3810 Review Session Spring 2024

Disk Basics

- Disk access remains very slow - mechanical head that has to move to the correct "ring" of data - order of milli-seconds - high enough that a context-switch is best
- Focus on other metrics, especially reliability
- A sector on the disk is associated with a cyclic redundancy code (CRC) - a hash that tells us if the read data is correct or not - it is simply an error detector, not an error corrector
- To correct the error, RAID is commonly used
- Reliability measures continuous service accomplishment and is usually expressed as mean time to failure (MTTF)
- Availability is measured as MTTF/(MTTF+MTTRecovery)

RAID

- RAID 0: no redundancy
- RAID 1: mirroring
- RAID 2 and 6: memory-style ECC and rarely deployed
- RAID 3: bit-interleaved, lower cost, but no query-level parallelism
- RAID 4: block-interleaved, lower cost, query-level parallelism, but write bottleneck
- RAID 5: block-interleaved, lower cost, query-level parallelism, write parallelism
- Parity and XOR!

Unpipelined processor CPI:
Clock speed:
Throughput:

Pipelined processor
CPI:
Clock speed:
Throughput:

Circuit Assumptions
Length of full circuit:
Length of each stage:
No hazards

Pipeline Performance

Bypassing
Point of production:
add, sub, etc.: end of ALU
Iw: end of DM
Point of consumption:
add, sub, Iw: start of ALU sw $\$ 1,8(\$ 2)$: start of ALU for $\$ 2$, start of DM for \$1

Assumptions

100 instructions
20 branches
14 Not-Taken, 6 Taken
Branch resolved in $6^{\text {th }}$ cycle (penalty of 5)

Approach 1: Panic and wait

Approach 2: Fetch-next-instr

Approach 3: Branch Delay Slot

 Option A: always usefulOption B: useful when the branch goes along common fork
Option C: useful when the branch goes along uncommon fork
Option D: no-op, always non-useful
Option A
Branch
Slot
NTaken Taken
Option B Option C

Approach 4: Branch predictor
Accuracy of 90\%

Out of Order Processor

Assumptions

1000 instructions, 1000 cycles, no stalls with L1 hits \# loads/stores:
\% of loads/stores that show up at L2:
\% of loads/stores that show up at L3:
$\%$ of loads/stores that show up at mem:
L2 acc = $10 \mathrm{cyc}, \quad \mathrm{L} 3 \mathrm{acc}=25 \mathrm{cyc}, \quad \mathrm{mem} \mathrm{acc}=200 \mathrm{cyc}$

Assumptions

512KB cache, 8-way set-associative, 64-byte blocks, 32-bit addresses

Data array size = \#sets x \#ways x blocksize
Tag array size = \#sets x \#ways x tagsize
Offset bits $=\log$ (blocksize)
Index bits $=\log$ (\#sets)
Tag bits + index bits + offset bits = addresswidth

Assumptions

16 sets, 1 way, 32-byte blocks
Access pattern: $\begin{array}{lllllllll}4 & 40 & 400 & 480 & 512 & 520 & 1032 & 1540\end{array}$

Offse	address	(address modul	o 32, extra	ast 5)	
Index	= address/3	16 (shift rig	t by 5, extract	last 4)	
Tag $=$	address/512	(shift addre	s right by 9)		
		-bit address			
	23 bits tag	4 bits index	5 bits offset	H/M	Evicted address
4:	0	0	4	M	Inv
40:	0	1	8	M	Inv
400:	0	12	16	M	Inv
480:	0	15	0	M	Inv
512:	1	0	0	M	0
520:	1	0	8	H	-
1032:	2	0	8	M	512
1540:	3	0	4	M	1024

Example 0b

Show how the following addresses map to the cache and yield hits or misses. The cache is direct-mapped, has 16 sets, and a 64-byte block size.
Addresses: 8, 96, 32, 480, 976, 1040, 1096

Offset = address \% 64 (address modulo 64, extract last 6) Index = address/64 \% 16 (shift right by 6, extract last 4) Tag $=$ address $/ 1024 \quad$ (shift address right by 10)

	32-bit address			
	22 bits tag	4 bits index	6 bits offset	
8:	0	0	8	M
96:	0	1	32	M
32:	0	0	32	H
480:	0	7	32	M
976:	0	15	16	M
1040:	1	0	16	M
1096:	1	1	8	M

Consider a 3-processor multiprocessor connected with a shared bus that has the following properties:
(i) centralized shared memory accessible with the bus, (ii) snooping-based MSI cache coherence protocol, (iii) write-invalidate policy. Also assume that the caches have a writeback policy. Initially, the caches all have invalid data. The processors issue the following three requests, one after the other. Similar to slide 17 of lecture 25 , fill in the following table to indicate what happens for every request. Also indicate if/when memory writeback is performed. (8 points)

Questions to ask yourself:

How does Meltdown work?
How does Spectre work?
How can you force a footprint? (the relevant code sequence) How can you examine footprints? (exploiting the side channel) How can you defend against these attacks?

Questions to ask yourself:

What does the programmer/compiler deal with?
What does the OS deal with?
How is translation done efficiently?

Virtual Memory

Questions to ask yourself:

Why do multiprocs need to deal with prog. models, coherence, synchronization, consistency? What are race conditions?
What is an example synchronization primitive and how is it implemented?
What consistency model is assumed by a programmer?
Why is it slow?
How do I make life easier for the programmer and provide high performance?

Questions to ask yourself:

What are the central philosophies in a GPU?
In what ways does the GPU design differ from a CPU?
What are the different ways that disks provide high reliability? Can you explain how parity is used to recover lost data?

