
1

Lecture: Coherence Protocols

• Topics: multi-thread programming models,
snooping-based protocols, directory-based protocols

2

Multiprocs -- Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization  uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

3

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

4

Multiprocs -- Memory Organization - II

• For higher scalability, memory is distributed among
processors  distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared 
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data  cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

5

SMPs

• Centralized main memory and many caches many
copies of the same data

• A system is cache coherent if a read returns the most
recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
0 - - 1
1 CPU-A reads X 1 - 1
2 CPU-B reads X 1 1 1
3 CPU-A stores 0 in X 0 1 0

6

Cache Coherence

A memory system is coherent if:

• Write propagation: P1 writes to X, sufficient time elapses,
P2 reads X and gets the value written by P1

• Write serialization: Two writes to the same location by two
processors are seen in the same order by all processors

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others and the
ordering with R/W to other locations (loosely speaking
– more later)

7

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

8

Design Issues

• Invalidate
• Find data
• Writeback / writethrough

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

• Cache block states
• Contention for tags
• Enforcing write serialization

9

SMP Example

Processor
A

Caches

Processor
B

Caches

Processor
C

Caches

Processor
D

Caches

Main Memory I/O System

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

10

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1 does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

11

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Write
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd X P3 responds.
Mem wrtbk

Inv Inv S S

12

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

13

Directory-Based Cache Coherence

• The physical memory is distributed among all processors

• The directory is also distributed along with the
corresponding memory

• The physical address is enough to determine the location
of memory

• The (many) processing nodes are connected with a
scalable interconnect (not a bus) – hence, messages
are no longer broadcast, but routed from sender to
receiver – since the processing nodes can no longer
snoop, the directory keeps track of sharing state

14

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

15

Directory-Based Example

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory
X

Directory
Y

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

16

Example

Request Cache
Hit/Miss

Messages Dir
State

State
in C1

State
in C2

State
in C3

State
in C4

Inv Inv Inv Inv

P1: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1 S Inv Inv Inv

P2: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1, 2 S S Inv Inv

P2: Wr X Perms
Miss

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

X: M: 2 Inv M Inv Inv

P3: Wr X Write
Miss

Wr-req to Dir. Dir fwds
request to P2. P2 sends

data to Dir. Dir sends data
to P3.

X: M: 3 Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd-req to Dir. Dir fwds
request to P3. P3 sends

data to Dir. Memory wrtbk.
Dir sends data to P4.

X: S: 3, 4 Inv Inv S S

17

Cache Block States

• What are the different states a block of memory can have
within the directory?

• Note that we need information for each cache so that
invalidate messages can be sent

• The block state is also stored in the cache for efficiency

• The directory now serves as the arbitrator: if multiple
write attempts happen simultaneously, the directory
determines the ordering

18

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

