
1/19/11

1

CS6963 

L2: Hardware Execution Model and
Overview

January 19, 2011

Administrative
•  First assignment out, due Friday at 5PM

–  Use handin on CADE machines to submit
•  “handin cs6963 lab1 <probfile>”
•  The file <probfile> should be a gzipped tar file of the

CUDA program and output
–  Any questions?

•  Grad lab is MEB 3161, must be sitting at machine
•  Partners for people who have project ideas
•  Mailing lists now visible:

–  cs6963s11-discussion@list.eng.utah.edu
•  Please use for all questions suitable for the whole class
•  Feel free to answer your classmates questions!

–  cs6963s11-teach@list.eng.utah.edu
•  Please use for questions to Sriram and me

CS6963  2 
L2: Hardware Overview 

Outline
•  Execution Model
•  Host Synchronization
•  Single Instruction Multiple Data (SIMD)
•  Multithreading
•  Scheduling instructions for SIMD, multithreaded

multiprocessor
•  How it all comes together

•  Reading:
 Ch 3 in Kirk and Hwu,

 http://courses.ece.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf

 Ch 4 in Nvidia CUDA 3.2 Programming Guide
CS6963  3 

L2: Hardware Overview 

What is an Execution Model?
•  Parallel programming model

–  Software technology for expressing parallel algorithms that
target parallel hardware

–  Consists of programming languages, libraries, annotations, …
–  Defines the semantics of software constructs running on

parallel hardware
•  Parallel execution model

–  Exposes an abstract view of hardware execution,
generalized to a class of architectures.

–  Answers the broad question of how to structure and name
data and instructions and how to interrelate the two.

–  Allows humans to reason about harnessing, distributing, and
controlling concurrency.

•  Today’s lecture will help you reason about the target
architecture while you are developing your code
–  How will code constructs be mapped to the hardware?

CS6963 
4 

L2: Hardware Overview 

1/19/11

2

NVIDIA GPU Execution Model
I. SIMD Execution of

warpsize=M threads (from
single block)
–  Result is a set of instruction

streams roughly equal to #
blocks in thread divided by
warpsize

II. Multithreaded Execution
across different instruction
streams within block
–  Also possibly across different

blocks if there are more blocks
than SMs

III. Each block mapped to
single SM
–  No direct interaction across

SMs

Device 

Mul*processor N 
Mul*processor 2 

Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 

CS6963  5 
L2: Hardware Overview 

Data Cache, Fermi only 

SIMT = Single-Instruction Multiple Threads

•  Coined by Nvidia
•  Combines SIMD execution within a

Block (on an SM) with SPMD execution
across Blocks (distributed across SMs)

•  Terms to be defined…

CS6963 
6 

L2: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

7 
L2: Hardware Overview 

CUDA Thread Block Overview
•  All threads in a block execute the same

kernel program (SPMD)
•  Programmer declares block:

–  Block size 1 to 512 concurrent threads
–  Block shape 1D, 2D, or 3D
–  Block dimensions in threads

•  Threads have thread id numbers within
block
–  Thread program uses thread id to select

work and address shared data

•  Threads in the same block share data and
synchronize while doing their share of the
work

•  Threads in different blocks cannot
cooperate
–  Each block can execute in any order

relative to other blocks!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA

8 
L2: Hardware Overview 

Calling a Kernel Function –
Thread Creation in Detail

•  A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

•  Any call to a kernel function is asynchronous from CUDA
1.0 on

•  Explicit synchronization needed for blocking continued
host execution (next slide)

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL Spring 2010, University of Illinois, Urbana‐Champaign 

Only for data that is not statically allocated

1/19/11

3

Host Blocking: Common Examples

•  How do you guarantee the GPU is done and results are ready?
•  Timing example (excerpt from simpleStreams in CUDA SDK):

•  A bunch of runs in a row example (excerpt from transpose in
CUDA SDK)

CS6963 
9 

L2: Hardware Overview 

cudaEvent_t start_event, stop_event;
cudaEventCreate(&start_event);
cudaEventCreate(&stop_event);
cudaEventRecord(start_event, 0);
 init_array<<<blocks, threads>>>(d_a, d_c, niterations);
 cudaEventRecord(stop_event, 0);
 cudaEventSynchronize(stop_event);
 cudaEventElapsedTime(&elapsed_time, start_event, stop_event);

for (int i = 0; i < numIterations; ++i) {
 transpose<<< grid, threads >>>(d_odata, d_idata, size_x, size_y);
}
cudaThreadSynchronize();

CS6963 
10 

L2: Hardware Overview 

Predominant Control Mechanisms:
Some definitions

Name Meaning Examples

Single Instruction,
Multiple Data
(SIMD)

A single thread of
control, same
computation applied
across “vector” elts

Array notation as in
Fortran 95:
A[1:n] = A[1:n] + B[1:n]
Kernel fns w/in block:
compute<<<gs,bs,msize>>>

Multiple Instruction,
Multiple Data
(MIMD)

Multiple threads of
control, processors
periodically synch

OpenMP parallel loop:
forall (i=0; i<n; i++)
Kernel fns across blocks
compute<<<gs,bs,msize>>>

Single Program,
Multiple Data
(SPMD)

Multiple threads of
control, but each
processor executes
same code

Processor-specific code:
if ($threadIdx.x == 0) {
}

CS6963 
11 

L2: Hardware Overview 

SIMD vs. MIMD Processors
Streaming Multiprocessor (SM)

•  Streaming Multiprocessor (SM)
–  8 Streaming Processors (SP)
–  2 Super Function Units (SFU)

•  Multi-threaded instruction dispatch
–  1 to 512 threads active
–  Shared instruction fetch per 32 threads
–  Cover latency of texture/memory loads

•  20+ GFLOPS
•  16 KB shared memory
•  DRAM texture and memory access

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

CS6963 
12 

L2: Hardware Overview 

1/19/11

4

I. SIMD

•  Motivation:
– Data-parallel computations map well to

architectures that apply the same
computation repeatedly to different data

– Conserve control units and simplify
coordination

•  Analogy to light switch

CS6963 
13 

L2: Hardware Overview 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucXon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 

CS6963 
14 

L2: Hardware Overview 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucXon 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

LDC 0, &(dout+ 
                 threadIdx.x) 

threadIdx.x threadIdx.x 

+  +  + 

&dout  &dout  &dout 

Each “core” 
iniXalizes data 
from addr 
based on its 

own threadIdx 

CS6963  15 
L2: Hardware Overview 

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucXon 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

/* int i=0; */ 
LDC 0, R3 

Each “core” 
iniXalizes its 
own R3 

0  0  0 

CS6963  16 
L2: Hardware Overview 

1/19/11

5

Example SIMD Execution
“Count 6” kernel function
d_out[threadIdx.x] = 0;
for (int i=0; i<SIZE/BLOCKSIZE; i++) {
 int val = d_in[i*BLOCKSIZE + threadIdx.x];
 d_out[threadIdx.x] += compare(val, 6);
}

P0 
InstrucXon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* i*BLOCKSIZE
 + threadIdx */
LDC BLOCKSIZE,R2
MUL R1, R3, R2
ADD R4, R1, RO 

Each “core” 
performs  same 
operaXons from 
its own registers 

Etc. 

CS6963 
17 

L2: Hardware Overview  CS6963 

Overview of SIMD Programming
•  Vector architectures
•  Early examples of SIMD supercomputers
•  TODAY Mostly

–  Multimedia extensions such as SSE-3
–  Graphics and games processors (example, IBM Cell)
–  Accelerators (e.g., ClearSpeed)

•  Is there a dominant SIMD programming model?
–  Unfortunately, NO!!!

•  Why not?
–  Vector architectures were programmed by scientists
–  Multimedia extension architectures are programmed

by systems programmers (almost assembly language!)
or code is automatically generated by a compiler

–  GPUs are programmed by games developers (domain-
specific)

–  Accelerators typically use their own proprietary tools
18 

L2: Hardware Overview 

CS6963 

Aside: Multimedia Extensions like SSE-4
•  COMPLETELY DIFFERENT ARCHITECTURE!
•  At the core of multimedia extensions

–  SIMD parallelism
–  Variable-sized data fields:

 Vector length = register width / type size

0 127
V31 

. . .

1 2 3 4 5 6 13 12 11 10 9 8 7 16 15 14

1

1

2

2

3

3

4

4

5 6 7 8

V0 

V1 

V2 

V3 

V4 

V5 

Sixteen 8‐bit Operands 

Eight 16‐bit Operands 

Four 32‐bit Operands 

Example: PowerPC AltiVec

WIDE UNIT 

19 
L2: Hardware Overview  CS6963 

Aside: Multimedia Extensions
Scalar vs. SIMD Operation

Scalar: add r1,r2,r3

1

2
+

3

r3

r2

r1

SIMD: vadd<sws> v1,v2,v3 2 3 4 1

2 3 4 1
+ + + +

4 6 8 2

v3

v2

v1

lanes 20 
L2: Hardware Overview 

1/19/11

6

II. Multithreading: Motivation

•  Each arithmetic instruction includes the
following sequence

•  Memory latency, the time in cycles to
access memory, limits utilization of
compute engines

Ac*vity  Cost  Note 

Load operands  As much as O(100) cycles  Depends on locaXon 

Compute  O(1) cycles  Accesses registers 

Store result  As much as O(100) cycles  Depends on locaXon 

CS6963  21 
L2: Hardware Overview 

Thread-Level Parallelism
•  Motivation:

–  a single thread leaves a processor under-utilized
for most of the time

–  by doubling processor area, single thread
performance barely improves

•  Strategies for thread-level parallelism:
–  multiple threads share the same large processor

reduces under-utilization, efficient resource
allocation

 Multi-Threading
–  each thread executes on its own mini processor

simple design, low interference between threads
Multi-Processing

Slide source: Al Davis 

CS6963 
22 

L2: Hardware Overview 

What Resources are Shared?

•  Multiple threads are
simultaneously active (in other
words, a new thread can start
without a context switch)

•  For correctness, each thread
needs its own program counter
(PC), and its own logical regs (on
this hardware, each thread w/in
block gets its own physical regs)

•  Functional units, instruction unit,
i-cache shared by all threads

• 

Warp 
(InstrucXon 
Stream) 

In
st
ru
cX
on

s 
Is
su
ed

 

CS6963  23 
L2: Hardware Overview 

Aside: Multithreading

•  Historically, supercomputers targeting non-
numeric computation
•  HEP, Tera MTA, Cray XMT

•  Now common in commodity microprocessors
– Simultaneous multithreading:

•  Multiple threads may come from different
streams, can issue from multiple streams in
single instruction issue

•  Alpha 21464 and Pentium 4 are examples
•  CUDA somewhat simplified:

–  A full warp scheduled at a time
CS6963  24 

L2: Hardware Overview 

1/19/11

7

How is context switching so efficient?

•  Large register file (16K registers/block)
–  Each thread assigned a “window” of physical registers
–  Works if entire thread block’s registers do not exceed

capacity (otherwise, compiler fails)
–  May be able to schedule from multiple blocks simultaneously

•  Similarly, shared memory requirements must not exceed
capacity for all blocks simultaneously scheduled

CS6963  L2: Hardware Overview 

Register File 

Block 0
Thread 0

Block 0
Thread 1

Block 0
Thread 256

Block 8
Thread 0

Block 8
Thread 1

Block 8
Thread 256

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Example: Thread Scheduling on G80

•  Each Block is executed as 32-
thread Warps
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

… Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1

Streaming Multiprocessor

Shared Memory

…
t0 t1 t2 … t31

… Block 1 Warps

26 
L2: Hardware Overview 

SM Warp Scheduling
•  SM hardware implements zero-

overhead Warp scheduling
–  Warps whose next instruction has

its operands ready for consumption
are eligible for execution

–  Eligible Warps are selected for
execution on a prioritized scheduling
policy

–  All threads in a Warp execute the
same instruction when selected

•  4 clock cycles needed to dispatch
the same instruction for all threads
in a Warp in G80
–  If one global memory access is

needed for every 4 instructions
–  A minimum of 13 Warps are needed

to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

CS6963  27 
L2: Hardware Overview 

SM Instruction Buffer – Warp
Scheduling

•  Fetch one warp instruction/cycle
–  from instruction cache
–  into any instruction buffer slot

•  Issue one “ready-to-go” warp
instruction/cycle
–  from any warp - instruction buffer slot
–  operand scoreboarding used to prevent

hazards
•  Issue selection based on round-robin/

age of warp
•  SM broadcasts the same instruction to

32 Threads of a Warp

I $

Multithreaded
Instruction Buffer

R
F C $

L 1 Shared
Mem

Operand Select

MAD SFU

CS6963  28 
L2: Hardware Overview 

1/19/11

8

Scoreboarding

•  How to determine if a thread is ready to
execute?

•  A scoreboard is a table in hardware that
tracks
–  instructions being fetched, issued, executed
–  resources (functional units and operands) they

need
– which instructions modify which registers

•  Old concept from CDC 6600 (1960s) to
separate memory and computation

CS6963  29 
L2: Hardware Overview 

Scoreboarding
•  All register operands of all instructions in the

Instruction Buffer are scoreboarded
–  Status becomes ready after the needed values are

deposited
–  prevents hazards
–  cleared instructions are eligible for issue

•  Decoupled Memory/Processor pipelines
–  any thread can continue to issue instructions until

scoreboarding prevents issue
–  allows Memory/Processor ops to proceed in shadow of

Memory/Processor ops

CS6963  30 
L2: Hardware Overview 

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  CompuXng 

Warp 3  95  CompuXng 

Warp 8  11  Operands 
ready to go 

… 

Schedule
at time k

CS6963  31 
L2: Hardware Overview 

Scoreboarding from Example

•  Consider three separate
instruction streams: warp1,
warp3 and warp8

warp 8 instruction 11

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

warp 3 instruction 96

t=k

t=k+1

t=k+2

t=l>k

t=l+1

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  Ready to 
write result  

Warp 3  95  CompuXng 

Warp 8  11  CompuXng 

… 

Schedule
at time k+1

CS6963  32 
L2: Hardware Overview 

1/19/11

9

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

III. How it Comes Together
G80 Example: Executing Thread Blocks

•  Threads are assigned to
Streaming
Multiprocessors in block
granularity
–  Up to 8 blocks to

each SM as
resource allows

–  SM in G80 can take
up to 768 threads
•  Could be 256

(threads/block)
* 3 blocks

•  Or 128
(threads/block)
* 6 blocks, etc.

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

•  Threads run concurrently
–  SM maintains thread/block id #s
–  SM manages/schedules thread execution

33 
L2: Hardware Overview 

Details of Mapping
•  If #blocks in a grid exceeds number of SMs,

–  multiple blocks mapped to an SM
–  treated independently
–  provides more warps to scheduler so good as long as

resources not exceeded
–  Possibly context switching overhead when

scheduling between blocks (registers and shared
memory)

•  Thread Synchronization (more next time)
–  Within a block, threads observe SIMD model, and

synchronize using __syncthreads()
–  Across blocks, interaction through global memory

CS6963  34 
L2: Hardware Overview 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Transparent Scalability
•  Hardware is free to assigns blocks to

any processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

time

35 
L2: Hardware Overview 

Summary of Lecture
•  SIMT = SIMD+SPMD
•  SIMD execution model within a warp, and

conceptually within a block
•  MIMD execution model across blocks
•  Multithreading of SMs used to hide memory

latency
•  Motivation for lots of threads to be

concurrently active
•  Scoreboarding used to track warps ready to

execute
CS6963  36 

L2: Hardware Overview 

1/19/11

10

What’s Coming

•  Next time:
– Correctness of parallelization

•  Next week:
– Managing the memory hierarchy
– Next assignment

CS6963  37 
L2: Hardware Overview 

