
1

Lecture: Branch Prediction

• Topics: dynamic branch prediction,
bimodal/global/local/tournament predictors
(Chapter 3, notes on class webpage)

2

Software Pipelining

Loop: L.D F0, 0(R1)
ADD.D F4, F0, F2
S.D F4, 0(R1)
DADDUI R1, R1,# -8
BNE R1, R2, Loop

Loop: S.D F4, 16(R1)
ADD.D F4, F0, F2
L.D F0, 0(R1)
DADDUI R1, R1,# -8
BNE R1, R2, Loop

• Advantages: achieves nearly the same effect as loop unrolling, but
without the code expansion – an unrolled loop may have inefficiencies
at the start and end of each iteration, while a sw-pipelined loop is
almost always in steady state – a sw-pipelined loop can also be unrolled
to reduce loop overhead

• Disadvantages: does not reduce loop overhead, may require more
registers

3

Problem 4

for (i=1000; i>0; i--)
x[i] = y[i] * s;

Loop: L.D F0, 0(R1) ; F0 = array element
MUL.D F4, F0, F2 ; multiply scalar
S.D F4, 0(R2) ; store result
DADDUI R1, R1,# -8 ; decrement address pointer
DADDUI R2, R2,#-8 ; decrement address pointer
BNE R1, R3, Loop ; branch if R1 != R3
NOP

Source code

Assembly code

LD -> any : 1 stall
FPMUL -> any: 5 stalls
FPMUL -> ST : 4 stalls
IntALU -> BR : 1 stall

• Show the SW pipelined version of the code and does it cause stalls?

Loop: S.D F4, 0(R2)
MUL F4, F0, F2
L.D F0, 0(R1)
DADDUI R2, R2, #-8
BNE R1, R3, Loop
DADDUI R1, R1, #-8 There will be no stalls

4

Software Pipelining Reminders

• Note how the store instruction needs an offset in some cases

• Easiest to use more register names to avoid artificial dependences

LD R1 
ADD R1  R1
SD R1 []

SD R1 
ADD R1  R1
LD R1 

LD R1 
ADD R2  R1
SD R2  []

SD R2 
ADD R2  R1
LD R1 

5

Static vs. Dynamic

• Predication and speculation are other compiler techniques needed
to increase performance

• To get high performance with a compiler-based approach,
we need support for predication, tables to analyze
dependences, etc. Plus, scheduling goes haywire if there
are cache misses.

• Difficult to achieve the highest performance with a purely
static (compiler-based) approach – it continues to have value
for highly simple in-order processors

• For highest performance, dynamic/hardware approaches are
most effective, and the compiler can help such processors too

6

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

7

Principle of Locality

• Most programs are predictable in terms of instructions
executed and data accessed

• The 90-10 Rule: a program spends 90% of its execution
time in only 10% of the code

• Temporal locality: a program will shortly re-visit X

• Spatial locality: a program will shortly visit X+1

8

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

9

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

In the 5-stage pipeline, a branch completes in two cycles 
If the branch went the wrong way, one incorrect instr is fetched 
One stall cycle per incorrect branch

Branch
Predictor

10

1-Bit Bimodal Prediction

• For each branch, keep track of what happened last time
and use that outcome as the prediction

• What are prediction accuracies for branches 1 and 2 below:

while (1) {
for (i=0;i<10;i++) { branch-1

…
}
for (j=0;j<20;j++) { branch-2

…
}

}

11

2-Bit Bimodal Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

• If (counter >= 2), predict taken, else predict not taken

• Advantage: a few atypical branches will not influence the
prediction (a better measure of “the common case”)

• Especially useful when multiple branches share the same
counter (some bits of the branch PC are used to index
into the branch predictor)

• Can be easily extended to N-bits (in most processors, N=2)

12

Bimodal 1-Bit Predictor

Branch PC

10 bits

Table of
1K entries

Each
entry is

a bit
The table keeps track of what the branch did last time

13

Bimodal 2-Bit Predictor

Branch PC

10 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch

14

Correlating Predictors

• Basic branch prediction: maintain a 2-bit saturating
counter for each entry (or use 10 branch PC bits to index
into one of 1024 counters) – captures the recent
“common case” for each branch

• Can we take advantage of additional information?
 If a branch recently went 01111, expect 0; if it

recently went 11101, expect 1; can we have a
separate counter for each case?

 If the previous branches went 01, expect 0; if the
previous branches went 11, expect 1; can we have
a separate counter for each case?

Hence, build correlating predictors

15

Global Predictor

Branch PC

10 bits Table of
16K entries

Each
entry is
a 2-bit

sat.
counterThe table keeps track of the common-case

outcome for the branch/history combo

Global history

CAT or XOR

16

Local Predictor

Branch PC

Table of
16K entries

of 2-bit
saturating
counters

Table of 64 entries of 14-bit
histories for a single branch

10110111011001

Use 6 bits of branch PC to
index into local history table

14-bit history
indexes into

next level

Also a two-level predictor that only
uses local histories at the first level

17

Local Predictor

Branch PC

6 bits Table of
1K entries

Each
entry is
a 2-bit

sat.
counter

The table keeps track of the common-case
outcome for the branch/local-history combo

Local history
10 bit entries

XOR

64 entries

10 bits

18

Local/Global Predictors

• Instead of maintaining a counter for each branch to
capture the common case,

Maintain a counter for each branch and surrounding pattern
 If the surrounding pattern belongs to the branch being

predicted, the predictor is referred to as a local predictor
 If the surrounding pattern includes neighboring branches,

the predictor is referred to as a global predictor

19

Tournament Predictors

• A local predictor might work well for some branches or
programs, while a global predictor might work well for others

• Provide one of each and maintain another predictor to
identify which predictor is best for each branch

Tournament
Predictor

Branch PC

Table of 2-bit
saturating counters

Local
Predictor

Global
Predictor

M
U
X

Alpha 21264:
1K entries in level-1
1K entries in level-2

4K entries
12-bit global history

4K entries

Total capacity: ?

20

Branch Target Prediction

• In addition to predicting the branch direction, we must
also predict the branch target address

• Branch PC indexes into a predictor table; indirect branches
might be problematic

• Most common indirect branch: return from a procedure –
can be easily handled with a stack of return addresses

21

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

22

Problem 1

• What is the storage requirement for a global predictor
that uses 3-bit saturating counters and that produces
an index by XOR-ing 12 bits of branch PC with 12 bits
of global history?

The index is 12 bits wide, so the table has 2^12 saturating
counters. Each counter is 3 bits wide. So total storage
= 3 * 4096 = 12 Kb or 1.5 KB

23

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history. The L2 uses 2-bit counters.

24

Problem 2

• What is the storage requirement for a tournament predictor
that uses the following structures:
 a “selector” that has 4K entries and 2-bit counters
 a “global” predictor that XORs 14 bits of branch PC

with 14 bits of global history and uses 3-bit counters
 a “local” predictor that uses an 8-bit index into L1, and

produces a 12-bit index into L2 by XOR-ing branch PC
and local history. The L2 uses 2-bit counters.

Selector = 4K * 2b = 8 Kb
Global = 3b * 2^14 = 48 Kb
Local = (12b * 2^8) + (2b * 2^12) = 3 Kb + 8 Kb = 11 Kb
Total = 67 Kb

25

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

26

Problem 3

• For the code snippet below, estimate the steady-state
bpred accuracies for the default PC+4 prediction, the
1-bit bimodal, 2-bit bimodal, global, and local predictors.
Assume that the global/local preds use 5-bit histories.
do {

for (i=0; i<4; i++) {
increment something

}
for (j=0; j<8; j++) {

increment something
}
k++;

} while (k < some large number)

PC+4: 2/13 = 15%
1b Bim: (2+6+1)/(4+8+1)

= 9/13 = 69%
2b Bim: (3+7+1)/13

= 11/13 = 85%
Global: (4+7+1)/13

= 12/13 = 92%
Local: (4+7+1)/13

= 12/13 = 92%

27

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

