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Lecture: Cache Hierarchies

• Topics: cache access basics/examples
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Out-of-Order Loads/Stores

Ld R1  [R2]

Ld

St

Ld

Ld

What if the issue queue also had load/store instructions? 
Can we continue executing instructions out-of-order?

R3  [R4]

R5  [R6]

R7  [R8]

R9[R10]
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• The issue queue checks for
register dependences and 
executes instructions as soon
as registers are ready

• Loads/stores access memory
as well – must check for RAW,
WAW, and WAR hazards for
memory as well

• Hence, first check for register
dependences to compute
effective addresses; then check
for memory dependences
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Memory Dependence Checking

Ld 0x abcdef

Ld

St

Ld

Ld 0x abcdef

St 0x abcd00

Ld 0x abc000

Ld 0x abcd00

• Load and store addresses are
maintained in program order in
the Load/Store Queue (LSQ)

• Loads can issue if they are
guaranteed to not have true
dependences with earlier stores

• Stores can issue only if we are
ready to modify memory (can not
recover if an earlier instr raises
an exception) – happens at commit
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The Alpha 21264 Out-of-Order Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

LD  R4  8[R3]
ST R4  8[R1]

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7

Reorder Buffer (ROB)

P33  P1+P2
P34  P33+P3

BEQZ P34
P35  P33+P34
P36  P35+P34

P37  8[P35]
P37  8[P36]

Issue Queue (IQ)

ALU ALU ALU

Register File
P1-P64

Results written to
regfile and tags
broadcast to IQ

P37  [P35 + 8]
P37  [P36 + 8]

LSQ

ALU

D-Cache

Committed
Reg Map
R1P1
R2P2

Speculative
Reg Map
R1P36
R2P34
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Problem 2

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          4            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        8            3       abba
LD   R11  [R12]     1                      abba
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Problem 2

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd 4              5
LD   R3  [R4]      6                     adde 7              8
ST   R5  [R6]          4            7       abba         5           commit
LD   R7  [R8]       2                     abce 3              6
ST   R9  [R10]        8            3       abba         9           commit
LD   R11  [R12]     1                      abba         2             10
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Problem 3

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          5            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        1            4       abba
LD   R11  [R12]      2                     abba
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Problem 3

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume no
memory dependence prediction.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd 4              5
LD   R3  [R4]      6                     adde 7              8
ST   R5  [R6]          5            7       abba         6           commit
LD   R7  [R8]       2                     abce 3              7
ST   R9  [R10]        1            4       abba         2           commit
LD   R11  [R12]      2                     abba         3              5
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Problem 4

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd
LD   R3  [R4]      6                     adde
ST   R5  [R6]          4            7       abba
LD   R7  [R8]       2                     abce
ST   R9  [R10]        8            3       abba
LD   R11  [R12]      1                     abba
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Problem 4

• Consider the following LSQ and when operands are
available.  Estimate when the address calculation and
memory accesses happen for each ld/st. Assume
memory dependence prediction.

Ad. Op  St. Op  Ad.Val Ad.Cal Mem.Acc
LD   R1  [R2]          3                     abcd 4              5
LD   R3  [R4]      6                     adde 7              8
ST   R5  [R6]          4            7       abba         5           commit
LD   R7  [R8]       2                     abce 3              4
ST   R9  [R10]        8            3       abba         9           commit
LD   R11  [R12]      1                     abba         2             3/10
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The Cache Hierarchy

Core L1
L2

L3

Off-chip memory
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Problem 1

• Memory access time:  Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?
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Problem 1

• Memory access time:  Assume a program that has cache
access times of 1-cyc (L1), 10-cyc (L2), 30-cyc (L3), and
300-cyc (memory), and MPKIs of 20 (L1), 10 (L2), and 5 (L3).
Should you get rid of the L3?

With L3: 1000 + 10x20 + 30x10 + 300x5 = 3000
Without L3: 1000 + 10x20 + 10x300 = 4200



15



16

Accessing the Cache

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array
Sets

Offset
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The Tag Array

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array
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Increasing Line Size

32-byte cache
line size or 
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size  smaller tag array,
fewer misses because of spatial locality
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Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity  fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare
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Problem 2

• Assume a direct-mapped cache with just 4 sets.  Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on.  For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A
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Problem 2

• Assume a direct-mapped cache with just 4 sets.  Assume
that block A maps to set 0, B to 1, C to 2, D to 3, E to 0, and
so on.  For the following access pattern, estimate the hits
and misses:

A B B E C C A D B F A E G C G A
M MH MM H MM HM HMM M M M
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Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on.  For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A



23

Problem 3

• Assume a 2-way set-associative cache with just 2 sets.
Assume that block A maps to set 0, B to 1, C to 0, D to 1,
E to 0, and so on.  For the following access pattern,
estimate the hits and misses:

A B B E C C A D B F A E G C G A
M MH M MH MM HM HMM M H M
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Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

Equations:
Data array size (cache size) = #sets x #ways x blocksize
Tag array size = #sets x #ways x tagsize
Index bits = log2 (#sets)
Offset bits = log2 (blocksize)
Tag bits + index bits + offset bits = address width
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Problem 4

• 64 KB 16-way set-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?  64

• How many index bits (6), offset bits (6), tag bits (28)?

• How large is the tag array (28 Kb)?
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Problem 5

• 8 KB fully-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets?  How many ways?

• How many index bits, offset bits, tag bits?

• How large is the tag array?
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Problem 5

• 8 KB fully-associative data cache array with 64
byte line sizes, assume a 40-bit address

• How many sets (1) ?  How many ways (128) ?

• How many index bits (0), offset bits (6), tag bits (34) ?

• How large is the tag array (544 bytes) ?
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