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Lecture 27: Pot-Pourri

• Today’s topics: 
 Synchronization
 Consistency Models
 Shared memory vs message-passing
 Simultaneous multi-threading (SMT)
 GPUs
 Accelerators
 Disks and reliability
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Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
   of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
   status of that block – all cache controllers monitor the
   shared bus so they can update the sharing status of the
   block, if necessary

 Write-invalidate: a processor gains exclusive access of
     a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
     shared copies of that block
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Constructing Locks

• Applications have phases (consisting of many instructions)
   that must be executed atomically, without other parallel
   processes modifying the data

• A lock surrounding the data/code ensures that only one
   program can be in a critical section at a time

• The hardware must provide some basic primitives that
   allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions



4

Synchronization

• The simplest hardware primitive that greatly facilitates
   synchronization implementations (locks, barriers, etc.)
   is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
   memory location into register and write 1 into memory
   (if memory has 0, lock is free)

• lock:    t&s    register, location
               bnz   register, lock
                 CS
               st      location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS
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Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
   (a write will eventually be seen by other processors), and
   (ii) write serialization (all processors see writes to the
   same location in the same order)

• The consistency model defines the ordering of writes and
   reads to different memory locations – the hardware
   guarantees a certain consistency model and the
   programmer attempts to write correct programs with
   those assumptions
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Consistency Example

• Consider a multiprocessor with bus-based snooping cache
   coherence

Initially A = B = 0
  P1                        P2
A  1                 B  1
 …                        …
if (B == 0)           if (A == 0)
  Crit.Section         Crit.Section
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Consistency Example

• Consider a multiprocessor with bus-based snooping cache
   coherence

Initially A = B = 0
  P1                        P2
A  1                 B  1
 …                        …
if (B == 0)           if (A == 0)
  Crit.Section         Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities
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Sequential Consistency

• A multiprocessor is sequentially consistent if the result
   of the execution is achieveable by maintaining program
   order within a processor and interleaving accesses by
   different processors in an arbitrary fashion

• The multiprocessor in the previous example is not
   sequentially consistent

• Can implement sequential consistency by requiring the
   following: program order, write serialization, everyone has
   seen an update before a value is read – very intuitive for
   the programmer, but extremely slow 
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Relaxed Consistency

• Sequential consistency is very slow 

• The programming complications/surprises are caused when the
   program has race conditions (two threads dealing with same
   data and at least one of the threads is modifying the data)

• If programmers are disciplined and enforce mutual exclusion
   when dealing with shared data, we can allow some re-orderings
   and higher performance

• This is effective at balancing performance & programming effort
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Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence  simpler hardware
• Explicit communication  easier for the programmer to
   restructure code
• Software-controlled caching
• Sender can initiate data transfer
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Ocean Kernel

Procedure Solve(A)
begin
  diff = done = 0;
  while (!done) do
      diff = 0;
      for i  1 to n do
         for j  1 to n do
            temp = A[i,j];
            A[i,j]  0.2 * (A[i,j] + neighbors);
            diff += abs(A[i,j] – temp);
         end for
      end for
      if (diff < TOL) then done = 1;
  end while
end procedure 

.
.

Row 1

Row k

Row 2k

Row 3k
…
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Shared Address Space Model

int  n, nprocs;
float  **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin
   read(n); read(nprocs);
   A  G_MALLOC();
   initialize (A);
   CREATE (nprocs,Solve,A);
   WAIT_FOR_END (nprocs);
end main

procedure Solve(A)
    int i, j, pid, done=0;
    float temp, mydiff=0;
    int mymin = 1 + (pid * n/procs);
    int mymax = mymin + n/nprocs -1;
    while (!done) do
       mydiff = diff = 0;
       BARRIER(bar1,nprocs);
       for i  mymin to mymax
          for j  1 to n do
             …
          endfor
       endfor
       LOCK(diff_lock);
       diff += mydiff;
       UNLOCK(diff_lock);
       BARRIER (bar1, nprocs);
       if (diff < TOL) then done = 1;
       BARRIER (bar1, nprocs);
    endwhile
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Message Passing Model

main()
   read(n); read(nprocs);
   CREATE (nprocs-1, Solve);
   Solve();
   WAIT_FOR_END (nprocs-1);

procedure Solve()
   int i, j, pid, nn = n/nprocs, done=0;
   float temp, tempdiff, mydiff = 0;
   myA  malloc(…)
   initialize(myA);
   while (!done) do
       mydiff = 0;
       if (pid != 0) 
         SEND(&myA[1,0], n, pid-1, ROW);
       if (pid != nprocs-1)
         SEND(&myA[nn,0], n, pid+1, ROW);
       if (pid != 0)
         RECEIVE(&myA[0,0], n, pid-1, ROW);
       if (pid != nprocs-1)
         RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i  1 to nn do
          for j  1 to n do
             …
          endfor
       endfor
       if (pid != 0)
         SEND(mydiff, 1, 0, DIFF);
         RECEIVE(done, 1, 0, DONE);
       else
         for i  1 to nprocs-1 do
            RECEIVE(tempdiff, 1, *, DIFF);
            mydiff += tempdiff;
         endfor
         if  (mydiff < TOL)  done = 1;
         for i  1 to nprocs-1  do
            SEND(done, 1, I, DONE);
         endfor
       endif
    endwhile
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Multithreading Within a Processor

• Until now, we have executed multiple threads of an
   application on different processors – can multiple
   threads execute concurrently on the same processor?

• Why is this desireable?
 inexpensive – one CPU, no external interconnects
 no remote or coherence misses (more capacity misses)

• Why does this make sense?
 most processors can’t find enough work – peak IPC
     is 6, average IPC is 1.5!
 threads can share resources  we can increase
     threads without a corresponding linear increase in area
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How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
   cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
   in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
   cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle
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Performance Implications of SMT

• Single thread performance is likely to go down (caches,
   branch predictors, registers, etc. are shared) – this effect
   can be mitigated by trying to prioritize one thread

• With eight threads in a processor with many resources,
   SMT yields throughput improvements of roughly 2-4
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SIMD Processors

• Single instruction, multiple data

• Such processors offer energy efficiency because a single
   instruction fetch can trigger many data operations

• Such data parallelism may be useful for many
   image/sound and numerical applications
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GPUs

• Initially developed as graphics accelerators; now viewed
   as one of the densest compute engines available

• Many on-going efforts to run non-graphics workloads on
   GPUs, i.e., use them as general-purpose GPUs or GPGPUs

• C/C++ based programming platforms enable wider use
   of GPGPUs – CUDA from NVidia and OpenCL from an
   industry consortium

• A heterogeneous system has a regular host CPU and a
   GPU that handles (say) CUDA code (they can both be
   on the same chip)
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GPUs
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The GPU Architecture

• SIMT – single instruction, multiple thread; a GPU has
   many SIMT cores

• A large data-parallel operation is partitioned into many
   thread blocks (one per SIMT core); a thread block is
   partitioned into many warps (one warp running at a
   time in the SIMT core); a warp is partitioned across many
   in-order pipelines (each is called a SIMD lane)

• A SIMT core can have multiple active warps at a time,
   i.e., the SIMT core stores the registers for each warp;
   warps can be context-switched at low cost; a warp
   scheduler keeps track of runnable warps and schedules
   a new warp if the currently running warp stalls
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The GPU Architecture
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Architecture Features

• Simple in-order pipelines that rely on thread-level parallelism
   to hide long latencies

• Many registers (~1K) per in-order pipeline (lane) to support
   many active warps

• When a branch is encountered, some of the lanes proceed
   along the “then” case depending on their data values;
   later, the other lanes evaluate the “else” case; a branch
   cuts the data-level parallelism by half (branch divergence)

• When a load/store is encountered, the requests from all
   lanes are coalesced into a few 128B cache line requests;
   each request may return at a different time (mem divergence)
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GPU Memory Hierarchy

• Each SIMT core has a private L1 cache (shared by the
   warps on that core)

• A large L2 is shared by all SIMT cores; each L2 bank
   services a subset of all addresses

• Each L2 partition is connected to its own memory
   controller and memory channel

• The GDDR5 memory system runs at higher frequencies,
   and uses chips with more banks, wide IO, and better
   power delivery networks

• A portion of GDDR5 memory is private to the GPU and the
   rest is accessible to the host CPU (the GPU performs copies)
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Accelerators - Tesla FSD

Image Source: Tesla
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Role of Disks

• Activities external to the CPU/memory are typically 
   orders of magnitude slower

• Example: while CPU performance has improved by 50%
   per year, disk latencies have improved by 10% every year

• Typical strategy on I/O: switch contexts and work on
   something else

• Other metrics, such as bandwidth, reliability, availability,
   and capacity, often receive more attention than performance
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Magnetic Disks

• A magnetic disk consists of 1-12 platters (metal or glass
   disk covered with magnetic recording material on both
   sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric tracks (5-30K) and
   each track is divided into sectors (100 – 500 per track,
   each about 512 bytes) 

• A movable arm holds the read/write heads for each disk
   surface and moves them all in tandem – a cylinder of data
   is accessible at a time
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Disk Latency

• To read/write data, the arm has to be placed on the
   correct track – this seek time usually takes 5 to 12 ms
   on average – can take less if there is spatial locality

• Rotational latency is the time taken to rotate the correct
   sector under the head – average is typically more than
   2 ms (15,000 RPM)

• Transfer time is the time taken to transfer a block of bits
   out of the disk and is typically 3 – 65 MB/second

• A disk controller maintains a disk cache (spatial locality
   can be exploited) and sets up the transfer on the bus
   (controller overhead)
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Defining Reliability and Availability

• A system toggles between
 Service accomplishment: service matches specifications
 Service interruption: service deviates from specs

• The toggle is caused by failures and restorations 

• Reliability measures continuous service accomplishment
   and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches
   specifications, expressed as  MTTF / (MTTF + MTTR)
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RAID

• Reliability and availability are important metrics for disks

• RAID: redundant array of inexpensive (independent) disks

• Redundancy can deal with one or more failures

• Each sector of a disk records check information that allows
   it to determine if the disk has an error or not (in other words,
   redundancy already exists within a disk)

• When the disk read flags an error, we turn elsewhere for
   correct data
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RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
   uses an array of disks and stripes (interleaves) data
   across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
   happens to two disks

• Reads to the mirror may happen only when the primary
   disk fails – or, you may try to read both together and the
   quicker response is accepted

• Expensive solution: high reliability at twice the cost
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RAID 3

• Data is bit-interleaved across several disks and a separate
   disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
   …, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
   read more than a byte at a time) and for any write, 9 disks
   must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
   redundancy (overhead: 12.5%), low task-level parallelism
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RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
   data from a single disk on a read – in case of a disk error,
   read all 9 disks

• Block interleaving reduces thruput for a single request (as
   only a single disk drive is servicing the request), but
   improves task-level parallelism as other disk drives are
   free to service other requests

• On a write, we access the disk that stores the data and the
   parity disk – parity information can be updated simply by
   checking if the new data differs from the old data
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RAID 5

• If we have a single disk for parity, multiple writes can not
   happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
   writes
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RAID Summary

• RAID 1-5 can tolerate a single fault – mirroring (RAID 1)
   has a 100% overhead, while parity (RAID 3, 4, 5) has 
   modest overhead

• Can tolerate multiple faults by having multiple check
   functions – each additional check can cost an additional
   disk (RAID 6)

• RAID 6 and RAID 2 (memory-style ECC) are not
   commercially employed
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Memory Protection

• Most common approach: SECDED – single error correction,
   double error detection – an 8-bit code for every 64-bit word
   -- can correct a single error in any 64-bit word – also used
   in caches

• Extends a 64-bit memory channel to a 72-bit channel and
   requires ECC DIMMs (e.g., a word is fetched from 9 chips 
   instead of 8)

• Chipkill is a form of error protection where failures in an
   entire memory chip can be corrected 
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Computation Errors – TMR

• Errors in ALUs and cores are typically handled by
   performing the computation n times and voting for the
   correct answer

• n=3 is common and is referred to as triple modular
   redundancy
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