
3810 Review Session
Spring 2024

Disk Basics

• Disk access remains very slow – mechanical head that has to move to the correct
“ring” of data – order of milli-seconds – high enough that a context-switch is best

• Focus on other metrics, especially reliability
• A sector on the disk is associated with a cyclic redundancy code (CRC) – a hash that

tells us if the read data is correct or not – it is simply an error detector, not an error
corrector

• To correct the error, RAID is commonly used
• Reliability measures continuous service accomplishment and is usually expressed as

mean time to failure (MTTF)
• Availability is measured as MTTF/(MTTF+MTTRecovery)

RAID

• RAID 0: no redundancy
• RAID 1: mirroring
• RAID 2 and 6: memory-style ECC and rarely deployed
• RAID 3: bit-interleaved, lower cost, but no query-level parallelism
• RAID 4: block-interleaved, lower cost, query-level parallelism, but write bottleneck
• RAID 5: block-interleaved, lower cost, query-level parallelism, write parallelism
• Parity and XOR!

Unpipelined processor
CPI:
Clock speed:
Throughput:

Pipelined processor
CPI:
Clock speed:
Throughput:

Circuit Assumptions
Length of full circuit:
Length of each stage:
No hazards

Pipeline Performance

Data Hazards

No Bypassing
(for the 5-stage pipeline)
Point of production: always RW middle
Point of consumption: always D/R middle

Bypassing

Point of production:
 add, sub, etc.: end of ALU
 lw: end of DM

Point of consumption:
 add, sub, lw: start of ALU
 sw $1, 8($2): start of ALU for $2,
 start of DM for $1

* PoP
I1 add: IF DR AL DM RW
I2 add: IF DR DR DR AL DM RW
 * PoC

* PoP
I1 add: IF DR AL DM RW
I2 add: IF DR AL DM RW
 * PoC

Control Hazards

Assumptions

100 instructions
20 branches
14 Not-Taken, 6 Taken
Branch resolved in 6th cycle (penalty of 5)

Approach 1: Panic and wait

Approach 2: Fetch-next-instr

Approach 3: Branch Delay Slot
Option A: always useful
Option B: useful when the branch
 goes along common fork
Option C: useful when the branch
 goes along uncommon fork
Option D: no-op, always non-useful

Approach 4: Branch predictor
Accuracy of 90%

Option A
Branch

Slot
NTaken Taken

Option B Option C

Out of Order Processor

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

Cache Latency

Assumptions

1000 instructions, 1000 cycles, no stalls with L1 hits
loads/stores:
% of loads/stores that show up at L2:
% of loads/stores that show up at L3:
% of loads/stores that show up at mem:
L2 acc = 10 cyc, L3 acc = 25 cyc, mem acc = 200 cyc

Cache Size

Assumptions

512KB cache, 8-way set-associative, 64-byte blocks, 32-bit addresses

Data array size = #sets x #ways x blocksize
Tag array size = #sets x #ways x tagsize
Offset bits = log(blocksize)
Index bits = log(#sets)
Tag bits + index bits + offset bits = addresswidth

Cache Hits/Misses

Assumptions

16 sets, 1 way, 32-byte blocks

Access pattern: 4 40 400 480 512 520 1032 1540

Offset = address % 32 (address modulo 32, extract last 5)
Index = address/32 % 16 (shift right by 5, extract last 4)
Tag = address/512 (shift address right by 9)

 32-bit address
 23 bits tag 4 bits index 5 bits offset H/M Evicted address
4: 0 0 4 M Inv
40: 0 1 8 M Inv
400: 0 12 16 M Inv
480: 0 15 0 M Inv
512: 1 0 0 M 0
520: 1 0 8 H -
1032: 2 0 8 M 512
1540: 3 0 4 M 1024

11

Example 0b

Offset = address % 64 (address modulo 64, extract last 6)
Index = address/64 % 16 (shift right by 6, extract last 4)
Tag = address/1024 (shift address right by 10)

 32-bit address
 22 bits tag 4 bits index 6 bits offset
8: 0 0 8 M
96: 0 1 32 M
32: 0 0 32 H
480: 0 7 32 M
976: 0 15 16 M
1040: 1 0 16 M
1096: 1 1 8 M

Show how the following addresses map to the cache and yield hits or misses.
The cache is direct-mapped, has 16 sets, and a 64-byte block size.
Addresses: 8, 96, 32, 480, 976, 1040, 1096

.

.

.

Consider a 3-processor multiprocessor connected with a shared bus that has the following properties:
(i) centralized shared memory accessible with the bus, (ii) snooping-based MSI cache coherence protocol,

(iii) write-invalidate policy. Also assume that the caches have a writeback policy. Initially, the caches all
have invalid data. The processors issue the following three requests, one after the other. Similar to slide
17 of lecture 25, fill in the following table to indicate what happens for every request. Also indicate
if/when memory writeback is performed. (8 points)

P2: Read X
P1: Read X
P2: Write X
P3: Read X

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P2: Rd X

P1: Rd X

P2: Wr X

P3: Rd X

Security

Questions to ask yourself:
How does Meltdown work?
How does Spectre work?
How can you force a footprint? (the relevant code sequence)
How can you examine footprints? (exploiting the side channel)
How can you defend against these attacks?

Virtual Memory

Questions to ask yourself:
What does the programmer/compiler deal with?
What does the OS deal with?
How is translation done efficiently?

Synchronization, Consistency

Questions to ask yourself:
Why do multiprocs need to deal with prog. models, coherence, synchronization, consistency?
What are race conditions?
What is an example synchronization primitive and how is it implemented?
What consistency model is assumed by a programmer?
Why is it slow?
How do I make life easier for the programmer and provide high performance?

GPUs, Disks

Questions to ask yourself:
What are the central philosophies in a GPU?
In what ways does the GPU design differ from a CPU?
What are the different ways that disks provide high reliability?
Can you explain how parity is used to recover lost data?

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

