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CS6963 

L2: Hardware Execution Model and 
Overview 

January 19, 2011 

Administrative 
•  First assignment out, due Friday at 5PM 

–  Use handin on CADE machines to submit 
•  “handin cs6963 lab1 <probfile>” 
•   The file <probfile> should be a gzipped tar file of the 

CUDA program and output  
–  Any questions? 

•  Grad lab is MEB 3161, must be sitting at machine 
•  Partners for people who have project ideas 
•  Mailing lists now visible: 

–  cs6963s11-discussion@list.eng.utah.edu 
•  Please use for all questions suitable for the whole class 
•  Feel free to answer your classmates questions! 

–  cs6963s11-teach@list.eng.utah.edu 
•  Please use for questions to Sriram and me 
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Outline 
•  Execution Model 
•  Host Synchronization 
•  Single Instruction Multiple Data (SIMD) 
•  Multithreading 
•  Scheduling instructions for SIMD, multithreaded 

multiprocessor  
•  How it all comes together 

•  Reading:  
   Ch 3 in Kirk and Hwu,  

 http://courses.ece.illinois.edu/ece498/al/textbook/Chapter3-CudaThreadingModel.pdf 

 Ch 4 in Nvidia CUDA 3.2 Programming Guide 
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What is an Execution Model? 
•  Parallel programming model  

–  Software technology for expressing parallel algorithms that 
target parallel hardware 

–  Consists of programming languages, libraries, annotations, … 
–  Defines the semantics of software constructs running on 

parallel hardware 
•  Parallel execution model 

–  Exposes an abstract view of hardware execution, 
generalized to a class of architectures. 

–  Answers the broad question of how to structure and name 
data and instructions and how to interrelate the two.  

–  Allows humans to reason about harnessing, distributing, and 
controlling concurrency.  

•  Today’s lecture will help you reason about the target 
architecture while you are developing your code 
–  How will code constructs be mapped to the hardware? 

CS6963 
4 

L2: Hardware Overview 



1/19/11 

2 

NVIDIA GPU Execution Model 
I. SIMD Execution of  

warpsize=M threads (from 
single block) 
–  Result is a set of instruction 

streams roughly equal to # 
blocks in thread divided by 
warpsize 

II. Multithreaded Execution 
across different instruction 
streams within block 
–  Also possibly across different 

blocks if there are more blocks 
than SMs 

III. Each block mapped to 
single SM 
–  No direct interaction across 

SMs  

Device 

Mul*processor N 
Mul*processor 2 

Mul*processor 1 

Device memory 

Shared Memory 

Instruc*on 
Unit 

Processor 1 

Registers 

… 
Processor 2 

Registers 

Processor M 

Registers 

Constant 
Cache 

Texture 
Cache 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Data Cache, Fermi only 

SIMT = Single-Instruction Multiple Threads 

•  Coined by Nvidia 
•  Combines SIMD execution within a 

Block (on an SM) with SPMD execution 
across Blocks (distributed across SMs) 

•  Terms to be defined… 

CS6963 
6 

L2: Hardware Overview 

© 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Kirk/NVIDIA and Wen‐mei W. 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2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

7 
L2: Hardware Overview 

CUDA Thread Block Overview 
•  All threads in a block execute the same 

kernel program (SPMD) 
•  Programmer declares block: 

–  Block size 1 to 512 concurrent threads 
–  Block shape 1D, 2D, or 3D 
–  Block dimensions in threads 

•  Threads have thread id numbers within 
block 
–  Thread program uses thread id to select 

work and address shared data 

•  Threads in the same block share data and 
synchronize while doing their share of the 
work 

•  Threads in different blocks cannot 
cooperate 
–  Each block can execute in any order 

relative to other blocks! 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, 
NVIDIA 
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Calling a Kernel Function –  
Thread Creation in Detail 

•  A kernel function must be called with an execution 
configuration: 

__global__ void KernelFunc(...); 

dim3   DimGrid(100, 50);    // 5000 thread blocks  

dim3   DimBlock(4, 8, 8);   // 256 threads per block  

size_t SharedMemBytes = 64; // 64 bytes of shared memory 

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...); 

•  Any call to a kernel function is asynchronous from CUDA 
1.0 on 

•  Explicit synchronization needed for blocking continued 
host execution (next slide) 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE 498AL Spring 2010, University of Illinois, Urbana‐Champaign 

Only for data that is not statically allocated 
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Host Blocking: Common Examples 

•  How do you guarantee the GPU is done and results are ready? 
•  Timing example (excerpt from simpleStreams in CUDA SDK): 

•  A bunch of runs in a row example (excerpt from transpose in 
CUDA SDK) 

CS6963 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cudaEvent_t start_event, stop_event; 
cudaEventCreate(&start_event); 
cudaEventCreate(&stop_event); 
cudaEventRecord(start_event, 0); 
 init_array<<<blocks, threads>>>(d_a, d_c, niterations); 
 cudaEventRecord(stop_event, 0); 
 cudaEventSynchronize(stop_event); 
 cudaEventElapsedTime(&elapsed_time, start_event, stop_event); 

for (int i = 0; i < numIterations; ++i) { 
        transpose<<< grid, threads >>>(d_odata, d_idata, size_x, size_y); 
} 
cudaThreadSynchronize(); 

CS6963 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Predominant Control Mechanisms:  
Some definitions 

Name Meaning Examples 

Single Instruction, 
Multiple Data 
(SIMD) 

A single thread of 
control, same 
computation applied 
across “vector” elts 

Array notation as in 
Fortran 95: 
A[1:n] = A[1:n] + B[1:n] 
Kernel fns w/in block: 
compute<<<gs,bs,msize>>> 

Multiple Instruction, 
Multiple Data 
(MIMD) 

Multiple threads of 
control, processors 
periodically synch  

OpenMP parallel loop: 
forall (i=0; i<n; i++) 
Kernel fns across blocks 
compute<<<gs,bs,msize>>> 

Single Program, 
Multiple Data 
(SPMD) 

Multiple threads of 
control, but each 
processor executes 
same code 

Processor-specific code: 
if ($threadIdx.x == 0) { 
} 

CS6963 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SIMD vs. MIMD Processors 
Streaming Multiprocessor (SM) 

•  Streaming Multiprocessor (SM) 
–  8 Streaming Processors (SP) 
–  2 Super Function Units (SFU) 

•  Multi-threaded instruction dispatch 
–  1 to 512 threads active 
–  Shared instruction fetch per 32 threads 
–  Cover latency of texture/memory loads 

•  20+ GFLOPS 
•  16 KB shared memory 
•  DRAM texture and memory access 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 Data L1 

Streaming Multiprocessor 

Shared Memory 

CS6963 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I. SIMD 

•  Motivation: 
– Data-parallel computations map well to 

architectures that apply the same 
computation repeatedly to different data 

– Conserve control units and simplify 
coordination 

•  Analogy to light switch  

CS6963 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Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 

P0 
InstrucXon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg 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Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 

P0 
InstrucXon 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

LDC 0, &(dout+ 
                 threadIdx.x) 

threadIdx.x threadIdx.x 

+  +  + 

&dout  &dout  &dout 

Each “core” 
iniXalizes data 
from addr 
based on its 

own threadIdx 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Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 

P0 
InstrucXon 

Unit P!  PM‐1 
... 

Memory 

Reg  Reg Reg 

/* int i=0; */ 
LDC 0, R3 

Each “core” 
iniXalizes its 
own R3 

0  0  0 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Example SIMD Execution 
“Count 6” kernel function 
d_out[threadIdx.x] = 0; 
for (int i=0; i<SIZE/BLOCKSIZE; i++) {  
   int val = d_in[i*BLOCKSIZE + threadIdx.x];   
   d_out[threadIdx.x] += compare(val, 6); 
} 

P0 
InstrucXon 

Unit P!  PM‐1 

Reg 

... 

Memory 

Reg  Reg  /* i*BLOCKSIZE   
    + threadIdx    */ 
LDC BLOCKSIZE,R2 
MUL R1, R3, R2 
ADD R4, R1, RO 

Each “core” 
performs  same 
operaXons from 
its own registers 

Etc. 

CS6963 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Overview of SIMD Programming 
•  Vector architectures 
•  Early examples of SIMD supercomputers 
•  TODAY Mostly 

–  Multimedia extensions such as SSE-3 
–  Graphics and games processors (example, IBM Cell) 
–  Accelerators (e.g., ClearSpeed) 

•  Is there a dominant SIMD programming model? 
–  Unfortunately, NO!!! 

•  Why not? 
–  Vector architectures were programmed by scientists 
–  Multimedia extension architectures are programmed 

by systems programmers (almost assembly language!) 
or code is automatically generated by a compiler 

–  GPUs are programmed by games developers (domain-
specific) 

–  Accelerators typically use their own proprietary tools 
18 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Aside: Multimedia Extensions like SSE-4 
•  COMPLETELY DIFFERENT ARCHITECTURE! 
•  At the core of multimedia extensions 

–  SIMD parallelism 
–  Variable-sized data fields:  

 Vector length = register width / type size 

0 127 
V31 

. . . 

1 2 3 4 5 6 13 12 11 10 9 8 7 16 15 14 

1 

1 

2 

2 

3 

3 

4 

4 

5 6 7 8 

V0 

V1 

V2 

V3 

V4 

V5 

Sixteen 8‐bit Operands 

Eight 16‐bit Operands 

Four 32‐bit Operands 

Example: PowerPC AltiVec 

WIDE UNIT 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Aside: Multimedia Extensions 
Scalar vs. SIMD Operation 

Scalar: add r1,r2,r3 

1 

2 
+ 

3 

r3 

r2 

r1 

SIMD: vadd<sws> v1,v2,v3 2 3 4 1 

2 3 4 1 
+ + + + 

4 6 8 2 

v3 

v2 

v1 
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20 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II. Multithreading: Motivation 

•  Each arithmetic instruction includes the 
following sequence 

•  Memory latency, the time in cycles to 
access memory, limits utilization of 
compute engines 

Ac*vity  Cost  Note 

Load operands  As much as O(100) cycles  Depends on locaXon 

Compute  O(1) cycles  Accesses registers 

Store result  As much as O(100) cycles  Depends on locaXon 

CS6963  21 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Thread-Level Parallelism  
•  Motivation:  

–  a single thread leaves a processor under-utilized 
for most of the time  

–  by doubling processor area, single thread 
performance barely improves 

•  Strategies for thread-level parallelism:  
–  multiple threads share the same large processor 

reduces under-utilization, efficient resource 
allocation  

   Multi-Threading  
–  each thread executes on its own mini processor 

simple design, low interference between threads 
Multi-Processing  

Slide source: Al Davis 

CS6963 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What Resources are Shared?  

•  Multiple threads are 
simultaneously active (in other 
words, a new thread can start 
without a context switch)  

•  For correctness, each thread 
needs its own program counter 
(PC), and its own logical regs (on 
this hardware, each thread w/in 
block gets its own physical regs) 

•  Functional units, instruction unit, 
i-cache shared by all threads 

• 

Warp 
(InstrucXon 
Stream) 

In
st
ru
cX
on

s 
Is
su
ed

 

CS6963  23 
L2: Hardware Overview 

Aside: Multithreading 

•  Historically, supercomputers targeting non-
numeric computation 
•  HEP, Tera MTA, Cray XMT 

•  Now common in commodity microprocessors 
– Simultaneous multithreading:  

•  Multiple threads may come from different 
streams, can issue from multiple streams in 
single instruction issue 

•  Alpha 21464 and Pentium 4 are examples 
•  CUDA somewhat simplified: 

–  A full warp scheduled at a time 
CS6963  24 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How is context switching so efficient? 

•  Large register file (16K registers/block) 
–  Each thread assigned a “window” of physical registers 
–  Works if entire thread block’s registers do not exceed 

capacity (otherwise, compiler fails) 
–  May be able to schedule from multiple blocks simultaneously 

•  Similarly, shared memory requirements must not exceed 
capacity for all blocks simultaneously scheduled 

CS6963  L2: Hardware Overview 

Register File 

Block 0 
Thread 0 

Block 0 
Thread 1 

Block 0 
Thread 256 

Block 8 
Thread 0 

Block 8 
Thread 1 

Block 8 
Thread 256 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Example: Thread Scheduling on G80 

•  Each Block is executed as 32-
thread Warps 
–  An implementation decision, 

not part of the CUDA 
programming model 

–  Warps are scheduling units 
in SM 

•  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
–  Each Block is divided into 

256/32 = 8 Warps 
–  There are 8 * 3 = 24 Warps  

… 
t0 t1 t2 … t31 

… 

… 
t0 t1 t2 … t31 

… Block 1 Warps Block 2 Warps 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 

Streaming Multiprocessor 

Shared Memory 

… 
t0 t1 t2 … t31 

… Block 1 Warps 
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SM Warp Scheduling 
•  SM hardware implements zero-

overhead Warp scheduling 
–  Warps whose next instruction has 

its operands ready for consumption 
are eligible for execution 

–  Eligible Warps are selected for 
execution on a prioritized scheduling 
policy 

–  All threads in a Warp execute the 
same instruction when selected 

•  4 clock cycles needed to dispatch 
the same instruction for all threads 
in a Warp in G80 
–  If one global memory access is 

needed for every 4 instructions 
–  A minimum of 13 Warps are needed 

to fully tolerate 200-cycle memory 
latency 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 
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SM Instruction Buffer – Warp 
Scheduling 

•  Fetch one warp instruction/cycle 
–  from instruction cache  
–  into any instruction buffer slot 

•  Issue one “ready-to-go” warp 
instruction/cycle 
–  from any warp - instruction buffer slot 
–  operand scoreboarding used to prevent 

hazards 
•  Issue selection based on round-robin/

age of warp 
•  SM broadcasts the same instruction to 

32 Threads of a Warp 

I $ 

Multithreaded 
Instruction Buffer 

R 
F C $ 

L 1 Shared 
Mem 

Operand Select 

MAD SFU 

CS6963  28 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Scoreboarding 

•  How to determine if a thread is ready to 
execute? 

•  A scoreboard is a table in hardware that 
tracks 
–  instructions being fetched, issued, executed  
–  resources (functional units and operands) they 

need 
– which instructions modify which registers 

•  Old concept from CDC 6600 (1960s) to 
separate memory and computation 

CS6963  29 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Scoreboarding 
•  All register operands of all instructions in the 

Instruction Buffer are scoreboarded 
–  Status becomes ready after the needed values are 

deposited 
–  prevents hazards 
–  cleared instructions are eligible for issue 

•  Decoupled Memory/Processor pipelines 
–  any thread can continue to issue instructions until 

scoreboarding prevents issue 
–  allows Memory/Processor ops to proceed in shadow of 

Memory/Processor ops 

CS6963  30 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Scoreboarding from Example 

•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  CompuXng 

Warp 3  95  CompuXng 

Warp 8  11  Operands 
ready to go 

… 

Schedule 
at time k 
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Scoreboarding from Example 

•  Consider three separate 
instruction streams: warp1, 
warp3 and warp8 

warp 8 instruction 11 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

warp 3 instruction 96 

t=k 

t=k+1 

t=k+2 

t=l>k 

t=l+1 

Warp  Current 
Instruc*on 

Instruc*on 
State 

Warp 1  42  Ready to 
write result  

Warp 3  95  CompuXng 

Warp 8  11  CompuXng 

… 

Schedule 
at time k+1 
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 32 
L2: Hardware Overview 



1/19/11 

9 

© David Kirk/NVIDIA and Wen‐mei 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III. How it Comes Together 
G80 Example: Executing Thread Blocks 

•  Threads are assigned to 
Streaming 
Multiprocessors in block 
granularity 
–  Up to 8 blocks to 

each SM as 
resource allows 

–  SM in G80 can take 
up to 768 threads 
•  Could be 256 

(threads/block) 
* 3 blocks  

•  Or 128 
(threads/block) 
* 6 blocks, etc. 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 

•  Threads run concurrently 
–  SM maintains thread/block id #s 
–  SM manages/schedules thread execution 
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Details of Mapping 
•  If #blocks in a grid exceeds number of SMs,  

–  multiple blocks mapped to an SM 
–  treated independently 
–  provides more warps to scheduler so good as long as 

resources not exceeded 
–  Possibly context switching overhead when 

scheduling between blocks (registers and shared 
memory) 

•  Thread Synchronization (more next time) 
–  Within a block, threads observe SIMD model, and 

synchronize using __syncthreads() 
–  Across blocks, interaction through global memory 
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 34 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© 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Transparent Scalability 
•  Hardware is free to assigns blocks to 

any processor at any time 
–  A kernel scales across any number of 

parallel processors 
Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative to other blocks.  

time 
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Summary of Lecture 
•  SIMT = SIMD+SPMD 
•  SIMD execution model within a warp, and 

conceptually within a block 
•  MIMD execution model across blocks 
•  Multithreading of SMs used to hide memory 

latency 
•  Motivation for lots of threads to be 

concurrently active 
•  Scoreboarding used to track warps ready to 

execute 
CS6963  36 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What’s Coming 

•  Next time:  
– Correctness of parallelization 

•  Next week: 
– Managing the memory hierarchy 
– Next assignment 
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