
1

Lecture: Cache Hierarchies

• Topics: cache access basics/examples

2

Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions?
Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]

3

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
register dependences and
executes instructions as soon
as registers are ready

• Loads/stores access memory
as well – must check for RAW,
WAW, and WAR hazards for
memory as well

• Hence, first check for register
dependences to compute
effective addresses; then check
for memory dependences

4

Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
maintained in program order in
the Load/Store Queue (LSQ)

• Loads can issue if they are
guaranteed to not have true
dependences with earlier stores

• Stores can issue only if we are
ready to modify memory (can not
recover if an earlier instr raises
an exception) – happens at commit

5

The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD R4  8[R3]
ST R4  8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

P37  8[P35]
P37  8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37  [P35 + 8]
P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34

6

Problem 2

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd
LD R3  [R4] 6 adde
ST R5  [R6] 4 7 abba
LD R7  [R8] 2 abce
ST R9  [R10] 8 3 abba
LD R11  [R12] 1 abba

7

Problem 2

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd 4 5
LD R3  [R4] 6 adde 7 8
ST R5  [R6] 4 7 abba 5 commit
LD R7  [R8] 2 abce 3 6
ST R9  [R10] 8 3 abba 9 commit
LD R11  [R12] 1 abba 2 10

8

Problem 3

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd
LD R3  [R4] 6 adde
ST R5  [R6] 5 7 abba
LD R7  [R8] 2 abce
ST R9  [R10] 1 4 abba
LD R11  [R12] 2 abba

9

Problem 3

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd 4 5
LD R3  [R4] 6 adde 7 8
ST R5  [R6] 5 7 abba 6 commit
LD R7  [R8] 2 abce 3 7
ST R9  [R10] 1 4 abba 2 commit
LD R11  [R12] 2 abba 3 5

10

Problem 4

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd
LD R3  [R4] 6 adde
ST R5  [R6] 4 7 abba
LD R7  [R8] 2 abce
ST R9  [R10] 8 3 abba
LD R11  [R12] 1 abba

11

Problem 4

• Consider the following LSQ and when operands are
available. Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op St. Op Ad.Val Ad.Cal Mem.Acc
LD R1  [R2] 3 abcd 4 5
LD R3  [R4] 6 adde 7 8
ST R5  [R6] 4 7 abba 5 commit
LD R7  [R8] 2 abce 3 4
ST R9  [R10] 8 3 abba 9 commit
LD R11  [R12] 1 abba 2 3/10

12

The Cache Hierarchy

Core L1
L2

L3

Off-chip memory

13

Problem 1

• Memory access time: Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

14

Problem 1

• Memory access time: Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

With L3: 1000 + 10x20 + 30x10 + 300x5 = 3000
Without L3: 1000 + 10x20 + 10x300 = 4200

15

16

Accessing the Cache

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array
Sets

Offset

17

The Tag Array

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

18

Increasing Line Size

32-byte cache
line size or
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size  smaller tag array,
fewer misses because of spatial locality

19

Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity  fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare

20

Problem 2

• Assume a direct-mapped cache with just 4 sets. Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on. For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A

21

Problem 2

• Assume a direct-mapped cache with just 4 sets. Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on. For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A
M MH MM H MM HM HMM M M M

22

Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on. For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A

23

Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on. For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A
M MH M MH MM HM HMM M H M

24

Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

Equations:
Data array size (cache size) = #sets x #ways x blocksize
Tag array size = #sets x #ways x tagsize
Index bits = log2 (#sets)
Offset bits = log2 (blocksize)
Tag bits + index bits + offset bits = address width

25

Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets? 64

• How many index bits (6), offset bits (6), tag bits (28)?

• How large is the tag array (28 Kb)?

26

Problem 5

• 8 KB fully-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets? How many ways?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

27

Problem 5

• 8 KB fully-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets (1) ? How many ways (128) ?

• How many index bits (0), offset bits (6), tag bits (34) ?

• How large is the tag array (544 bytes) ?

28

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

