on each write, but only
when it is evicted from the owner cache. Also, the rules

tics of program execution over an unreliable interconrogcti g th ok that th & al t
network without ever having to perform a checkpointing or governing the owner token ensure that there Is always a
rollback. We do not try to address the full range of errors least a valid copy of the memory line which travels along
that can occur in a CMP system. We only concentrate OnWith it every time that the owner token is transmitted. So,
those errors that affect directly the interconnection roekw Iosing a message carrying the owner token means that it is
and which can be tolerated modifying the coherence pro- possible to totally lose data.

tocol. Hence, other mechanisms should be used to com—t dFmalmyl’ wh|I$ha per5|§tert1r'c] reque§tt|s 'P procests, we have
plement our proposal to achieve full fault tolerance for the 0 d€al also with errors In the persistent request messages.

whole CMP. Next, we present the problems caused by thel__osmg a perS|ster_1t requ_est or_ persistent request _deact|va
tion would create inconsistencies among the persistent re-

guest tables at each cache in a distributed arbitratiomsehe
which would lead to deadlock situations too.

loss of messages in theoKENCMP protocol and later we
show how these problems can be solved.

From the point of view of the coherence protocol, we as-
sume that a coherence message either arrives correcty to it
destination or it does not arrive at all. In other words, we 4. A fault tolerant token coherence protocol
assume that no incorrect or corrupted messages can be pro-
cessed by a node. To guarantee this, error detection codes The main principle that guided the protocol development
are used. Upon arrival, the CRC is checked using special-was to prevent adding significant overhead to the fault-free
ized hardware and the message is discarded if it is wrong.case and to keep the flexibility of choosing any particular
To avoid any negative impact on performance, the messageerformance policy. Therefore, we should try to avoid mod-
is speculatively assumed to be correct because this is by faifying the usual behavior of transient requests. For exampl
the most common case. we should avoid placing point-to-point acknowledgements

There are several types of coherence messages that caim the critical path as much as possible.
be lost which translate into a different impact in the coher-  Once a problematic situation has been detected, the main
ence protocol. Firstly, losing transient requests is harm- recovery mechanism used by our protocol istihleen recre-
less. Note that even when we state that losing the mes-ation processlescribed later. That process resolves a dead-
sage is harmless we mean that no data loss, deadlock, olock ensuring both that there is the correct number of tokens



Table 1. Timeouts summary.

Timeout When is it activated? Where is it activated? When is it deactivated? What happens when i
triggers?
Lost Token When a persistent request be- At the starver cache. When the persistent request is satis-Request a token recrer
comes active. fied or deactivated. ation.
Lost Data When a backup state is entere. At the cache that holds th¢ When the backup state is aban-Request a token recrer
(When the owner token is sent]) backup. doned. (When the Ownership Ac- ation.
knowledgement Arrives.)
Lost Backup | When aline in a blocked status At the cache that needs tp When the blocked state is aban- Request a token recrer
Deletion Ac- | needs to be replaced. do the replacement. doned. (When the Backup Deletioh ation.
knowledgement Acknowledgement arrives.)
Lost Persistent When a persistent request froin At every cache (by the per; When the persistent request is dedc-Send a persistent ref
Deactivation another cache is activated. sistent request table). tivated. guest ping.

and one and only one valid copy of the data.

As shown in the previous section, only the messages car-

rying transient read/write requests can be lost without neg

Table 2. Summary of the problems caused by
loss of messages.

ative consequences. For the rest of the cases, losing a mes-

sage results in a problematic situation. However, all af¢he
cases have in common that they lead to deadlock. Hence,
possible way to detect faults is using timeouts for transac-
tions. We use four timeouts for detecting message losses
the “lost token timeout” (see section 4.1), thdost data
timeout”, the“lost backup deletion acknowledgement time-
out” (see section 4.2) and thkost persistent deactivation
timeout” (see section 4.3.2). Notice that all these timeouts
along with the usual retry timeout of the token protocol (ex-
cept thelost persistent deactivation timedutan be imple-

mented using just one hardware counter, since they do no
need to be activated simultaneously. For lib&t persistent
deactivation timeoyian additional counter per processor at
each cache or memory module is required. A summary of
these timeouts can be found in table 1.

Since the time to complete a transaction cannot be
bounded reliably with a reasonable timeout due to the in-
teraction with other requests and the possibility of networ
congestion, our fault detection mechanism may produce

| Fault/Lost message | Effect | Detection and Recovery]
3 Transient read/write| Harmless
request
Response with tokeny Deadlock Lost token timeout, to-
ken recreation
Response with tokeng Deadlock Lost token timeout, to-
and data ken recreation
Response with a dirty] Deadlock and| Reliable transfer of
owner token and data| data loss owned data using ac
knowledgements, los
data timeout
Persistent read/writq Deadlock Lost token timeout, to-
requests ken recreation
Persistent request deg- Deadlock Lost persistent deactiva
activations tion timeout, persistent]
request ping
Ownership acknowl-| Deadlock and| Lost data timeout
edgement cannot  evict
line from cache
Backup deletion ac-| Deadlock Lost backup deletion ac
knowledgement knowledgement timeout]

false positives, although this should be very infrequent. h he will L h ith d
Hence, we must ensure that our corrective measures are safion 4.2), the cache will receive it too together with data.

even if no fault really occurred.

We present a summary of all the problems that can aris
due to loss of messages and their proposed solutions in tabl
2. In the rest of this section, we explain how our proposal
prevents or solves each one of these situations in detail.

e

4.1. Dealing with token loss

When a processor tries to write to a memory line which
has lost a token, it will eventually timeout and issue a [gersi
tent request. In the end, after the persistent request gets a
tivated, all the available tokens in the whole system for the
memory line will be received by the starving cache. Also,
if the owner token was not lost and is not blocked (see sec-

However, since the cache will not receive all the tokens, it
will not be able to complete the write miss, and finally the

Processor will be deadlocked.

We use thélost token timeout’to detect this deadlock
situation. It will start when a persistent request is attda
and will stop once the miss is satisfied or the persistent re-
guest is deactivated. The value of the timeout should be
long enough so that, in normal circumstances, every trans-
action will be finished before triggering this timeéut

Hence, if the starving cache fails to acquire the neces-
sary tokens within certain time after the persistent regues
has been activated, tHest token timeouwill trigger. In

1Using a value too short for any of the timeouts used to detadtsf
would lead to many false positives which would hurt perfonce



that case, we will assume that some token carrying messagery if no valid copy is available when a message carrying
has been lost and we will request a token recreation pro-the owner token is lost. To be able to do this in an effective
cess for recovery to the memory module (see section 4.4).way, it is necessary to ensure that there is a valid copy of the
Notice that thdost token timeoumay be triggered for the  data or one and only one backup copy at all times, orboth
same coherence transaction that loses the message or forldence, a cache which has received the owner token recently
subsequent transaction for the same line. Once the tokercannot transmit it again until it is sure that the backup copy
recreation has been done, the miss can be satisfied immedifor that line has been deleted. We say that the line will be

ately. in a blocked ownershigtate. A line will leave this state
when the cache receivesbackup deletion acknowledge-
4.2. Avoiding data loss mentwhich is sent by any cache when it deletes a backup

copy after receiving aownership acknowledgemerfig-

To avoid losing data in our fault tolerant coherence pro- ure 1 shows an example of how the owner token is transmit-
tocol, a cache (or memory controller) that has to send theted with our protocol.
owner token will keep the data line intzackupstate. A The two acknowledgements necessary to finalize this
line in backup state will not be evicted from the cache un- transaction are out of the critical path of the miss. How-
til an ownership acknowledgemeistreceived, even if ev-  ever, there is a period after receiving the owner token until
ery token is sent to other caches. This acknowledgementhebackup deletion acknowledgemantives during which
is sent by every cache in response to a message carryin@ cache cannot answer to write requests because it would
the owner token. While a line is inackupstate its datais  have to transmit the owner token, which is blocked. This
considered invalid and will be used only if required for re- blocking also affects persistent requests, which are cedvi
covery. Hence, the cache will not be able to read from thatimmediately after receiving thbackup deletion acknowl-
line?. Also, when a line enters in a backup state kst edgement This blocked period could increase the latency
data timeoutvill start and will stop once the backup state is of some cache-to-cache transfer misses, however we have
abandoned. found that it does not have impact on performance, as most

writes are sufficiently separated in time.

c1 c2 This mechanism also affects replacements (from L1 to
Hr--- Getx M L2 and from L2 to memory), since the replacement can-

__.D:"‘Ea-d" M-8 not be performed until aewnership acknowledgemeist

];,52@_- B-s| received. We have found that the effect on replacements

is much more harmful for performance than the effect of
cache-to-cache transfer misses mentioned above.
To alleviate the effect of the blocked period in the latency

Cache C1 broadcasts a transient exclusive request (GetX). C of replacements, we propose using a snhaltkup buffer
which has all the tokens and hence it isrirodifiedstate (M), to store the backup copies. In particular, we add a backup
answers to C1 with a message (DataO) carrying the data and allbuffer to each L1 cache. A line is moved to the backup
the tokens, including the owner token. Since C2 needs tothend  buffer when it is in a backup state, it needs to be replaced
owner token, it goes to backupstate (B) and starts tHest data  and there is enough room in the backup buff@ihe backup
timeout When C1 receives the DataO message, it satisfies the misduffer acts as a small victim cache, except that only lines in
and enters anodified and blockedtate (Mb), sending an owner-  backup states are moved to it. We have found that a small
ship acknowledgement to C2. When C2 receives it, it discards backup buffer with just 1 or 2 entries is enough to practicall
the backup, goes timvalid state (I), stops théost data timeout ~ remove the negative effect of blocked ownership states (see
and sends &ackup deletion acknowledgementC1. Once C1  section 5.2).
receives it, it transitions to a normalodifiedstate.

4.2.1 Handling the loss of an owned data carrying mes-

Figure 1. Transition diagram for the states and sage or an ownership acknowledgement

events involved in data loss avoidance and

message interchange example. Losing a message which carries the owner token means that
possibly the only valid copy of the data is lost. However,
there is still an up to date backup copy at the cache which

A cache line in a backup state will be used for recov-

3Having more than one backup copy would make recovery impkessi

2|t is possible for a cache to receive valid data and a tokearbefban- since it could not be known which backup copy is the most reoea.
doning a backup state, only if the data message was not fottal case, it 4We do not move the line to the backup buffer immediately aitter
will be able to read from that line and the line will be trafmiied to an in- enters a backup state to avoid wasting energy in many casks\aid

termediate backup state until tbevnership acknowledgemeistreceived. wasting backup buffer space unnecessarily.



sent the data carrying message. Since the data carryingt.3.1 Dealing with the loss of a persistent request

message does not arrive to its destination, no correspgndin
ownership acknowledgementll be received by the cache
and thdost data timeouwill trigger.

If an ownership acknowledgemeist lost, the backup
copy will not be discarded and @ckup deletion acknowl-
edgemenwill be sent. Hence, the backup copy will remain
in one of the caches and the data will remain blocked in the
other. Eventually, théost backup deletion acknowledge-
ment timeoutvill trigger too.

When thdost backup deletion acknowledgement timeout

triggers, the cache requests a token recreation process to
recover the fault (see section 4.4). The process can solve

both situations: if thewnership acknowledgememas lost,

the memory controller will send the data which had arrived
to the other cache; if the data carrying message was lost
the cache will use the backup copy as valid data after the

recreation process ensures that all other copies have bee

invalidated.

4.2.2 Handling the loss of a backup deletion acknowl-
edgement

When abackup deletion acknowledgemeniost, a line will
stay in a blocked ownership state. This will prevent it from
being replaced or to answer any write request. Both things
would lead to a deadlock if they are not resolved.

If a miss cannot be resolved because the line is blocked

in some other cache waiting foleckup deletion acknowl-
edgementvhich has been lost, eventually a persistent re-
quest will be activated for it and after some time tbet
token timeouwill trigger. Hence, théoken recreation pro-
cesswill be used to solve this case.

To be able to replace a line in a blocked state when the
backup deletion acknowledgemeéstiost, we use théost
backup deletion acknowledgemeimeout. It is activated
when the replacement is necessary, and deactivated whe
thebackup deletion acknowledgemaeantives. If it triggers,
atoken recreation processill be requested.

The token recreation process will solve the fault in both
cases, since even lines in blocked states are invalidatéd an
must transfer their data to the memaory controller.

4.3. Dealing with errors in persistent requests

Assuming a distributed arbitration policy, persistent re-

guest messages (both requests and deactivations) are;alwa)\/v
broadcasted to keep the persistent request tables at eac

Firstly, it is important to note that the cache which issunes t
persistent request will always eventually activate itcein

no message is involved to update its own persistent request
table.

If a cache holding at least one token for the requested
line which is necessary to satisfy the miss does not receive
the persistent request, it will not activate it in its locable
and will not send the tokens and data to the starver. Hence,
the miss will not be resolved and the starver will deadlock.

Since the persistent request has been activated at the
tarver cache, thiest token timeouwvill trigger eventually
and the token recreation process will solve this case too.

On the other hand, if the cache that does not receive the

persistent request did not have tokens necessary to satisfy

S

the miss, it will eventually receive an unexpected deactiva

Hon message which it should ignore.

4.3.2 Dealing with the loss of a deactivation message

If a persistent request deactivation message is lost, the re
qguest will be permanently activated at some caches. To
avoid this, caches will start tHest persistent deactivation
timeoutwhen a persistent request is activated and will stop
it when it is deactivated. When this timeout triggers, the
cache will send gersistent request pin the starver. A
cache receiving aersistent request pingill answer with
a persistent request or persistent request deactivatiea me
sage whether it has a pending persistent request for tleat lin
or not, respectively. Thiost persistent deactivation timeout
is restarted after sending tipersistent request pin cope
with the potential loss of this message.

If the cache receives a persistent request from the same
starver before théost persistent deactivation timeotrig-
gers, it should assume that the deactivation message has
Eeen lost and deactivate the old request, because caches can

ave only one pending persistent request.
4.4. Token recreation process

Thetoken recreatioris the main fault recovery mecha-
nism provided by our proposal. This process needs to be ef-
fective, but since it should happen very infrequently, iego
not need to be particularly efficient. In order to avoid any
race and keep the process simple, the memory controller
ill serialize the token recreation process, attendingiok
rﬁ:creation requests for the same line in FIFO order.

cache synchronized. Losing one of these messages will lead The process works as long as there is at least a valid copy

to an inconsistency among the different tables.

If the persistent request tables are inconsistent, some per
sistent requests may not be activated by some caches o
some persistent requests may be kept activated indefinitely

These situations could lead to starvation.

of the data in some cache or one and only one backup copy
of the data or both things (the valid data or backup can be at
ﬁhe memory too). The protocol guarantees that these condi-
tions are true at every moment, despite any message loss

5In particular, these conditions are true if no message has hest,



C1l C2 Mem c3

[ T GetX M | |
DataQ I M->B
I->Mb |- _-QAck
ez
Lol popr |-, TR
T_rS_':f: I->R F--._TrS
Br->Br [ 1 TTrSACk ./ e
TrS e RsR [TRACK -
Mb->| |#=zzzz----f-----f------ ‘ R>R |4°°
-------- _ TrSAck+Datal
BMmv>-»R->Rd [ --.Blnv
Br->Ir [~ BinvAck,' TSACK B Y
Binv -',">Rd—>Rd rS——c__.—
. SRR IR SRdke"
el LTS ki bl Binack [Rd->Rd
Sroox» Rd->l
I->M [#Done-+Data

In a transaction like the one of figure 1 theinership acknowledgemengts lost. Hence, C2 keeps the line in backup state (B). Aétere
time, thelost data timeoutriggers (LDto) and C2 sendstaken recreation requeshessage (TrR) to the memory controller and enters the
backup and recreatingtate. The memory controller sendset token serial numbenessage (TrS) to each cache. C2 and C3 receive this
message and answer with an acknowledgement (TrSAck) withh@nging their states, since they are either in invalidamkiop state. On

the other hand, C1 is imodified and blockedtate, hence it returns an acknowledgement with data (Tk$Bata) and changes its state
to invalid (I). When the memory receives the acknowledgement with, dasends abackup invalidatanessage to each cache. C1 and
C3 answer with an acknowledgement (BInvAck) without chaggheir states, while C2 discards its backup data (whichdcoe invalid
since C1 may have written already to the cache line), setsdte tanvalid and recreatinglr) and answers with an acknowledgement too.
When the memory receives all the acknowledgements, it seddstruction donenessage to C2 including the new data (TrDone+Data).
Finally, C2 receives the new data and sets its stateddified(M).

Figure 2. Transition diagram for the states and events invol ved in the token recreation process (used
in this case to recover from the loss of an ownership acknowle dgement).

If there is at least a valid copy of the data, it will be used for of tokens increases, a processor would be able to write to
the recovery. Otherwise, the backup copy can be used forthe memory line while other caches hold readable copies
recovery. of the line, violating the memory coherence model. So, to

At the end of the process, there will be one and only one avoid increasing the total number of tokens for a memory
copy of the data with all the tokens (recreating any token line even in the case of a false positive, we need to ensure
which may have been lost) at the cache which requested thdhat all the old tokens are discarded after the recreation pr
token recreation process. cess. To achieve this we defineaken serial numbecon-

There is one exception to this when the data was actuallyceptually associated with each token and each memory line.
lost (hence no valid copy of it exists, only a backup copy) ) .
and thetoken recreation processas requested by a cache All the valid tokens of the same memory line should have
other than the one which holds the backup copy. In this the same serial number. The serial number will be trans-
case, theoken recreation processill fail to recreate the ~ Mitted within every coherence response. Every cache in
tokens, but the cache that holds the backup copy will even-the system must know the current serial number associated
tually request another token recreation process (bectsise i With €ach memory line and should discard every message
lost data acknowledgement timeawil trigger), and this received containing an incorrect serial number. Tilen

new process will succeed using its backup copy to reC()\,errecreation. proces_$nodi_fies the currentoken serial num-
the data. ber associated with a line to ensure that all the old tokens

When recreating tokens, we must ensure @mserva- are discarded. Hence, if there was no real failure but a to-

tion of Tokendnvariant [7]. In particular, if the number ken carr_ying message was d_elay_ed on _the network due to
congestion (a false positive), it will be discarded when re-

hence thetoken recreation process safe for false positives and can be ceived by any cache because thken serial numbewill
requested at any moment. not match.




To store the token serial number of each line we pro- or the memory had a valid copy itself, otherwise it means
pose a small associative table present at each cache. Onlthat there was no valid copy of the data and there must be a
lines with an associated serial number different than zerobackup copy in some cache (most likely in the same cache
must keep an entry in that table. The overhead of the tokenthat requested the token recreation).
serial number is small. In the first place, we will need to ~ When a cache receivegdastruction donenessage with
increase it very infrequently, so a counter with a small num- data, it will recreate all the tokens (with the nevken serial
ber of bits should be enough (we use a two bit wrapping numbe) and hence set its state meodified If the destruc-
counter). Secondly, most memory lines will keep the initial tion donemessage came without data and the cache was in
serial number unchanged, so we only need to store thosebackup state, it will use the backup data and recreate the to-
ones which have changed it and assume the initial value forkens anyway. If thelestruction donenessage came without
the rest. Thirdly, the comparisons required to check the va- data and the cache did not have a backup copy, it will not be
lidity of received messages can be done out of the critical able to recreate the tokens, instead it will restart the lusua
path of cache misses. timeouts for the cache miss. As mentioned above, when this

Since thetoken serial numbetable is finite, serial num-  last case happens there must be a backup copy in another
bers are reset using the own token recreation mechanisntache and théost data timeoubf that cache will eventu-
when the table is full and a new entry is needed, since reset-ally trigger and recover from this fault. Figure 2 shows an
ting atoken serial numbeactually frees up its entry in the  example of theoken recreatiorprocess at work.
table.

The information_ of_the tat_JIes must be identical in allthe 4 4 ¢ Handling faults in the token recreation process
caches except while it is being updated by the token recre-
ation process. The process works as follows: Since the efficiency of the token recreation process is not

When a cache decides that it is necessary to staken a great concern, we can use unsophisticated (brute force)
recreationprocess, it sendsracreate tokensequest to the ~ methods to avoid problems due to losing the messages in-
memory controller responsible for that line. The memory volved. Hence, all of these messages are repeatedly sent
can also decide to startaken recreation process which every certain number of cycles (1000 in our current imple-
case no message needs to be sent. The memory will queugientation) until an acknowledgement is received. Serial
token recreatiomequests for the same line and service them numbers are used to detect and ignore duplicates unneces-
in order of arrival. sarily sent.

When servicing doken recreatiorrequest, the memory
will increase theoken serial numbeassociated to the line  4.5. Hardware overhead of our proposal
and send aet token serial numbenessage to every cache.

When receiving that message, each cache updatésthe  Firstly, to implement the token serial number table we
ken serial numbeidestroys any token that it could have and have added a small associative table at each cache and at
sends an acknowledgement to the memory. The acknowlthe memory controller to store those serial numbers whose
edgement will also include data if the cache had valid datavalue is not zero. In this work, we have assumed that each
(even if it was in a blocked owner state). serial number requires two bits (if the tokens of any line

Since all the tokens held by a cache are destroyed, theneed to be recreated more than 4 times the counter will
state of the line will become invalid, even if the line was in wrap) and that 16 entries are sufficient (if more than 16 dif-

a blocked owner state. However, if the line was held in a ferent lines need to be stored in the table, the least rgcentl

backup state, it will remain that way. modified entry will be chosen for eviction using the token
If the memory controller receives an acknowledgement recreation process to reset the serial number).
with data, it will send dackup invalidatenessage to all the Most of the timeouts employed to detect faults can be im-

caches. When receiving that request, the caches will send aplemented using the same hardware that is already used to
acknowledgement and discard its backup copy. This avoidsimplement the starvation timeout required by token coher-
having two backup copies when several faults occur and twoence protocols, although the counters may need more bits
or more backup recreation processes are requested in quickince the new timeouts are longer. For thet persistent
succession. deactivationtimeout it is necessary to add a new counter
Once the memory receives all the acknowledgementsper processor at each cache and at the memory controller.
(including the acknowledgements for the backup invalida-  Also, some hardware is needed to calculate and check
tion if it has been requested), it will sendlastruction done  the error detection code used to detect and discard corrupt
message to the cache which initiated the recreation procesgnessages.
(unless it is the memory itself). Thaestruction donenes- Finally, to avoid performance penalty in replacements
sage will include the data if it was received by the memory due to the blocked ownership period, we have proposed to



add a small backup buffer at each L1 cache. The backup
buffer can be effective having just one entry, as will be
shown in section 5.2.

Table 3. Characteristics of architectures sim-
ulated.

5. Evaluation
5.1. Methodology

We have evaluated the performance of our proposal us-
ing full system simulation. We have used Virtutech Sim-
ics [5] functional simulator with Multifacet GEMS [9] tim-
ing infrastructure. Although GEMS can model out-of-order
processors, we have used the in-order model provided by
Simics to keep simulation times tractable and because most
probably future cores in CMPs will use in-order execution
to reduce power consumption. Using out-of-order execu-
tion would not affect the correctness of the protocol at all
and would not have measurable effect in the overhead intro-
duced by the fault tolerance measures compared to the non
fault tolerant protocol.

We have implemented the proposed fault tolerant coher-
ence protocol using the detailed memory model provided by

4, 8 or 16-Way CMP System

Processor Parameters

Processor speed
Max. fetch/retire rate

2 GHz
4

Cache Parameters

Cache line size

L1 cache:
Size, associativity
Hit time

Shared L2 cache:
Size, associativity
Hit time

64 bytes

32 KB, 2 ways
2 cycles

512 KB, 4 ways
15 cycles

Memory Parameters

Memory access time
Memory interleaving

300 cycles
4-way

Network Parameters

Topology
Non-data message size
Channel bandwidth

2D Torus
2 flits
64 GB/s

Fault tolerance parameters

Lost token timeout
Lost data timeout

20000 cycles
6667 cycles

Lost backup deletion acknowledgement 10000 cycles

Lost persistent deactivation timeout
Token serial number size

Token serial number table size
Backup buffer size

10000 cycles

2 bits

16 entries

0, 1, 2 or 4 entries

GEMS simulator (Ruby) to evaluate its overhead compared
to the TOKENCMP [10] protocol and to check its effective-
ness dealing with message losse@KENCMP is a token  average for the 4-core CMP and more than 10% for some
based coherence protocol without fault tolerance promisio benchmarks, which we think is not acceptable. The re-
but that has been optimized for performance in CMPs. sults for 8-core and 16-core CMPs are similar too. We have
We model a CMP whose more relevant configuration found that this slowdown is due to the increased latency of
parameters are shown in table 3. Although we use an in-the misses which need a replacement of an owned line first,
order processor model for simulation efficiency, the simu- since the replacementis no longer immediate but has to wait
lated processor frequency is four times as fast as the memuntil an ownership acknowledgemeistreceived from the
ory model frequency to approximate a 4-way superscalar|2 cache.
model. We have evaluated CMP configurations consisting Fortunately, the use of a very small backup buffer is
on 4, 8 and 16 processor cores. enough to avoid nearly all this penalty. In the 4-core CMP, a
Finally, all the simulations have been conducted using backup buffer of just one entry cuts down the penalty to less
several scientific programs. Barnes, Cholesky, FFT, Oceanthan 0.5% on average. For 8 cores the penalty is reduced to
Radix, Raytrace, Water-NSQ, and Water-SP are from theless that 0.5% using a single entry too. And for the 16-core
SPLASH-2[16] benchmark suite. Tomcatv is a parallel ver- architecture, the slowdown using one entry in the backup
sion of a SPEC benchmark and Unstructured is a computa-uffer is less than 1%.
tional fluid dynamics application. The experimental result Additionally, a backup buffer big enough could even im-
reported here correspond to the parallel phase of each proprove the execution time when compared to the non fault
gram only. tolerant protocol in some cases, as seen in figure 3 for some
benchmarks when the backup buffer size is 2 or 4. This is
because the backup buffer can act temporarily as a victim
cache when a miss happens while a line was in a backup
First, we evaluate both execution time overhead and net-state. However, there is no significant performance im-
work overhead of our protocol when no messages are lost.provement with respect todkENCMP on average.
As previously explained, the execution time overhead de- The other potential source of miss latency overhead in
pends on the size of the backup buffer (see section 4.2).our protocol is due to the fact that a cache holding a line
Figure 3 plots it using different sizes for the backup buffer in an blocked owner state cannot respond to write requests
including the case of not having a backup buffer at all. (not even persistent write requests). The blocked time last
As derived from figure 3, without a backup buffer the while theownership acknowledgememavels to the previ-
overhead in terms of execution time is more than 5% on ous owner and until thbackup deletion acknowledgement

5.2. Measuring the overhead for the fault-free case
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Figure 3. Execution time overhead of our pro- Figure 4. Network traffic overhead of our pro-
posal compared to TOKENCMP for several tocol compared to TOKENCMP.

backup buffer sizes.

5.3. Measuring the supported fault-tolerance ratio

arrives to the new owner. The results shown in figure 3 sug-
gest that the effect of this overhead in the total execution  We have shown that, when a backup buffer with just one
time is negligible, since the writes that different cores-pe entry at each L1 cache is used, our protocol introduces neg-
form on the same line are usually sufficiently separated in ligible overhead in the execution time and slight network
time and the new owner can progress its execution as soorpverhead (around 10% more traffic). On the other hand, our
as the data is received. proposal is capable of guaranteeing the correct execufion o
On the other hand, figure 4 shows the network overheada multi threaded workload on a CMP even in the presence
measured as relative increase of bytes transmitted trougtof transient faults. However, the failures and the necgssar
the network for the same benchmarks and configurationsrecovery introduce certain overhead which we would like to
employed above. As we can see, the network overhead ikeep as small as possible.
mostly independent of the size of the backup buffer. As  Figure 5 shows the execution time overhead of the pro-
we increase the number of processors, the relative networktocol using a backup buffer with one entry under several
overhead decreases slightly (12% for 4 processors, 10% formessage loss rates. Failures rates are expressed in number
8 processors and 8% for 16 processors on average). Thef messages lost per million of messages that travel through
network overhead is due to the acknowledgements used taach switch in the network. These failure rates are much
guarantee the correct transmission of the owner token andhigher than realistic failure rates, so these tests owesstr
its associated data. the fault tolerance provisions of the protocol. Obviously,



the base DKENCMP protocol (or any previously proposed sors. This is expected, since greater number of processors
cache coherence protocol) would not be able to execute corimeans greater number of messages traveling through the
rectly any of these tests. network in less time, and hence higher number of faults will
occur in less time because the fault rate is independent of
4 core CMP time in our experiments. The execution time overhead per
250 fault is approximately the same and depends mainly on the
I
|
|

values of the timeouts used to detect faults.

The results shown in this work use long timeouts for
detecting faults which have been chosen experimentally to
avoid false positives. Using shorter timeout values would
reduce the performance degradation in presence of faults at
the expense of some false positives which would degrade

p— " - po— p— po— performance in the fault-free scenario.
cholesky ocean raytrace unstructured walersp
8 core CMP Dwzs 250 []500 []1000 [l 2000
2 6. Conclusions
3.25

3.00
2% The rate of transient failures in near future chips will in-
225

200 crease due to a nhumber of factors like the increased scale
1.75 . . .
150 R l of integration, the lower voltages used and changes in the

o0 ] design process. This will create problems for CMPs and
new techniques will be required to avoid errors. One im-
— p -~ p— po— po— portant source of problems will b(_a faults in the intercon-
cholesky e oo R B — nection network used to communicate between the cores,
50 the caches and the memory. In this work, we have shown
400 which problems appearin a CMP system with a token based
350 cache coherence protocol when the interconnection network
is subject to transient failures and we have proposed a new
cache coherence protocol aimed at dealing with those faults
150 ] that ensures the correct execution of programs while intro-
1,001 ducing very small overhead. The main recovery mechanism
0501 introduced by our protocol is thken recreation process
" barmes vomy " e ™ e ™™ ™™ e which takes a cache Iine to a valid state and ensures forward
progress after a fault is detected.
We have implemented our protocol using a full system
Figure 5. Execution time overhead under sev- simulator and we have presented results comparing it to a
eral message loss rates. similar cache coherence protocol previously proposed [10]
which does not support any fault tolerance but is tuned for
performance in CMPs. We have shown that in the fault
As we can see, our proposal can support failure rates offree scenario the overhead introduced by our proposal is be-
up to 250 messages lost per million with an average degra-tween 5% and 11% when no backup buffer is used, and that
dation of 8% in the execution time in a 4-core CMP. In using a backup buffer able to store just one cache line in
an 8-core system, the same loss rate yields 11% averageach L1 cache is enough to reduce it to insignificant levels
slowdown, and in a 16-core CMP the degradation is 15%. for 4, 8 and 16 way CMPs.
Hence, our protocol can support a message loss rate of up We have checked that our proposal is capable of support-
to 250 messages per million without increasing the execu-ing message loss rates of up to 250 messages lost per million
tion time more than 15%. As expected, higher failure rates without increasing the execution time more than 15%. The
create a higher slowdown in the execution but the fault tol- message loss rates used for our tests are several orders of
erance measures of the protocol still allow the program to magnitude higher than the rates expected in the real world,
complete correctly, confirming the robustness of such mea-hence under real world circumstances no important slow-
sures. The slowdown depends almost linearly on the failure down should be observed even in the presence of transient
rate. failures in the interconnection network.
Additionally, figure 5 shows that the slowdown observed  The hardware overhead required to provide the fault-
for a given fault rate increases with the number of proces- tolerance is minimal: just a small associative table at each

0.75
0.50
0.25
0.00




cache to store thmken serial numbeisome extra counters

at each cache, and a very small backup buffer at each L1

cache.
In this way, our protocol provides a solution to transient [10]

failures in the interconnection network with very low over-

head which can be easily combined with other fault toler-

ance measures to achieve full system fault tolerance in fu-

ture CMPs.
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