
1

Lecture: Branch Prediction

• Topics: dynamic branch prediction,
bimodal/global/local/tournament predictors
(Chapter 3, notes on class webpage)
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Software Pipelining

Loop:     L.D         F0, 0(R1)       
ADD.D    F4, F0, F2     
S.D         F4, 0(R1)       
DADDUI  R1, R1,# -8  
BNE        R1, R2, Loop 

Loop:     S.D         F4, 16(R1)       
ADD.D    F4, F0, F2     
L.D          F0, 0(R1)       
DADDUI  R1, R1,# -8  
BNE        R1, R2, Loop 

• Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion – an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is
almost always in steady state – a sw-pipelined loop can also be unrolled
to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more
registers
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Problem 4

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop:     L.D         F0, 0(R1)          ; F0 = array element
MUL.D    F4, F0, F2        ; multiply scalar
S.D         F4, 0(R2)          ; store result
DADDUI  R1, R1,# -8      ; decrement address pointer
DADDUI  R2, R2,#-8       ; decrement address pointer
BNE        R1, R3, Loop    ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• Show the SW pipelined version of the code and does it cause stalls?

Loop:  S.D      F4, 0(R2)
MUL    F4, F0, F2
L.D      F0, 0(R1)
DADDUI R2, R2, #-8
BNE        R1, R3, Loop
DADDUI R1, R1, #-8            There will be no stalls
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Software Pipelining Reminders

• Note how the store instruction needs an offset in some cases

• Easiest to use more register names to avoid artificial dependences

LD      R1 
ADD R1  R1
SD R1 [ ]

SD      R1 
ADD R1  R1
LD      R1 

LD      R1 
ADD R2  R1
SD R2  [ ]

SD      R2 
ADD R2  R1
LD      R1 
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Static vs. Dynamic

• Predication and speculation are other compiler techniques needed
to increase performance

• To get high performance with a compiler-based approach,
we need support for predication, tables to analyze
dependences, etc.  Plus, scheduling goes haywire if there
are cache misses.

• Difficult to achieve the highest performance with a purely
static (compiler-based) approach – it continues to have value
for highly simple in-order processors

• For highest performance, dynamic/hardware approaches are
most effective, and the compiler can help such processors too
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Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)
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Principle of Locality

• Most programs are predictable in terms of instructions
executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

• Temporal locality: a program will shortly re-visit  X

• Spatial locality: a program will shortly visit  X+1
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Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch
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Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

Branch
Predictor
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1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

while (1) {
for (i=0;i<10;i++) {                     branch-1

…
}
for (j=0;j<20;j++) {                     branch-2

…
}

}
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2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)
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Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of
1K entries

Each
entry is

a bit
The table keeps track of what the branch did last time
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Bimodal 2-Bit Predictor

Branch PC

10 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch
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Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
into one of 1024 counters) – captures the recent 
“common case” for each branch

• Can we take advantage of additional information?
 If a branch recently went  01111, expect 0; if it

recently went  11101, expect 1; can we have a
separate counter for each case?

 If the previous branches went  01, expect 0; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors
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Global Predictor

Branch PC

10 bits Table of
16K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch/history combo

Global history

CAT or XOR
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Local Predictor

Branch PC

Table of
16K entries

of 2-bit
saturating
counters

Table of 64 entries of 14-bit
histories for a single branch

10110111011001

Use 6 bits of branch PC to
index into local history table

14-bit history
indexes into

next level

Also a two-level predictor that only
uses local histories at the first level
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Local Predictor

Branch PC

6 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counter

The table keeps track of the common-case
outcome for the branch/local-history combo

Local history
10 bit entries

XOR

64 entries

10 bits
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Local/Global Predictors

• Instead of maintaining a counter for each branch to
capture the common case,

Maintain a counter for each branch and surrounding pattern
 If the surrounding pattern belongs to the branch being

predicted, the predictor is referred to as a local predictor
 If the surrounding pattern includes neighboring branches,

the predictor is referred to as a global predictor
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Tournament Predictors

• A local predictor might work well for some branches or
programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Tournament
Predictor

Branch PC

Table of 2-bit
saturating counters

Local
Predictor

Global
Predictor

M
U
X

Alpha 21264:
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Total capacity: ?
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Branch Target Prediction

• In addition to predicting the branch direction, we must
also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches
might be problematic

• Most common indirect branch: return from a procedure –
can be easily handled with a stack of return addresses
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?
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Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters.  Each counter is 3 bits wide.  So total storage
= 3 * 4096 = 12 Kb  or 1.5 KB



23

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.
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Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC 

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history.  The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)
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Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4:  2/13 = 15%
1b Bim: (2+6+1)/(4+8+1) 

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
Local: (4+7+1)/13

= 12/13 = 92%
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