
1

Lecture: Pipelining Extensions, Static ILP 

• Topics: control hazards, multi-cycle instructions,
pipelining equations, loops intro



2

Problem 7

• For the 5-stage pipeline (RR and RW take half a cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4               

 LD R2  [R1]                        
ADD R4  R2+R3                
 LD R2  [R1]

SD R3  [R2] 
 LD R2  [R1]

SD R2  [R3]

IF D/
RR AL DM RW



3

Problem 7

• For the 5-stage pipeline (RR and RW take half a cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4               without: 2  with: 0

 LD R2  [R1]                        
ADD R4  R2+R3                without: 2   with: 1
 LD R2  [R1]

SD R3  [R2]                       without: 2   with: 1
 LD R2  [R1]

SD R2  [R3]                       without: 2   with: 0

IF D/
RR AL DM RW



4

Summary

• For the 5-stage pipeline, bypassing can eliminate delays
between the following example pairs of instructions:

add/sub             R1, R2, R3
add/sub/lw/sw R4, R1, R5

lw R1, 8(R2)
sw R1, 4(R3)

• The following pairs of instructions will have intermediate
stalls:

lw R1, 8(R2)
add/sub/lw R3, R1, R4       or   sw R3, 8(R1)

fmul F1, F2, F3
fadd F5, F1, F4



5

Problem 8

• Consider this 8-stage pipeline (RR and RW take a full cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4

 LD R2  [R1]                        
ADD R4  R2+R3
 LD R2  [R1]

SD R3  [R2] 
 LD R2  [R1]

SD R2  [R3]

IF DE RR AL DM DM RWAL



6

Problem 8

• Consider this 8-stage pipeline (RR and RW take a full cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4               without: 5  with: 1

 LD R2  [R1]                        
ADD R4  R2+R3                without: 5   with: 3
 LD R2  [R1]

SD R3  [R2]                       without: 5   with: 3
 LD R2  [R1]

SD R2  [R3]                       without: 5   with: 1

IF DE RR AL DM DM RWAL



7

Stalls from Control Hazards

Source: H&P textbook

PC/L1 L2 L3 L4 L5



8

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instructions

 predict the next PC and fetch that instr – if the prediction
is wrong, cancel the effect of the wrong-path instructions

 fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost



9

Branch Delay Slots



10

Problem 1

• Consider a branch that is taken 80% of the time.  On
average, how many stalls are introduced for this branch
for each approach below:
 Stall fetch until branch outcome is known
 Assume not-taken and squash if the branch is taken
 Assume a branch delay slot

o You can’t find anything to put in the delay slot
o An instr before the branch is put in the delay slot
o An instr from the taken side is put in the delay slot
o An instr from the not-taken side is put in the slot



11

Problem 1

• Consider a branch that is taken 80% of the time.  On
average, how many stalls are introduced for this branch
for each approach below:
 Stall fetch until branch outcome is known – 1 
 Assume not-taken and squash if the branch is taken – 0.8
 Assume a branch delay slot

o You can’t find anything to put in the delay slot – 1 
o An instr before the branch is put in the delay slot – 0
o An instr from the taken side is put in the slot – 0.2
o An instr from the not-taken side is put in the slot – 0.8



12

Multicycle Instructions



13

Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.



14

Precise Exceptions

• On an exception:
must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline

must be converted to NOPs (other instructions continue
to execute and may raise exceptions of their own)

 temporary program state not in memory (in other words,
registers) has to be stored in memory

 potential problems if a later instruction has already
modified memory or registers

• A processor that fulfils all the above conditions is said to
provide precise exceptions (useful for debugging and of
course, correctness)



15

Dealing with these Effects

• Multiple writes to the register file: increase the number of
ports, stall one of the writers during ID, stall one of the
writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the
later instruction

• Imprecise exceptions: buffer the results if they complete
early or save more pipeline state so that you can return to
exactly the same state that you left at



16

Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)



17

Pipelining Limits

A B C
A B C

A B C D E F
A B C D E F

Assume that there is a dependence where the final result of the
first instruction is required before starting the second instruction

Gap between indep instrs:  T + Tovh

Gap between dep instrs:  T + Tovh

Gap between indep instrs: 
T/3  + Tovh

Gap between dep instrs:  
T  +  3Tovh

Gap between indep instrs: 
T/6  + Tovh

Gap between dep instrs:  
T  +  6Tovh



18

Problem 2

• Assume an unpipelined processor where it takes 5ns to
go through the circuits and 0.1ns for the latch overhead.
What is the throughput for 20-stage and 40-stage
pipelines?  Assume that the P.O.P and P.O.C in the
unpipelined processor are separated by 2ns.  Assume that
half the instructions do not introduce a data hazard and
half the instructions depend on their preceding instruction.



19

Problem 2

• Assume an unpipelined processor where it takes 5ns to
go through the circuits and 0.1ns for the latch overhead.
What is the throughput for 1-stage, 20-stage and 50-stage
pipelines?  Assume that the P.O.P and P.O.C in the
unpipelined processor are separated by 2ns.  Assume that
half the instructions do not introduce a data hazard and
half the instructions depend on their preceding instruction.

• 1-stage:  1 instr every 5.1ns
• 20-stage:  first instr takes 0.35ns, the second takes 2.8ns
• 50-stage:  first instr takes 0.2ns, the second takes 4ns
• Throughputs: 0.20 BIPS, 0.63 BIPS, and 0.48 BIPS



20


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

