
1

Lecture 27: Pot-Pourri

• Today’s topics:
 Synchronization
 Consistency Models
 Shared memory vs message-passing
 Simultaneous multi-threading (SMT)
 GPUs
 Accelerators
 Disks and reliability

2

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
 of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
 status of that block – all cache controllers monitor the
 shared bus so they can update the sharing status of the
 block, if necessary

 Write-invalidate: a processor gains exclusive access of
 a block before writing by invalidating all other copies
 Write-update: when a processor writes, it updates other
 shared copies of that block

3

Constructing Locks

• Applications have phases (consisting of many instructions)
 that must be executed atomically, without other parallel
 processes modifying the data

• A lock surrounding the data/code ensures that only one
 program can be in a critical section at a time

• The hardware must provide some basic primitives that
 allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions

4

Synchronization

• The simplest hardware primitive that greatly facilitates
 synchronization implementations (locks, barriers, etc.)
 is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
 memory location into register and write 1 into memory
 (if memory has 0, lock is free)

• lock: t&s register, location
 bnz register, lock
 CS
 st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS

5

Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
 (a write will eventually be seen by other processors), and
 (ii) write serialization (all processors see writes to the
 same location in the same order)

• The consistency model defines the ordering of writes and
 reads to different memory locations – the hardware
 guarantees a certain consistency model and the
 programmer attempts to write correct programs with
 those assumptions

6

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
 coherence

Initially A = B = 0
 P1 P2
A  1 B  1
 … …
if (B == 0) if (A == 0)
 Crit.Section Crit.Section

7

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
 coherence

Initially A = B = 0
 P1 P2
A  1 B  1
 … …
if (B == 0) if (A == 0)
 Crit.Section Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

8

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
 of the execution is achieveable by maintaining program
 order within a processor and interleaving accesses by
 different processors in an arbitrary fashion

• The multiprocessor in the previous example is not
 sequentially consistent

• Can implement sequential consistency by requiring the
 following: program order, write serialization, everyone has
 seen an update before a value is read – very intuitive for
 the programmer, but extremely slow

9

Relaxed Consistency

• Sequential consistency is very slow

• The programming complications/surprises are caused when the
 program has race conditions (two threads dealing with same
 data and at least one of the threads is modifying the data)

• If programmers are disciplined and enforce mutual exclusion
 when dealing with shared data, we can allow some re-orderings
 and higher performance

• This is effective at balancing performance & programming effort

10

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence  simpler hardware
• Explicit communication  easier for the programmer to
 restructure code
• Software-controlled caching
• Sender can initiate data transfer

11

Ocean Kernel

Procedure Solve(A)
begin
 diff = done = 0;
 while (!done) do
 diff = 0;
 for i  1 to n do
 for j  1 to n do
 temp = A[i,j];
 A[i,j]  0.2 * (A[i,j] + neighbors);
 diff += abs(A[i,j] – temp);
 end for
 end for
 if (diff < TOL) then done = 1;
 end while
end procedure

.
.

Row 1

Row k

Row 2k

Row 3k
…

12

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin
 read(n); read(nprocs);
 A  G_MALLOC();
 initialize (A);
 CREATE (nprocs,Solve,A);
 WAIT_FOR_END (nprocs);
end main

procedure Solve(A)
 int i, j, pid, done=0;
 float temp, mydiff=0;
 int mymin = 1 + (pid * n/procs);
 int mymax = mymin + n/nprocs -1;
 while (!done) do
 mydiff = diff = 0;
 BARRIER(bar1,nprocs);
 for i  mymin to mymax
 for j  1 to n do
 …
 endfor
 endfor
 LOCK(diff_lock);
 diff += mydiff;
 UNLOCK(diff_lock);
 BARRIER (bar1, nprocs);
 if (diff < TOL) then done = 1;
 BARRIER (bar1, nprocs);
 endwhile

13

Message Passing Model

main()
 read(n); read(nprocs);
 CREATE (nprocs-1, Solve);
 Solve();
 WAIT_FOR_END (nprocs-1);

procedure Solve()
 int i, j, pid, nn = n/nprocs, done=0;
 float temp, tempdiff, mydiff = 0;
 myA  malloc(…)
 initialize(myA);
 while (!done) do
 mydiff = 0;
 if (pid != 0)
 SEND(&myA[1,0], n, pid-1, ROW);
 if (pid != nprocs-1)
 SEND(&myA[nn,0], n, pid+1, ROW);
 if (pid != 0)
 RECEIVE(&myA[0,0], n, pid-1, ROW);
 if (pid != nprocs-1)
 RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i  1 to nn do
 for j  1 to n do
 …
 endfor
 endfor
 if (pid != 0)
 SEND(mydiff, 1, 0, DIFF);
 RECEIVE(done, 1, 0, DONE);
 else
 for i  1 to nprocs-1 do
 RECEIVE(tempdiff, 1, *, DIFF);
 mydiff += tempdiff;
 endfor
 if (mydiff < TOL) done = 1;
 for i  1 to nprocs-1 do
 SEND(done, 1, I, DONE);
 endfor
 endif
 endwhile

14

Multithreading Within a Processor

• Until now, we have executed multiple threads of an
 application on different processors – can multiple
 threads execute concurrently on the same processor?

• Why is this desireable?
 inexpensive – one CPU, no external interconnects
 no remote or coherence misses (more capacity misses)

• Why does this make sense?
 most processors can’t find enough work – peak IPC
 is 6, average IPC is 1.5!
 threads can share resources  we can increase
 threads without a corresponding linear increase in area

15

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
 cycle, especially when there is a cache miss
• Fine-grained multithreading can only issue instructions from a single thread
 in a cycle – can not find max work every cycle, but cache misses can be tolerated
• Simultaneous multithreading can issue instructions from any thread every
 cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

16

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
 branch predictors, registers, etc. are shared) – this effect
 can be mitigated by trying to prioritize one thread

• With eight threads in a processor with many resources,
 SMT yields throughput improvements of roughly 2-4

17

SIMD Processors

• Single instruction, multiple data

• Such processors offer energy efficiency because a single
 instruction fetch can trigger many data operations

• Such data parallelism may be useful for many
 image/sound and numerical applications

18

GPUs

• Initially developed as graphics accelerators; now viewed
 as one of the densest compute engines available

• Many on-going efforts to run non-graphics workloads on
 GPUs, i.e., use them as general-purpose GPUs or GPGPUs

• C/C++ based programming platforms enable wider use
 of GPGPUs – CUDA from NVidia and OpenCL from an
 industry consortium

• A heterogeneous system has a regular host CPU and a
 GPU that handles (say) CUDA code (they can both be
 on the same chip)

19

GPUs

20

The GPU Architecture

• SIMT – single instruction, multiple thread; a GPU has
 many SIMT cores

• A large data-parallel operation is partitioned into many
 thread blocks (one per SIMT core); a thread block is
 partitioned into many warps (one warp running at a
 time in the SIMT core); a warp is partitioned across many
 in-order pipelines (each is called a SIMD lane)

• A SIMT core can have multiple active warps at a time,
 i.e., the SIMT core stores the registers for each warp;
 warps can be context-switched at low cost; a warp
 scheduler keeps track of runnable warps and schedules
 a new warp if the currently running warp stalls

21

The GPU Architecture

22

Architecture Features

• Simple in-order pipelines that rely on thread-level parallelism
 to hide long latencies

• Many registers (~1K) per in-order pipeline (lane) to support
 many active warps

• When a branch is encountered, some of the lanes proceed
 along the “then” case depending on their data values;
 later, the other lanes evaluate the “else” case; a branch
 cuts the data-level parallelism by half (branch divergence)

• When a load/store is encountered, the requests from all
 lanes are coalesced into a few 128B cache line requests;
 each request may return at a different time (mem divergence)

23

GPU Memory Hierarchy

• Each SIMT core has a private L1 cache (shared by the
 warps on that core)

• A large L2 is shared by all SIMT cores; each L2 bank
 services a subset of all addresses

• Each L2 partition is connected to its own memory
 controller and memory channel

• The GDDR5 memory system runs at higher frequencies,
 and uses chips with more banks, wide IO, and better
 power delivery networks

• A portion of GDDR5 memory is private to the GPU and the
 rest is accessible to the host CPU (the GPU performs copies)

24

Accelerators - Tesla FSD

Image Source: Tesla

25

Role of Disks

• Activities external to the CPU/memory are typically
 orders of magnitude slower

• Example: while CPU performance has improved by 50%
 per year, disk latencies have improved by 10% every year

• Typical strategy on I/O: switch contexts and work on
 something else

• Other metrics, such as bandwidth, reliability, availability,
 and capacity, often receive more attention than performance

26

Magnetic Disks

• A magnetic disk consists of 1-12 platters (metal or glass
 disk covered with magnetic recording material on both
 sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric tracks (5-30K) and
 each track is divided into sectors (100 – 500 per track,
 each about 512 bytes)

• A movable arm holds the read/write heads for each disk
 surface and moves them all in tandem – a cylinder of data
 is accessible at a time

27

Disk Latency

• To read/write data, the arm has to be placed on the
 correct track – this seek time usually takes 5 to 12 ms
 on average – can take less if there is spatial locality

• Rotational latency is the time taken to rotate the correct
 sector under the head – average is typically more than
 2 ms (15,000 RPM)

• Transfer time is the time taken to transfer a block of bits
 out of the disk and is typically 3 – 65 MB/second

• A disk controller maintains a disk cache (spatial locality
 can be exploited) and sets up the transfer on the bus
 (controller overhead)

28

Defining Reliability and Availability

• A system toggles between
 Service accomplishment: service matches specifications
 Service interruption: service deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment
 and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches
 specifications, expressed as MTTF / (MTTF + MTTR)

29

RAID

• Reliability and availability are important metrics for disks

• RAID: redundant array of inexpensive (independent) disks

• Redundancy can deal with one or more failures

• Each sector of a disk records check information that allows
 it to determine if the disk has an error or not (in other words,
 redundancy already exists within a disk)

• When the disk read flags an error, we turn elsewhere for
 correct data

30

RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
 uses an array of disks and stripes (interleaves) data
 across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
 happens to two disks

• Reads to the mirror may happen only when the primary
 disk fails – or, you may try to read both together and the
 quicker response is accepted

• Expensive solution: high reliability at twice the cost

31

RAID 3

• Data is bit-interleaved across several disks and a separate
 disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
 …, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
 read more than a byte at a time) and for any write, 9 disks
 must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
 redundancy (overhead: 12.5%), low task-level parallelism

32

RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
 data from a single disk on a read – in case of a disk error,
 read all 9 disks

• Block interleaving reduces thruput for a single request (as
 only a single disk drive is servicing the request), but
 improves task-level parallelism as other disk drives are
 free to service other requests

• On a write, we access the disk that stores the data and the
 parity disk – parity information can be updated simply by
 checking if the new data differs from the old data

33

RAID 5

• If we have a single disk for parity, multiple writes can not
 happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
 writes

34

RAID Summary

• RAID 1-5 can tolerate a single fault – mirroring (RAID 1)
 has a 100% overhead, while parity (RAID 3, 4, 5) has
 modest overhead

• Can tolerate multiple faults by having multiple check
 functions – each additional check can cost an additional
 disk (RAID 6)

• RAID 6 and RAID 2 (memory-style ECC) are not
 commercially employed

35

Memory Protection

• Most common approach: SECDED – single error correction,
 double error detection – an 8-bit code for every 64-bit word
 -- can correct a single error in any 64-bit word – also used
 in caches

• Extends a 64-bit memory channel to a 72-bit channel and
 requires ECC DIMMs (e.g., a word is fetched from 9 chips
 instead of 8)

• Chipkill is a form of error protection where failures in an
 entire memory chip can be corrected

36

Computation Errors – TMR

• Errors in ALUs and cores are typically handled by
 performing the computation n times and voting for the
 correct answer

• n=3 is common and is referred to as triple modular
 redundancy

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36

