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Lecture: Pipelining Extensions, Static ILP 

• Topics: control hazards, multi-cycle instructions,
pipelining equations, loops intro



2

Problem 7

• For the 5-stage pipeline (RR and RW take half a cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4               

 LD R2  [R1]                        
ADD R4  R2+R3                
 LD R2  [R1]

SD R3  [R2] 
 LD R2  [R1]

SD R2  [R3]

IF D/
RR AL DM RW
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Problem 7

• For the 5-stage pipeline (RR and RW take half a cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4               without: 2  with: 0

 LD R2  [R1]                        
ADD R4  R2+R3                without: 2   with: 1
 LD R2  [R1]

SD R3  [R2]                       without: 2   with: 1
 LD R2  [R1]

SD R2  [R3]                       without: 2   with: 0

IF D/
RR AL DM RW
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Summary

• For the 5-stage pipeline, bypassing can eliminate delays
between the following example pairs of instructions:

add/sub             R1, R2, R3
add/sub/lw/sw R4, R1, R5

lw R1, 8(R2)
sw R1, 4(R3)

• The following pairs of instructions will have intermediate
stalls:

lw R1, 8(R2)
add/sub/lw R3, R1, R4       or   sw R3, 8(R1)

fmul F1, F2, F3
fadd F5, F1, F4
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Problem 8

• Consider this 8-stage pipeline (RR and RW take a full cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4

 LD R2  [R1]                        
ADD R4  R2+R3
 LD R2  [R1]

SD R3  [R2] 
 LD R2  [R1]

SD R2  [R3]

IF DE RR AL DM DM RWAL



6

Problem 8

• Consider this 8-stage pipeline (RR and RW take a full cycle)

• For the following pairs of instructions, how many stalls will the 2nd

instruction experience (with and without bypassing)?

 ADD R3  R1+R2
ADD R5  R3+R4               without: 5  with: 1

 LD R2  [R1]                        
ADD R4  R2+R3                without: 5   with: 3
 LD R2  [R1]

SD R3  [R2]                       without: 5   with: 3
 LD R2  [R1]

SD R2  [R3]                       without: 5   with: 1

IF DE RR AL DM DM RWAL
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Stalls from Control Hazards

Source: H&P textbook

PC/L1 L2 L3 L4 L5
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Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

6th instruction is a branch on average!)
 assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instructions

 predict the next PC and fetch that instr – if the prediction
is wrong, cancel the effect of the wrong-path instructions

 fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost
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Branch Delay Slots
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Problem 1

• Consider a branch that is taken 80% of the time.  On
average, how many stalls are introduced for this branch
for each approach below:
 Stall fetch until branch outcome is known
 Assume not-taken and squash if the branch is taken
 Assume a branch delay slot

o You can’t find anything to put in the delay slot
o An instr before the branch is put in the delay slot
o An instr from the taken side is put in the delay slot
o An instr from the not-taken side is put in the slot
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Problem 1

• Consider a branch that is taken 80% of the time.  On
average, how many stalls are introduced for this branch
for each approach below:
 Stall fetch until branch outcome is known – 1 
 Assume not-taken and squash if the branch is taken – 0.8
 Assume a branch delay slot

o You can’t find anything to put in the delay slot – 1 
o An instr before the branch is put in the delay slot – 0
o An instr from the taken side is put in the slot – 0.2
o An instr from the not-taken side is put in the slot – 0.8
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Multicycle Instructions
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Effects of Multicycle Instructions

• Potentially multiple writes to the register file in a cycle

• Frequent RAW hazards

• WAW hazards (WAR hazards not possible)

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.
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Precise Exceptions

• On an exception:
must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline

must be converted to NOPs (other instructions continue
to execute and may raise exceptions of their own)

 temporary program state not in memory (in other words,
registers) has to be stored in memory

 potential problems if a later instruction has already
modified memory or registers

• A processor that fulfils all the above conditions is said to
provide precise exceptions (useful for debugging and of
course, correctness)
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Dealing with these Effects

• Multiple writes to the register file: increase the number of
ports, stall one of the writers during ID, stall one of the
writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the
later instruction

• Imprecise exceptions: buffer the results if they complete
early or save more pipeline state so that you can return to
exactly the same state that you left at
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Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)
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Pipelining Limits

A B C
A B C

A B C D E F
A B C D E F

Assume that there is a dependence where the final result of the
first instruction is required before starting the second instruction

Gap between indep instrs:  T + Tovh

Gap between dep instrs:  T + Tovh

Gap between indep instrs: 
T/3  + Tovh

Gap between dep instrs:  
T  +  3Tovh

Gap between indep instrs: 
T/6  + Tovh

Gap between dep instrs:  
T  +  6Tovh
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Problem 2

• Assume an unpipelined processor where it takes 5ns to
go through the circuits and 0.1ns for the latch overhead.
What is the throughput for 20-stage and 40-stage
pipelines?  Assume that the P.O.P and P.O.C in the
unpipelined processor are separated by 2ns.  Assume that
half the instructions do not introduce a data hazard and
half the instructions depend on their preceding instruction.
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Problem 2

• Assume an unpipelined processor where it takes 5ns to
go through the circuits and 0.1ns for the latch overhead.
What is the throughput for 1-stage, 20-stage and 50-stage
pipelines?  Assume that the P.O.P and P.O.C in the
unpipelined processor are separated by 2ns.  Assume that
half the instructions do not introduce a data hazard and
half the instructions depend on their preceding instruction.

• 1-stage:  1 instr every 5.1ns
• 20-stage:  first instr takes 0.35ns, the second takes 2.8ns
• 50-stage:  first instr takes 0.2ns, the second takes 4ns
• Throughputs: 0.20 BIPS, 0.63 BIPS, and 0.48 BIPS
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