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Lecture: Virtual Memory

• Topics: virtual memory details, TLB/cache access, superpages
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Memory Controller for off-chip access

A single tile composed
of a core, L1 caches, and

a bank (slice) of the
shared L2 cache

The cache controller 
forwards address requests
to the appropriate L2 bank

and handles coherence
operations

Shared NUCA Cache
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Problem 1

• Assume a large shared LLC that is tiled and distributed on the chip. 
Assume 16 tiles.  Assume an OS page size of 8KB.  The entire LLC
has a size of 32 MB, uses 64-byte blocks, and is 8-way set-associative.
Which of the 40 physical address bits are used to specify the tile number?
Provide an example page number that is assigned to tile 0.
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Problem 1

• Assume a large shared LLC that is tiled and distributed on the chip. 
Assume 16 tiles.  Assume an OS page size of 8KB.  The entire LLC
has a size of 32 MB, uses 64-byte blocks, and is 8-way set-associative.
Which of the 40 physical address bits are used to specify the tile number?
Provide an example page number that is assigned to tile 0.

The cache has 64K sets, i.e., 6 block offset bits, 16 index bits, and 
18 tag bits.  The address also has a 13-bit page offset, and 27 page
number bits.  Nine bits (bits 14-22) are used for the page number and
the index bits.  Any four of those bits can be used to designate the tile
number, say, bits 19-22.  An example page number assigned to tile 0
is   xxx…xxx0000xxx…xxx

bit 22   19

40     Tag     23 22     Index     7 6     Offset     1

40     Page number     14 13       Page offset        1 
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Address Translation

• The virtual and physical memory are broken up into pages

Virtual address

8KB page size

page offsetvirtual page
number

Translated to phys 
page number

Physical memory

13

Physical address

page offsetphysical page
number

13
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TLB

• Since the number of pages is very high, the page table
capacity is too large to fit on chip

• A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

• A TLB miss requires us to access the page table, which
may not even be found in the cache – two expensive
memory look-ups to access one word of data!

• A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste
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Problem 2

• Build an example toy virtual memory system.  Each program has 8
virtual pages.  Two programs are running together.  The physical
memory can store 8 total pages.  Show example contents of the 
physical memory, disk, page table, TLB.  Assume that virtual pages
take names a-z and physical pages take names A-Z.

Processor 

TLB

aA
cC
mM
zZ

Memory

A   B  C  D
M  N  O  Z

Disk

E’F’
G’H’
P’Q’

Other Files

Page table
aA mM
bB nN
cC oO
dD pP’
eE’ qQ’
fF’

gG’
hH’
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TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first

look up the TLB, then the cache  longer access time
Multiple virtual addresses can map to the same

physical address – can we ensure that these
different virtual addresses will map to the same
location in cache? Else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present
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TLB and Cache
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Virtually Indexed Caches

• 24-bit virtual address, 4KB page size  12 bits offset and 
12 bits virtual page number

• To handle the example below, the cache must be designed to use only 12
index bits – for example, make the 64KB cache 16-way

• Page coloring can ensure that some bits of virtual and physical address match

abcdef abbdef

Page in physical
memory

Data cache that needs 16
index bits 64KB direct-mapped

or 128KB 2-way…

cdef

bdef

Virtually indexed
cache
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Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual 
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache
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Problem 3

• Assume that page size is 16KB and cache block size is 32 B.
If I want to implement a virtually indexed physically tagged
L1 cache, what is the largest direct-mapped L1 that I can
implement?  What is the largest 2-way cache that I can
implement?
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Problem 3

• Assume that page size is 16KB and cache block size is 32 B.
If I want to implement a virtually indexed physically tagged
L1 cache, what is the largest direct-mapped L1 that I can
implement?  What is the largest 2-way cache that I can
implement?

There are 14 page offset bits.  If 5 of them are used for
block offset, there are 9 more that I can use for index.

512 sets  16KB direct-mapped or 32KB 2-way cache
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Protection

• The hardware and operating system must co-operate to
ensure that different processes do not modify each other’s
memory

• The hardware provides special registers that can be read
in user mode, but only modified by instrs in supervisor mode

• A simple solution: the physical memory is divided between
processes in contiguous chunks by the OS and the bounds
are stored in special registers – the hardware checks every
program access to ensure it is within bounds

• Protection bits are tracked in the TLB on a per-page basis
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Superpages

• If a program’s working set size is 16 MB and page size is
8KB, there are 2K frequently accessed pages – a 128-entry
TLB will not suffice

• By increasing page size to 128KB, TLB misses will be
eliminated – disadvantage: memory waste, increase in
page fault penalty

• Can we change page size at run-time?

• Note that a single page has to be contiguous in physical
memory
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Superpages Implementation

• At run-time, build superpages if you find that contiguous
virtual pages are being accessed at the same time

• For example, virtual pages 64-79 may be frequently
accessed – coalesce these pages into a single superpage
of size 128KB that has a single entry in the TLB

• The physical superpage has to be in contiguous physical
memory – the 16 physical pages have to be moved so
they are contiguous

…
virtual physical virtual physical
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Ski Rental Problem

• Promoting a series of contiguous virtual pages into a
superpage reduces TLB misses, but has a cost: copying
physical memory into contiguous locations

• Page usage statistics can determine if pages are good
candidates for superpage promotion, but if cost of a TLB
miss is x and cost of copying pages is Nx, when do you
decide to form a superpage?

• If ski rentals cost $50 and new skis cost $500, when do I
decide to buy new skis?
 If I rent 10 times and then buy skis, I’m guaranteed to

not spend more than twice the optimal amount
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DRAM Main Memory

• Main memory is stored in DRAM cells that have much
higher storage density

• DRAM cells lose their state over time – must be refreshed
periodically, hence the name Dynamic

• DRAM access suffers from long access time and high
energy overhead
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Memory Architecture

Processor

Memory 
Controller

Address/Cmd

Data

DIMM

Bank
Row Buffer

• DIMM: a PCB with DRAM chips on the back and front
• Rank: a collection of DRAM chips that work together to respond to a

request and keep the data bus full
• A 64-bit data bus will need 8  x8 DRAM chips or 4  x16 DRAM chips or..
• Bank: a subset of a rank that is busy during one request
• Row buffer: the last row (say, 8 KB) read from a bank, acts like a cache
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