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Abstract

To provide high dependability in a multithreaded system 
despite hardware faults, the system must detect and cor-
rect errors in its shared memory system. Recent research 
has explored dynamic checking of cache coherence as a 
comprehensive approach to memory system error detec-
tion. However, existing coherence checkers are costly to 
implement, incur high interconnection network traffic 
overhead, and do not scale well. In this paper, we 
describe the Token Coherence Signature Checker 
(TCSC), which provides comprehensive, low-cost, scal-
able coherence checking by maintaining signatures that 
represent recent histories of coherence events at all 
nodes (cache and memory controllers). Periodically, 
these signatures are sent to a verifier to determine if an 
error occurred. TCSC has a small constant hardware 
cost per node, independent of cache and memory size 
and the number of nodes. TCSC’s interconnect band-
width overhead has a constant upper bound and never 
exceeds 7% in our experiments. TCSC has negligible 
impact on system performance. 

1. Introduction

Two trends motivate increased interest in fault toler-
ance for multithreaded shared-memory computer archi-
tectures. First, multithreaded systems—including 
traditional multiprocessors, chip multiprocessors, and 
simultaneously multithreaded processors—have come 
to dominate the commodity computing market. Second, 
the industrial roadmap [7] and recent research [17] fore-
cast increases in hardware error rates due to decreasing 
transistor sizes and voltages. For example, smaller 
devices are more susceptible to having their charges dis-
rupted by alpha particles or cosmic radiation [21]. 

Many researchers have developed effective fault tol-
erance measures for microprocessor cores, using tech-
niques such as redundant multithreading [16, 15, 20] 
and DIVA [2]. However, to provide fault tolerance in a 

multithreaded system, the machine must also be able to 
detect and correct errors in its shared memory system, 
including errors in the cache coherence protocol. 
Whereas we can efficiently detect errors in data storage 
and transmission using error codes, it is far more diffi-
cult to ensure the correct execution of a complex, dis-
tributed coherence protocol with multiple interacting 
controllers. To provide comprehensive, end-to-end error 
detection, recent research has explored online (dynamic) 
checking of cache coherence. A coherence checker can 
either operate stand-alone [5,4] or as an integral part of 
an online memory consistency checker [12, 13] that also 
detects errors in the interactions between the memory 
system and the processor cores. Once a coherence 
checker detects an error, the system can recover to a pre-
fault state using one of several existing recovery mecha-
nisms [19, 14]. Coherence checking is a powerful error 
detection mechanism, but existing coherence checkers 
are costly to implement, introduce high interconnection 
network traffic overhead, and do not scale well to large 
systems. These costs and limitations preclude their use 
in low-cost commodity systems.

In this work, we develop the Token Coherence Signa-
ture Checker (TCSC), which is a low-cost, scalable 
alternative to prior cache coherence checkers. It can be 
used by itself to detect memory system errors, or it can 
be used as part of a memory consistency checker [12, 
13]. With TCSC, every cache and memory controller 
maintains a signature that represents its recent history of 
cache coherence events. Periodically, these signatures 
are gathered at a verifier which determines if an error 
has occurred. The cost advantages of signature-based 
error detection come at the expense of an arbitrarily 
small (but non-zero) probability of undetected errors.

This paper makes three main contributions:
• TCSC is the first signature-based scheme that com-

pletely checks cache coherence and can detect all 
types of coherence errors with arbitrarily high 
probability. The use of signatures significantly low-
ers hardware costs and interconnection network 
traffic compared to previous coherence checkers. 
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• TCSC is the first coherence checker that scales to 
large systems. TCSC has a constant hardware cost 
per memory and cache controller that is indepen-
dent of cache and memory size and the number of 
nodes in the system. TCSC’s interconnection net-
work bandwidth overhead has a constant upper 
bound and never exceeds 7% in our experiments.

• TCSC applies to both snooping and directory proto-
cols, and it is the first checker of any kind for Token 
Coherence [11].

In Section 2 we introduce TCSC in the context of 
online checking of Token Coherence [11]. In Section 3
we show how the TCSC mechanism can be applied to 
any invalidation-based snooping or directory coherence 
protocol by reinterpreting the protocol in terms of Token 
Coherence. We discuss implementation issues in 
Section 4. Section 5 analyzes TCSC’s error detection 
capabilities. Section 6 evaluates the hardware costs and 
interconnection network bandwidth overhead of TCSC. 
In Section 7 we compare TCSC to related work in 
coherence checking. We conclude in Section 8.

2. Token Coherence Signature

The abstract idea of TCSC is to compute two signa-
tures at every node (i.e., every memory controller and 
cache controller) for each block the node has held. One 
signature represents the history of cache coherence 
states, and the other represents the history of data val-
ues. Every node periodically sends its signatures to a 
verifier that can then determine if at any point in time 
any block was in conflicting coherence states or if data 
did not propagate correctly. For ease of explanation, we 
start by checking Token Coherence [11], which employs 
a counting scheme to ensure coherence rather than the 
discrete states in traditional snooping and directory pro-
tocols. The use of a countable quantity allows us to 
express coherence states in terms of a simple mathemat-
ical equation and naturally leads to a formula for a 
coherence state signature. We first develop a simple per-
block state signature (Section 2.1), and then we extend it 
to encompass all blocks of memory (Section 2.2). 
Lastly, we show how to use a nearly identical signature 
to check data propagation (Section 2.3).

2.1. Coherence State Signature for Single Block

Token Coherence (TC) [11] is a low latency cache 
coherence protocol for unordered interconnects. Like 
traditional snooping and directory protocols, TC 
enforces the single-writer/multiple-reader property. 
However, instead of block states and transition rules, TC 

uses the following four invariants to coordinate cache 
accesses:
(1)  At all times, each block has T tokens in the system, 
one of which is the owner token.
(2)  A processor can write a block if it holds all T tokens 
for that block. 
(3)  A processor can read a block if it holds at least one 
token for that block. 
(4)  If a coherence message contains the owner token it 
must contain data.

These invariants have been formally proven to guar-
antee coherence in the fault-free scenario [3], and their 
simplicity makes them attractive for online checking. 
Each cache controller can locally check Invariants 2 and 
3 by performing a redundant token check for every load 
and store. Nodes can also locally check Invariant 4 
when receiving coherence messages. However, nodes 
cannot independently check Invariant 1, because it 
describes a global property of the system.

Rather than checking Invariant 1 directly, it is equiv-
alent and more efficient to check changes in the token 
counts (for both owner and non-owner tokens) rather 
than the absolute number of tokens held. In all further 
discussion, we use T to represent either the number of 
owner tokens per block (T=TO=1) or the number of 
non-owner tokens per block (T=TN), and we replace 
Invariant 1 with three sub-invariants:
(1a) Initially, there are T tokens for block B in the sys-
tem.
(1b) A node can never hold less than 0 or more than T
tokens for block B.
(1c) If a node sends (receives) Nt tokens for block B at 
time t, then another node must receive (send) the same 
number of tokens Nt for block B at the same time t.

Invariant 1c assumes instantaneous transfers of 
tokens between nodes, although in practice tokens spend 
non-zero time in transit. To satisfy the invariant despite 
these latencies, we consider the receiving node to pos-
sess the tokens during the entire transmission. To accu-
rately account for the transmission time in its token 
history, the receiver must know when the tokens were 
sent. For this purpose, nodes timestamp each token-car-
rying outgoing message with the time t of sending.

When we mention tokens being sent at a given 
“time”, we are referring to the logical time at which this 
event occurs. For purposes of TCSC, logical time can be 
any time base that respects causality and one additional 
constraint: it allows a node to send or receive only a sin-
gle message per logical time step. We will discuss the 
details of how we maintain logical time in Section 4.1.
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The original Invariant 1 can now be checked by 
ensuring the three Invariants 1a, 1b, and 1c. Invariant 1a 
can easily be checked because initially all tokens are 
owned by the memory controllers. Each node can 
locally check Invariant 1b. For checking Invariant 1c, 
each node computes two token count signatures for B to 
record exchanges of owner tokens, TCStoken,owner(B), 
and non-owner tokens, TCStoken,non(B), during the 
checking interval I. For brevity, in the remainder of the 
paper, we use TCStoken(B) to refer to both signatures. 
For each arrival/departure of tokens for block B, the 
node updates TCStoken(B) to reflect the number of 
tokens (Nt) that arrived/departed at time t, where t is the 
time at which the tokens were sent (for both arrivals and 
departures) and Nt is positive for arrivals and negative 
for departures, according to the following equation:

TCStoken B( ) Nt T 1+( )t⋅
t I∈
∑=

Periodically, every node sends these two token signa-
tures (for owner and non-owner tokens) to a central ver-
ifier. If the verifier determines that the signatures for 
both owner and non-owner tokens sum to zero, then the 
number of tokens for B in the system must be constant 
for any time t included in the signature. To ensure that 
B’s state was updated correctly, a node does not obtain 
Nt directly from the message, but instead computes it by 
comparing the number of tokens held before and after 
processing the message.

As presented thus far, there are two challenges in 
implementing this scheme: coordination of signature 
collection and signature growth. Collecting signatures 
from all nodes is easiest to coordinate by transmitting 
signatures at regular intervals. However, because token 
receivers use the timestamps on incoming messages to 
update their signatures, a node must not send its signa-
ture to the verifier until it has received all messages sent 
to it before the collection time. For this purpose, we add 
a grace period after each collection time during which 
the nodes wait for in-flight messages to arrive. During 
the grace period, token events that occur after the collec-
tion time are recorded in a secondary signature, because 
they must not affect the signature that will be sent dur-
ing collection. Once the original signature is sent to the 
verifier, the new collection time is determined and the 
secondary signature becomes the new primary. This 
scheme is guaranteed to be correct only if no message 
lingers in the interconnect longer than the grace period. 
Thus, the grace period specifies a fixed time limit for 
message delivery, and false positives (detections of 
“errors” that did not occur) can occur if delivery takes 
too long. This is not a major issue for two reasons. First, 
we expect the checking intervals to be orders of magni-
tude larger than the average delivery time, and the grace 

periods can be as long as the checking interval or longer 
if we use more than one secondary signature. Second, a 
severe delay in message delivery can legitimately be 
considered a fault. Any checking scheme that does not 
limit the maximum message delivery time will also be 
unable to detect dropped messages, because dropping a 
message is equivalent to an arbitrarily long delay.

The second implementation challenge is that storage 
required for the sum computed in TCStoken(B) grows by 
log2(T+1) bits at every token transfer and quickly 
becomes very large. Because no lossless compression 
scheme can guarantee a smaller signature or bound the 
growth to a fixed size, we use hashing to map the origi-
nal unbounded signature to a smaller, fixed size set of 
numbers. To be able to check signatures by summing 
them, the hash of a sum of two signatures must be easy 
to compute from the sum of the signature’s hashes. For-
tunately a simple modulo computation suffices:

TCStoken B( ) Nt T 1+( )t⋅
t I∈
∑ mod n=

With this modification the signature size is now con-
stant, but multiple distinct token histories can poten-
tially result in the same signature and lead to false 
negatives (undetected errors). However, with a suffi-
ciently large n, the probability of false negatives can be 
made arbitrarily small.

2.2. Coherence State Signature for All Blocks

Even with a constant signature size, maintaining and 
verifying one signature for every cache block is prohibi-
tively expensive. Low-cost verification requires a con-
stant-size, per-node signature that covers all blocks. The 
easiest way to obtain a single signature is to sum up the 
token signatures for all blocks (i.e., TCStoken = 
ΣBTCStoken(B)), but such a signature would not detect 
tokens being accounted to an incorrect block address. 
Instead, we take advantage of the fact that the logical 
time base we use allows only a single message to be sent 
or received per node per logical time step, and the Nt 
tokens sent or received by a node at time t therefore all 
belong to the same block. Thus, a single signature can 
be used for multiple blocks, if we check that the signa-
ture refers to tokens for the same block for any time t. 
This is done by computing separate signatures for block 
addresses (TCSaddr,owner and TCSaddr,non) similar to the 
token signatures, except we replace the token counts 
(Nt) with block addresses (At), and we replace both TO
and TN with the highest address in the address space, 
max{A}. If, due to a fault, received tokens are attributed 
to a different address than the address for which they 
were sent, the address signatures will not sum to zero 
and a coherence error will be detected.
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To provide error detection guarantees (see Section 5), 
TCSC requires that max{A} be smaller than n, which 
could be a problem for systems with very short check-
sums (small n) and large address spaces. In these sys-
tems, we can replace At with a hash of the address, and 
we can replace max{A} with the maximum hash value. 
However, today’s CPUs typically use fewer than 64 bits 
for physical addresses and thus a modest 64-bit check-
sum will be sufficient to avoid address hashing. 

2.3. Data Propagation Signature

Up to this point, all of our detection efforts focused 
on checking coherence states, but to truly check coher-
ence our mechanism must also check data propagation. 
To clarify, we extend Invariants 2 and 3.
(2’)  A processor can write a block if it holds all T
tokens for that block. Between receiving the Tth

 token 
and the first write to the block, it must contain data 
identical to the data after the last write by the previous 
owner.
(3’)  A processor can read a block if it holds at least one 
token and holds data identical to the data at the block’s 
current owner.

These revisions to Invariants 2 and 3 demand that all 
readers observe the same data values and that modifica-
tions made by a writer are passed on to all future read-
ers, i.e., data is stored and propagated correctly. We 
require EDC on caches and memories to detect corrup-
tion during storage. TCSC checks data propagation by 
computing a data signature, TCSdata, that is identical to 
the signatures developed in Sections 2.1.-2.2., except 
that Nt or At is replaced with the CRC checksum of the 
transmitted data (Dt), and T or max{A} is replaced by the 
maximum CRC value (65535 in our implementation).

state

token
count

address

TCStoken,owner =[ΣNt (To+1)t] mod n

TCStoken,non =[ΣNt (TN+1)t] mod n

TCSaddr,owner =[ΣAt (max{A}+1)t] mod n

TCSaddr,non =[ΣAt (max{A}+1)t] mod n

TCSdata=[ΣDt(max{CRC}+1)t] mod n
Figure 1. Summary of TCSC signatures. 

data

 

2.4. Summary and Example of Operation

TCSC maintains 5 signatures at every node, as 
shown in Figure 1. 

P1 P2 P3

receive 1 token
for addr 6 at t=2

receive 1 token
for addr 3 at t=5

send 1 token
for addr 6 at t=2
send 1 token
for addr 2 at t=5

TCStoken,non = 1x52 + 1x55 - 1x52 - 1x55 = 0 --> OK
TCSaddr,non = 6x92 + 3x95 - 6x92 - 2x95 = 95 --> error

P1 P2 P3

Figure 2. Example TCSC Operation. The 
error is highlighted in bold. Only non-owner 
tokens are transferred, TN=4 and max{A}=8.
TCSdata, TCStoken, owner, and TCSaddr, owner omitted for clarity

Two pairs of signatures—token 
count and address—are used to detect violations of the 

Single-Writer/Multiple-Reader property and another 
signature is used to ensure correct data propagation. The 
former signatures come in pairs to handle the two types 
of tokens (owner and non-owner) introduced in the TC 
invariants. Periodic checking of the sums of these signa-
tures allows the verifier to detect violations of any of the 
TC rules. As we will mathematically show in Section 5, 
TCSC can detect any single error and a large class of 
multiple error scenarios.

We provide an illustrative example of a simple error 
scenario in Figure 2. It shows how TCSC can detect 
when tokens arrive for a different address than that for 
which they were sent, which violates Invariant 1c.

3. Mapping MOSI to Token Coherence

Token Coherence is elegant and might become popu-
lar in the future, but it is not yet used in commercial sys-
tems. Almost all current systems use some variant of 
invalidation-based snooping or directory coherence pro-
tocols. In these protocols, a block can be in one of 4 dis-
tinct states: Modified, Owned, Shared or Invalid. A 
snooping or directory protocol can be expressed in 
terms of tokens, if we view all MOSI states as named 
token counts and interpret state transitions as token 
transfers. This re-interpretation lets us express the origi-
nal protocol as a TC protocol without adding redundant 
state. We do not consider the Exclusive state in this 
work, because it had little impact on the performance of 
our coherence protocols. Support for the E-state in TC 
requires a dirty flag in addition to the token count as 
well as some modification to the TC invariants [10] that 
do not affect the basic operation of TCSC.

Table 1 shows the token values assigned to each state 
at both the cache and memory controllers. Any state 
transition will change the token value of a block at a 
given node, and this change must be offset by another 
change in the opposite direction occurring at the same 
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Table 1. Cache and memory states

Cache Memory

Non-Owner 
Tokens

Owner 
Tokens

Non-Owner 
Tokens

Owner 
Tokens

M TN 1 0 0

O 0 1 TN-#Sharers 0

S 1 0 TN-#Sharers 1

I 0 0 TN 1

time. The implicit tokens consumed and produced by 
state transitions are used to compute the signatures in 
the same way as tokens exchanged in TC. As with TC, 
we use a logical time base, and tokens can be tempo-
rarily in-flight in the interconnect.

The implicit tokens represented by the MOSI states 
are no different from the ones maintained explicitly in 
Token Coherence. Thus, if the invariants are observed, 
the system is guaranteed to be coherent. Invariants 2 and 
3 are obeyed if no reads are performed in the Invalid 
state and writes are limited to the Modified state. Cache 
controllers can locally check these two invariants by 
redundantly checking cache states during accesses. 
Invariant 4 can be checked by using the data signature 
described in Section 2.3 to ensure that no node enters an 
owner state without receiving data from the previous 
owner. Invariant 1 is checked by computing the token 
values of each transition and recording them in the TCS. 
Violations of Invariant 1 caused by corruption of state 
information are detected using EDC on states and tags.

Although the basic mapping of MOSI to TC is sim-
ple and does not require additional resources, there are 
three intricacies that complicate this approach. First, 
most MOSI protocols allow caches to silently evict 
Shared (read-only) blocks. TC does not support silent 
evictions, because Invariant 1 requires tracking all 
tokens at all times. Therefore, in TC, a cache that evicts 
a Shared block must transfer its implicit token(s) to the 
home node via a Put-Shared (PUTS) cache coherence 
request. Because TCSC verifies MOSI protocols by 
mapping them to TC, it also requires explicit PUTS 
messages for evicted blocks. These additional requests 
are the primary source of TCSC traffic overhead. 

Second, in the Shared and Owned states, the number 
of tokens held by the memory controller is determined 
by the number of sharers for that block. This informa-
tion is not available in snooping systems and thus must 
be added to implement TCSC in snooping systems. 
Directory systems that can remember only a limited 
number of sharers before falling back to broadcast also 
need an additional field to store the number of sharers. 
The storage overhead in directory systems is much 

smaller, because the address tags are already present and 
only log2(#nodes) bits must be added.

Third, besides the four stable MOSI-states, high-per-
formance coherence implementations allow a (possibly 
large) number of transient states to handle split transac-
tions and other optimizations. Each of these states must 
also be assigned a token value and be treated like any 
stable state with regard to signature computations. We 
do not present these mappings, because they are highly 
implementation-specific and our optimized protocol 
implementations contain close to 40 transient states. 
However, we can trivially derive the token values of 
most transient states from stable states. For example, 
after a Get-Shared request is sent for an Invalid (no 
tokens) block in a directory protocol, that block will be 
in a transient state until a response from the directory 
arrives. The transient state also represents zero tokens.

4. Implementation Issues

Signature computation does not require complex 
structures, occurs off the critical path, is latency toler-
ant, and needs to be performed only at interconnect 
speed rather than CPU speed. These factors make the 
implementation of TCSC simple and cheap, but some 
care is still needed to avoid unnecessary hardware costs 
and performance penalties. We describe the implemen-
tation of logical time (Section 4.1), the addition of 
PUTS requests to an existing coherence protocol 
(Section 4.2), and the implementations of signature 
computation (Section 4.3) and signature verification 
(Section 4.4). 

4.1. Implementing Logical Time

TCSC requires a discrete time base to order its histo-
ries of token transfers and data transfers. We use logical 
time, which is a time base that is both causal and locally 
monotonically increasing in physical time. Similar to 
Lamport’s original logical time base [8], all nodes main-
tain a local clock counter and timestamp all outgoing 
messages that contain data or transfer access permis-
sions. Clocks are updated according to two rules. First, 
upon sending or receiving a message, increase the clock 
by one. Second, if a message is received with a times-
tamp greater than the local time, set the clock to the 
message timestamp plus one and consider the message 
to be received at the updated time. The cost of imple-
menting this time base is the addition of a short (16-bit) 
timestamp to the message header. TCSC already 
requires this field in the header for accounting of tokens 
and therefore providing logical time has no extra cost. 
TCSC does not timestamp request messages but only 
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token-carrying messages, because the coherence invari-
ants address only how or when tokens move between 
nodes, not how or when those movements were initi-
ated. Thus, the time of requests is irrelevant for check-
ing the invariants.

For systems with snooping coherence, we use an 
optimized logical time scheme in which every node 
increments its logical time whenever it observes a 
broadcast coherence request. Token transfers between 
nodes happen instantaneously, because the sender of a 
broadcast request and all destinations see the request at 
the same logical time. This effect makes message times-
tamps unnecessary, leading to reduced overhead.

4.2. Optimizing Shared Writebacks

TCSC disallows silent evictions of cache blocks. 
Thus, evictions of Shared blocks—which are generally 
silent for snooping and directory protocols—now 
require PUTS transactions that increase interconnect 
traffic and controller occupancy. However, we minimize 
this overhead by piggy-backing each PUTS onto a sub-
sequent coherence request to the same home node. A 
PUTS of block A is issued only when block A is evicted 
from the cache, which occurs only after a miss to 
another block, B, that maps to the same cache set. Thus, 
the PUTS of A is immediately followed by a Get-Shared
(GETS) or Get-Exclusive (GETX) coherence request for 
B. Both the PUTS and GET (either GETS or GETX) 
pertain to the same cache set and thus have a large num-
ber of common address bits. Hence, we can piggy-back 
the PUTS onto the GET in systems in which (a) all bits 
used to select the block’s home node are also used to 
select the cache set, or (b) all requests are broadcast. 
Most CPUs use the least significant bits (above the 
block offset bits) for set selection. Using bits above the 
set selection bits for home node selection is only neces-
sary for large numbers of nodes or very coarse interleav-
ing of addresses mapping to different nodes, both of 
which are uncommon. For example, in an 8-node sys-
tem with a 2MB 4-way cache, any interleaving of 64KB 
or finer will allow piggy-backing. With piggy-backing, 
the PUTS does not require a separate message header 
and needs to hold only the address bits not among the 
common bits. In our simulated system, this reduces the 
cost of a PUTS from 8 bytes (4 header+4 address) to 3 
bytes (address-8 shared bits) added to the GET.

We can further reduce the bandwidth used by PUTS 
messages by piggy-backing an implicit PUTS onto the 
GET request. Instead of sending the address of the block 
that was evicted, we send the cache way of the evicted 
block and let the directory determine the address. To 
make this optimization work, the memory controller 

must remember, for each sharer of a block, in which 
cache way the block resides. The cache controller, 
which typically knows the way in which a block will 
reside before a GET request, augments each GET 
request with the target cache way using log2(#ways) bits 
per request. Upon reception of a GET request, the mem-
ory controller can use the set bits of the full requested 
address and the cache way to determine which block (if 
any) was held in that location at the requestor’s cache 
and generate an implicit writeback. The cost for the 
reduced traffic overhead is the additional memory con-
troller storage for remembering cache way information. 

4.3. Implementing Signature Computation
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Figure 3. Implementation of TCS computation
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Signatures are computed in separate TCS units, as 
shown in Figure 3, to minimize the impact on the nor-
mal operation of the cache and directory controllers.
The TCS unit computes signatures based on the logical 
times and coherence states it receives from the network 
interface and coherence controller (for either cache or 
memory), respectively. With the exception of infrequent 
transmissions of the computed signature to the verifier, 
there is no feedback from the TCS unit into the rest of 
the system. Thus, as long as signature computation 
throughput exceeds the arrival rate of coherence mes-
sages, TCS computation does not affect message pro-
cessing latency or throughput. 

The memory controller’s TCS unit can also be 
designed to process PUTS messages (in both snooping 
and directory systems) in order to reduce contention for 
the memory controller itself. For snooping systems and 
directory systems that do not maintain full sharer bit-
masks (e.g., sparse directories), our TCSC implementa-
tion has already added a table for tracking the number of 
sharers of each block. The added table is accessed only 
by the TCS unit, so the TCS unit can process PUTS 
messages without interfering with the memory control-
ler. For directories that do maintain full sharer bitmasks 
(and thus know the sharer counts without added tables), 
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it is generally preferable to just process the PUTS mes-
sages at the memory controller. Full directories do not 
scale and are used only in small systems, in which the 
extra PUTS contention for the memory controllers is not 
likely to be a problem. 

4.4. Implementing Signature Verification

The signature verifier is a centralized component and 
could be a potential bottleneck. In small systems, this is 
not an issue, because signature collections are infre-
quent and do not cause large amounts of traffic. In large 
systems, multiple verifiers, interleaved by address range 
or time interval, can be used to avoid contention for the 
network links near a central verifier. To further increase 
scalability, signatures can be aggregated for groups of 
nodes by adding the signatures locally and sending their 
sum to the verifier. Aggregation can also be done hierar-
chically to scale to extremely large systems.

The duration of the verification interval in TCSC is 
not resource-constrained because all storage require-
ments and computation times are constant. Verification 
intervals must be shorter than the recovery period of the 
checkpoint mechanism used, but can otherwise be cho-
sen freely. In general, short verification intervals will 
slightly increase bandwidth consumption due to more 
frequent signature collections and shorten the grace 
period for delayed messages. Long verification intervals 
increase the probability of multiple error scenarios.

5. Analysis of Error Detection Capabilities

The signature hashing we use to obtain a constant 
size signature can lead to aliasing, i.e., two distinct 
token histories mapping to the same signature. Aliasing 
can cause false negatives (undetected errors), but we can 
minimize this probability by choosing the signature con-
stants n and T appropriately. The same arguments apply 
for the address and data signatures, if we replace T with 
max{A} or max{CRC}, so we just focus here on the 
token signatures. In this section we analyze the error 
coverage provided by TCSC. Computing the exact prob-
ability of false negatives would require knowledge 
about the distribution of errors in the system, which var-
ies greatly from system to system. 

5.1. Analysis of Single Error Detection

Because hardware errors in microprocessors are very 
infrequent, we now make the common assumption of 
single error scenarios, i.e., only a single error occurs 
within a checking interval. For single errors, we can 

eliminate the possibility of false negatives by careful 
selection of n and T. 

We discuss the only four single error scenarios possi-
ble in TCSC: a transaction with incorrect token count, 
incorrect time, incorrect address, or incorrect data. All 
low-level single errors manifest themselves as one of 
these scenarios. Because errors in the address or data 
are detected using the same equation as errors in token 
transfers, we discuss only two scenarios in detail: incor-
rect token count and incorrect time.

For the first scenario, assume that an error causes a 
node at time t to record the arrival or departure of Nt’
tokens when Nt tokens were actually transferred, thus 
violating Invariant 1. In a single error scenario, only the 
summands for time t, Nt T 1+( )t⋅  and N′t T 1+( )t⋅ , dif-
fer between the computed signature and the signature 
for the error-free scenario. Thus, a false negative occurs 
only if Nt T 1+( )t mod n⋅ N′t T 1+( )t mod n⋅= . We can 
rewrite this as N′t Nt–( ) T 1+( )t mod n⋅ 0=  or 

k∃ : N′t Nt–( ) T 1+( )t k n⋅( )=⋅ . A simple divisibility 
argument shows that this will never be the case if we 
choose T and n such that T+1 and n are coprime. The 
right side of the equation is obviously divisible by n; 
therefore the left side must also be divisible by n to sat-
isfy the equation. Because (T+1) and n are coprime, no 
factors of (T+1)t and n cancel out and therefore 

N′t Nt–( )  must be divisible by n. Because N′t Nt–( ) 0≠ , 
this is possible only if N′t Nt– n≥ . Because no more 
than T tokens can be transferred per time step, 
N′t Nt– T≤ . Therefore, if we choose T and n such that 

T n<  and GCD T 1 n,+( ) 1= , then TCSC will detect any 
single incorrect token count. The same argument can 
also be used to show that TCSC can detect any burst of 
incorrect token counts up to a length of nlog

T 1+( )log
-------------------------  time 

steps. 
The second single error scenario is the shift of a 

token transfer supposed to occur at time t to a different 
time t’. A false negative can occur only if the terms for 
the correct and incorrect transfer are equal: 
Nt T 1+( )t mod n⋅ Nt T 1+( )t ′ mod n⋅= . Because 

0<Nt<n, we can simplify this equation to 
T 1+( )t t ′– mod n 1= . By setting c=(T+1) and e=t-t’, 

we obtain the equation ce mod n 1= . The smallest such 
e is called the multiplicative order of c modulo n. The 
multiplicative order of (T+1) mod n therefore deter-
mines the smallest value of (t-t’) that can lead to a false 
negative, i.e., the maximum time shift that is guaranteed 
to be detected. If we choose n such that the multiplica-
tive order of (T+1) mod n is larger than the checking 
intervals, TCSC detects any single delayed transfer.

In our experiments we used n=264, T=#processors, 
max{A}=240, and max{CRC}=216. All constants are 
powers of two. Thus, n is coprime to T+1 (for T>1), 
7



max{A}+1, and max{CRC}+1. We empirically checked 
for all processor configurations that the multiplicative 
orders of T+1, max{A}+1, and max{CRC}+1 modulo n
are larger than 216-1, the maximum t representable by 
the 16-bit timestamps used.

5.2. Analysis of Multiple Error Detection

When multiple errors occur during a checking inter-
val, there is a non-zero probability that TCSC will not 
detect them. For any given multiple error scenario (e.g., 
two corrupted messages), detectability depends on the 
exact history of token transactions during the checking 
interval. The exact probability of false negatives 
depends on the error distribution in the system, but for a 
large number of uniformly distributed incorrect token 
transactions it converges to n-1.

5.3. Experimental Validation

In addition to this analytical evaluation of error cov-
erage and error detection latency, we also experimen-
tally tested TCSC’s error detection capabilities using the 
simulation infrastructure and benchmarks described in 
Section 6. We randomly injected various errors—cor-
rupted, dropped, rerouted and duplicated messages, 
incorrect cache transitions, corrupted cache state—into 
the system and continued simulation until the next sig-
nature collection was complete. TCSC detected all 
errors and the detection latency was about half the 
checking interval, as expected. It is infeasible to experi-
mentally evaluate the probability of undetected errors 
because, for reasonably large signatures (64-bits or 
more), undetected errors are so infrequent that they 
would require extremely long simulation runs to be 
measurable. We do not experimentally evaluate error 
detection latency, because it is determined entirely by 
the frequency at which the signatures are collected. 

6. Evaluation

We now evaluate TCSC in terms of its impact on 
interconnection network traffic (Section 6.1), perfor-
mance (Section 6.2), and hardware cost (Section 6.3). 

6.1. Interconnection Bandwidth Overhead

Interconnection network bandwidth overhead is the 
most important cost of TCSC, because it affects system 
cost and performance overhead. We first present a theo-
retical analysis of the worst-case bandwidth overheads. 
and then compare them to experimental results.

6.1.1. Worst-Case Analysis
TCSC has a bounded worst-case overhead per coher-

ence transaction that depends on the coherence protocol. 
A coherence transaction comprises all of the messages 
required to obtain access to a block and dispose of it 
later. The minimum costs for obtaining access consist of 
a GET request and the transfer of the data itself. The 
cost of disposing a block can include a PUT request or 
the cost of the Invalidate request received by the sharer 
and the following acknowledgment. All computations 
assume the same 64-byte blocks and 8-byte headers 
used in our simulations. 
Token Coherence. TCSC’s overhead is caused by the 
2-byte timestamp on every token-carrying message 
(Data, PUT, and Ack). Every coherence transaction 
involves exactly two token-carrying messages—one to 
receive the tokens and one to give them away—for a 
total of 4 bytes. The worst case overhead is therefore 
4/(size of smallest transaction). A minimum transaction 
requires a GET request, data transfer, and PUTS request, 
totalling 8+72+8=88 bytes in a system without TCSC. 
Thus, the worst case overhead is 4/88 (4.54%).
Snooping. No timestamps are added to the messages 
and all bandwidth overhead is caused by PUTS mes-
sages. The worst case is a PUTS in every transaction, 
and the worst-case overhead is (size of PUTS)/(size of 
minimum transaction). Determining the size of a trans-
action is problematic because it involves broadcast 
requests and therefore depends on the network topology. 
Because PUTS requests are not broadcast and therefore 
not affected by topology, a physically shared bus with 
“free” broadcasts maximizes TCSC’s snooping over-
head and will be used as basis for this computation. A 
minimum transaction consists of a GET request and the 
data message, requiring a total of 80 bytes to be trans-
ferred in a system without TCSC. A single PUTS 
requires an 8-byte message and causes a worst-case 
overhead of 8/80 or 10%. Piggy-backing of PUTS 
requests decreases the worst-case overhead to 5%.
Directory. Directory protocols require both additional 
PUTS messages and timestamps on several messages. 
Consequently they have a worst-case overhead of 12/80 
or about 15%, which is larger than the worst case for 
snooping or TC. Piggy-backing of PUTS requests 
decreases worst-case overhead to 10%.

TCSC requires additional bandwidth to transmit sig-
natures from the different nodes to the signature verifier. 
This happens so infrequently that the additional traffic is 
negligible compared to the overheads described above. 
Because both of our logical time bases increment time 
based on message transmissions, a fixed minimum num-
ber of messages and bytes is guaranteed to be transmit-
ted between signature collections. Our simulated 8-
8



processor systems (TC, snooping, and directory) have a 
worst case 0.072% overhead for signature collection. 

Table 2. Simulated system
System 8-node SMP with Token Coher-

ence, Snooping and Directory

Network Topology Torus for Token and Directory; 
Broadcast tree for Snooping

Network Link BW 5GB/s

CPU 2GHz, 4-wide superscalar, out-of-
order SPARCv9

Cache 32KB, 4-way L1 I/D; 2MB, 4-way 
L2 Unified

Memory 2GB

Token Signature 64bit signature (T=#CPUs, n=264) 
16bit timestamp, 20000 logical 
timestep verification interval

Message Size 8B Control Messages; 72B Data 
Messages (8B Header+64B Pay-
load)

6.1.2. Experimental Evaluation
This section describes simulation experiments we 

performed to determine TCSC’s bandwidth overheads 
for various system configurations. We used a modified 
version of the GEMS simulation toolkit [9] that accu-
rately models the timing of the processors, coherence 
protocols, etc., of the 8-node multiprocessor systems 
described in Table 2. Our benchmarks are several com-
mercial applications from the Wisconsin Commercial 
Workload Suite [1]. To handle the natural variability in 
multithreaded workloads, we simulated each system 
configuration ten times. Error bars in our figures repre-
sent 95% confidence intervals. 

TCSC’s bandwidth overhead depends on the sizes of 
the timestamps and cache blocks used. Because TCSC 

requires the transmission of a constant number of bytes 
per coherence transaction, larger blocks reduce the over-
head because more data is transferred per transaction. 
The size of the timestamps is determined by the fre-
quency of signature checking and can be chosen by the 
designer. We chose a checking interval of 20,000 logical 
time steps, which allows TCSC to detect errors in time 
to recover using a backward error recovery mechanism 
such as SafetyNet [19] or ReVive [14]. It is also long 
enough to avoid false positives due to waiting for in-
flight tokens. All results show the bandwidth overhead 
of a system with TCSC over the unprotected, baseline 
protocol (Overhead=BWTCSC/BWbase-1.0). We present 
results for three systems: TC with the TokenB perfor-
mance protocol [11], snooping, and directory
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Figure 4. TCSC traffic overhead per 
coherence transaction

Figure 5. Total number of coherence 
transactions with TCSC
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The per-transaction bandwidth overheads shown in 
Figure 4 are significantly lower than the worst-case 
numbers. TC is closest to its worst case, with an average 
of about 2.5%, but it also has the most consistent 
amount of additional traffic and very low overhead in 
absolute terms. Snooping stays far below its worst case 
overhead and overall generates the least amount of addi-
tional traffic, with values ranging from about 1% to just 
over 2%. This indicates that most blocks in the unpro-
tected system are not evicted silently, but either require 
writebacks or are invalidated by requests from other 
caches. As expected, directory incurs the highest over-
head, but it does not come close to its worst case. Over-
head for directory ranges from 5% to 7%, indicating that 
the kind of minimal length transactions used to compute 
worst-case overhead are infrequent. 

Despite low per-transaction overheads, the total 
overhead of TCSC could be worse if more coherence 
transactions were needed to finish a benchmark run. 
TCSC does not directly impact the number of coherence 
transactions, but multithreaded workloads are timing-
sensitive and even small changes can impact runtime. 
9



Figure 5 shows that TCSC has no statistically signifi-
cant impact on the number of coherence transactions.
TCSC’s total bandwidth overhead is the product of the 
number of transactions and the per-transaction over-
head. The standard deviation of this product is larger 
than the expected TCSC overhead, which would make 
the overhead difficult to quantify accurately. Therefore, 
we use the more stable overhead-per-transaction metric 
for 
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Figure 6. TCSC overhead vs. L2 cache size Figure 7. TCSC overhead vs. number of CPUs

all bandwidth overhead figures. 
Figure 6 shows the impact of L2 cache size on 

TCSC’s per-transaction bandwidth overhead. As 
expected, the overheads for snooping and directory 
decrease with larger caches, because PUTS requests are 
less frequent due to fewer capacity misses. For TC, 
where PUTS requests are also necessary without TCSC, 
there is still a slight downward trend, because the rela-
tive number of high-overhead GETS-PUTS transactions 
compared to other transactions is reduced. 

Figure 7 shows TCSC’s ability to scale to systems 
with varying numbers of processors. For snooping and 
TC, the relative TCSC per-transaction overhead drops 
when we add more processors to the system, because 
both of these protocols use broadcast requests that cause 
overall transaction costs to rise whereas the per-transac-
tion cost for TCSC remains constant. This effect is not 
present in directory, which has similar overhead for all 
configurations. Although the scalability experiments 
were limited to 16-processor systems by the simulation 
environment, these results along with the worst-case 
analysis indicate that TCSC can scale to larger systems.
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Figure 8. PUTS overhead at memory 

Finally we assess the message processing overhead 
at the memory controllers due to PUTS messages, 
assuming for now no offloading of PUTS processing to 
the TCS unit. Figure 8 shows the request throughput at 
the memory controllers (normalized to Unprotected) for 
snooping and directory. TC is not shown because PUTS 
messages already exist in the base protocol. In our simu-
lated system, even the maximum overhead of 30% did 

not negatively impact performance (see Section 6.2), 
because the controller throughput was sufficient to han-
dle the increased load without adding latency. If the 
overhead causes controller throughput to become a lim-
iting factor, PUTS processing can be offloaded onto the 
TCS unit as discussed in Section 4.3.

6.2. Performance Overhead

Our cycle-accurate timing experiments (graphs not 
shown due to space constraints) show no statistically 
significant (>1σ) slowdown when running with TCSC. 
This result is not surprising, because signature computa-
tion is off the critical path for both cache and directory 
controllers and does therefore not impact processing 
latency or through-put for coherence messages. The 
added interconnection network bandwidth consumption 
is too small too severely affect benchmark runtimes.

6.3. Hardware Costs

TCSC requires the addition of one or more signature 
verifiers, as well as hardware at each memory and cache 
1
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controller to compute and store the signatures. The 
amount of storage required for the 5-part signature 
depends on the choice of n. Practical values for n will be 
in the range of 232 to 2128, thus requiring a total of 20 to 
80 bytes of storage per controller. This storage require-
ment is independent of the cache size.

The computation of the signatures may appear com-
plex because it involves both exponentiation and mod-
ulo computation with large numbers. However, careful 
selection of n and T (and max{A} and max{CRC}) 
enables simple hardware implementations. Within the 
constraints discussed in Section 5, we can freely choose 
the constant n and the number of tokens per block (as 
long as the number of tokens per block is greater than or 
equal to the maximum number of sharers). Therefore, 
the constant TN is only required to be greater than or 
equal to the number of possible sharers. Thus, we can 
use cheap bit manipulations (bit-shift for exponentiation 
or bit-wise AND for modulus) for one of the two compu-
tations by picking either (T+1) or n to be a power of 
two. Because the two constants must be coprime, we 
cannot pick both of them to be powers of two. If n is not 
a power of two, we can choose it to be a Mersenne or 
similar number that allows efficient modulo computa-
tions [6]. If n is a Mersenne number, signature updates 
require a total of just one variable shift and two addi-
tions. If (T+1) is not a power of two, we exploit that t is 
monotonically increasing and we can compute the 
(T+1)t term using the result from the previous timestep 
by a simple multiplication. If T is a power of two, a mul-
tiplication by T+1 requires only a constant shift and an 
addition. Thus, a signature update requires a constant 
shift, one multiplication, and two additions. Signature 
verification is done using additions and a comparison 
against zero, neither of which require complex circuitry.

For snooping protocols and directory protocols that 
do not maintain full sharer bitmasks, the largest cost is 
storage space for tracking the number of sharers for 
each block at the memory controller. In most memory 
controllers, TCSC requires only log2(T+1) additional 
bits per entry in the block state table. Some snooping 
protocols determine state using wired-OR lines and do 
not maintain any state table. In these cases, TCSC 
requires a new lookup table purely for storing sharer 
counts for each cached block at the memory controller. 
Alternatively, the sharer count can be maintained by the 
cache owning the block. This approach adds complexity, 
because nodes must keep track of the current block 
owner or broadcast PUTS requests. Systems with full 
directories or TC already maintain sharer information 
and do not require additional storage.

7. Related Work in Coherence Checking

Several authors have previously developed imple-
mentable checkers for cache coherence. The novelty of 
TCSC lies in its very low implementation costs, its abil-
ity to detect all coherence violations, and its applicabil-
ity to a wide range of coherence protocols.

Sorin et al. [18] dynamically verify invariants in 
snooping systems using signatures computed locally 
and checked periodically at a centralized checker similar 
to TCSC. These invariants are necessary but not suffi-
cient for coherence. The scheme requires bandwidth for 
checksum exchanges (<1% overhead) and uses a check-
sum that is simpler to compute than TCSC. The low 
overhead is achieved by exploiting properties of snoop-
ing protocols, which prevents the mechanism from 
being applied to other types of protocols, and by sacri-
ficing error coverage. Whereas TCSC can detect errors 
of any kind with high probability and will detect every 
single error, Sorin et al.’s scheme is unable to detect cer-
tain kinds of errors (e.g., errors caused by operations 
that are performed correctly but at the wrong time or in 
the wrong order) and there is no guarantee that even sin-
gle errors will be detected.

Cantin et al. [5] dynamically verify coherence by 
replaying transitions between stable states on redundant 
checker circuits after a transaction completes. This 
scheme is also limited to snooping protocols and it 
requires replication of the cache line state information. 
Thus, the storage requirement is linearly dependent on 
the cache size, rather than fixed as for TCSC. They add 
a dedicated snooping bus for verification and do not 
give bandwidth overhead numbers. To compare it to 
TCSC, we measured the bandwidth required to replay 
all requests necessary for full error coverage in the sim-
ulated system used for TCSC evaluation. Request replay 
causes about 20% overhead on average; this is twice the 
TCSC worst-case overhead and nearly 10 times the 
observed TCSC overhead for snooping. Unlike TCSC, 
the verification traffic is broadcast, which limits scal-
ability, and verification of payload data is not addressed.

Our prior work [12, 13] uses coherence checking as 
part of a mechanism to check memory consistency. 
DVCC, the coherence checker in that work, causes a 
20%-30% increase in interconnect traffic for both direc-
tory and snooping protocols in a system comparable to 
the one used here. Like TCSC, all verification messages 
are unicast and the payload is verified using checksums. 
DVCC requires additional verification state for each 
block and thus storage cost grows with cache size. In 
our simulated system, storage for DVCC totals about 
128KB per cache and 192KB per memory controller.
11



8. Conclusions

TCSC is a comprehensive error detection mechanism 
for coherent memory systems, and it has much lower 
implementation costs than previous schemes. The addi-
tional hardware is simple, small in area, and not timing-
critical. The worst-case bandwidth overhead is in the 
5% to 10% range, but simulation results show that 
actual overhead is even smaller. The results also show 
that the bandwidth overhead is significantly less than in 
existing verification mechanisms: about five to ten 
times less for a snooping protocol and four to five times 
less for a directory protocol. No comparable mechanism 
had previously been proposed for Token Coherence. 

These factors make TCSC a compelling option to 
vastly increase a system’s error detection capability 
without sacrificing cost or performance. The applicabil-
ity of TCSC is not limited to the hardware coherence 
mechanisms discussed in this paper, but also includes 
software DSM systems which often exhibit higher error 
rates due to less reliable interconnect networks.
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