

Outline	What is an Execution Model?
 Execution Model Host Synchronization Single Instruction Multiple Data (SIMD) Multithreading Scheduling instructions for SIMD, multithreaded multiprocessor How it all comes together Reading: 	 Parallel programming model Software technology for <i>expressing parallel algorithms</i> that target parallel hardware Consists of programming languages, libraries, annotations, Defines the semantics of software constructs running on parallel hardware Parallel execution model Exposes an abstract view of <i>hardware execution</i>, generalized to a class of architectures. Answers the broad question of how to structure and name data and instructions and how to interrelate the two. Allows humans to reason about harnessing, distributing, and controlling concurrency.
Ch 3 in Kirk and Hwu, <u>http://courses.cce.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf</u> Ch 4 in Nvidia CUDA 3.2 Programming Guide	 Today's lecture will help you reason about the target architecture while you are developing your code How will code constructs be manual to the bardware?
CS6963 3 L2: Hardware Overview UNIVERSITY	4 CS6963 L2: Hardware Overview UNIVE

UNIVERSITY OF UTAH

UNIVERSITY

2

	Host Blocking: Common Examples		
•	How do you guarantee the GPU is done and results are ready?		
•	Timing example (excerpt from simpleStreams in CUDA SDK):		
	cudaEvent_t start_event, stop_event; cudaEventCreate(&start_event); cudaEventCreate(&stop_event); cudaEventRecord(start_event, 0); init_array<< cudaEventRecord(stop_event, 0); cudaEventRecord(stop_event, 0); cudaEventRecord(stop_event, 0); 		
•	A bunch of runs in a row example (excerpt from transpose in		
	CUDA SDK)		
<pre>for (int i = 0; i < numIterations; ++i) { transpose<<< grid, threads >>>(d_odata, d_idata, size_x, size_y); } cudaThreadSynchronize();</pre>			
	9 C55963 12: Hardware Overview UNIVERSITY OF UTAH		

Predominant Control Mechanisms:				
Some definitions				
Name	Meaning	Examples		
Single Instruction, Multiple Data (SIMD)	A single thread of control, same computation applied across "vector" elts	Array notation as in Fortran 95: A[1:n] = A[1:n] + B[1:n] Kernel fns w/in block: compute<		
Multiple Instruction, Multiple Data (MIMD)	Multiple threads of control, processors periodically synch	OpenMP parallel loop: forall (i=0; i <n; i++)<br="">Kernel fns across blocks compute<<<gs,bs,msize>>></gs,bs,msize></n;>		
Single Program, Multiple Data (SPMD)	Multiple threads of control, but each processor executes same code	<pre>Processor-specific code: if (\$threadIdx.x == 0) { }</pre>		
C56963	10 L2: Hardware Overview	UNIVERSITY OF UTAH		

