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L11: Sparse Linear Algebra 
on GPUs 

CS6963 

Administrative Issues  
•  Next assignment, triangular solve  

– Due 5PM, Tuesday, March 15 
–  handin cs6963 lab 3 <probfile>”  

•  Project proposals 
– Due 5PM, Wednesday, March 7 (hard 

deadline) 
– handin cs6963 prop <pdffile> 
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Triangular Solve (STRSM) 
for (j = 0; j < n; j++)  
    for (k = 0; k < n; k++)  
          if (B[j*n+k] != 0.0f) { 
                 for (i = k+1; i < n; i++)  
                    B[j*n+i] -= A[k * n + i] * B[j * n + k]; 
           } 

Equivalent to: 
cublasStrsm('l' /* left operator */, 'l' /* lower triangular */,  
                    'N' /* not transposed */, ‘u' /* unit triangular */,               
                     N, N, alpha, d_A, N, d_B, N); 

See: http://www.netlib.org/blas/strsm.f 
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A Few Details 
•  C stores multi-dimensional arrays in  row 

major order 
•  Fortran (and MATLAB) stores multi-

dimensional arrays in column major 
order 
– Confusion alert: BLAS libraries were 

designed for FORTRAN codes, so column 
major order is implicit in CUBLAS! 
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Dependences in STRSM 
for (j = 0; j < n; j++)  
    for (k = 0; k < n; k++)  
          if (B[j*n+k] != 0.0f) { 
                 for (i = k+1; i < n; i++)  
                    B[j*n+i] -= A[k * n + i] * B[j * n + k]; 
           } 

Which loop(s) “carry” dependences?  
Which loop(s) is(are) safe to execute in 
parallel? 
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Assignment 
•  Details: 

– Integrated with simpleCUBLAS test in SDK 
– Reference sequential version provided 

1. Rewrite in CUDA 
2. Compare performance with CUBLAS 

library 
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Performance Issues? 
•  + Abundant data reuse 
•  - Difficult edge cases 
•  - Different amounts of work for 

different <j,k> values 
•  - Complex mapping or load imbalance 
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Outline 
•  Next assignment 
•  For your projects: 

–  “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput 
Computing on CPU and GPU”, Lee et al., ISCA 2010. 

•  Sparse Linear Algebra 
•  Readings: 

–  “Implementing Sparse Matrix-Vector Multiplication on Throughput Oriented 
Processors,” Bell and Garland (Nvidia), SC09, Nov. 2009. 

–  “Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs”, Choi, 
Singh, Vuduc, PPoPP 10, Jan. 2010. 

–  “Optimizing sparse matrix-vector multiply on emerging multicore platforms,” 
Journal of Parallel Computing, 35(3):178-194, March 2009. (Expanded from 
SC07 paper.)  
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Overview:  
CPU and GPU Comparisons 

•  Many projects will compare speedup 
over a sequential CPU implementation 
– Ok for this class, but not for a research 

contribution 
•  Is your CPU implementation as “smart” 

as your GPU implementation? 
– Parallel? 
– Manages memory hierarchy? 
– Minimizes synchronization or accesses to 

global memory? 

The Comparison 
•  Architectures 

–  Intel i7, quad-core, 3.2GHz, 2-way hyper-
threading, SSE, 32KB L1, 256KB L2, 8MB L3 

–  Same i7 with Nvidia GTX 280 
•  Workload 

– 14 benchmarks, some from the GPU 
literature 

Architectural Comparison 
Core i7‐960  GTX280 

Number PEs  4  30 

Frequency (GHz)  3.2  1.3 

Number Transistors  0.7B  1.4B 

BW (GB/sec)  32  141 

SP SIMD width  4  8 

DP SIMD width  2  1 

Peak SP Scalar 
FLOPS (GFLOPS) 

25.6  116.6 

Peak SP SIMD 
Flops (GFLOPS) 

102.4  311.1/933.1 

Peak DP SIMD 
Flops (GFLOPS) 

51.2  77.8 

Workload Summary 
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Performance Results CPU optimization 
•  Tile for cache utilization 
•  SIMD execution on multimedia 

extensions 
•  Multi-threaded, beyond number of cores 
•  Data reorganization to improve SIMD 

performance 

Sparse Linear Algebra 
•  Suppose you are applying matrix-vector 

multiply and the matrix has lots of zero 
elements 
– Computation cost?  Space requirements? 

•  General sparse matrix representation 
concepts 
– Primarily only represent the nonzero data 

values 
– Auxiliary data structures describe 

placement of nonzeros in “dense matrix”  
15
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GPU Challenges 
•  Computation partitioning? 
•  Memory access patterns? 
•  Parallel reduction 

BUT, good news is that sparse linear 
algebra performs TERRIBLY on 
conventional architectures, so poor 
baseline leads to improvements!   
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Some common representations 
 1 7 0 0 
 0 2 8 0 
 5 0 3 9 
 0 6 0 4 

[ ] A = 

data =  
 *  1 7 
 *  2 8 
 5 3 9 
 6 4 * 

[ ] 
 1 7 * 
 2 8 * 
 5 3 9 
 6 4 * 

[ ]  0 1 * 
 1 2 * 
 0 2 3 
 1 3 * 

[ ] 

offsets = [-2 0 1]  

data =  indices =  

ptr =        [0 2 4 7 9] 
indices = [0 1 1 2 0 2 3 1 3] 
data =     [1 7 2 8 5 3 9 6 4] 

row =       [0 0 1 1 2 2 2 3 3] 
indices =  [0 1 1 2 0 2 3 1 3] 
data =      [1 7 2 8 5 3 9 6 4] 

DIA: Store elements along a set of diagonals. 

Compressed Sparse Row (CSR): 
Store only nonzero elements, with 
“ptr” to beginning of each row and 
“indices” representing column.  

ELL: Store a set of K elements per row and 
pad as needed. Best suited when number 
non-zeros roughly consistent across rows. 

COO: Store nonzero elements and 
their corresponding “coordinates”.  

CSR Example 
for (j=0; j<nr; j++) {                                                       
    for (k = ptr[j]; k<ptr[j+1]-1; k++)  
      t[j] = t[j] + data[k] * x[indices[k]]; 
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Summary of Representation 
and Implementation 

                  Bytes/Flop 
Kernel     Granularity     Coalescing     32-bit     64-bit 
DIA        thread : row       full               4               8 
ELL         thread : row       full               6              10 
CSR(s)    thread : row       rare              6              10 
CSR(v)    warp : row          partial           6              10 
COO       thread : nonz     full                8               12 
HYB       thread : row       full                6               10 

Table 1 from Bell/Garland: Summary of SpMV kernel 
properties. 
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Other Representation Examples 
•  Blocked CSR 

–  Represent non-zeros as a set of blocks, usually of 
fixed size 

–  Within each block, treat as dense and pad block 
with zeros 

–  Block looks like standard matvec 
–  So performs well for blocks of decent size 

•  Hybrid ELL and COO 
–  Find a “K” value that works for most of matrix 
–  Use COO for rows with more nonzeros (or even 

significantly fewer) 

20
L11: Sparse Linear Algebra 

CS6963 



2/25/11 

6 

Stencil Example 
What is a 3-point stencil? 5-point stencil? 

7-point?  9-point?  27-point? 
Examples:  
a[i] = (b[i-1] + b[i+1])/2; 

a[i][j] = (b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i][j+1])/4; 

How is this represented by a sparse 
matrix? 
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Stencil Result  
(structured matrices) 

See Figures 11 and 12, Bell and Garland 
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Unstructured Matrices 
See Figures 13 and 14 

Note that graphs can also be represented 
as sparse matrices.  What is an 
adjacency matrix? 
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PPoPP paper 
•  What if you customize the 

representation to the problem? 
•  Additional global data structure 

modifications (like blocked 
representation)? 

•  Strategy 
– Apply models and autotuning to identify 

best solution for each application 
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Summary of Results 
BELLPACK (blocked ELLPACK) achieves up 

to 29 Gflop/s in SP and 15.7 Gflop/s in 
DP 

Up to 1.8x and 1.5x improvement over Bell 
and Garland. 
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This Lecture 
•  Exposure to the issues in a sparse 

matrix vector computation on GPUs 
•  A set of implementations and their 

expected performance 
•  A little on how to improve performance 

through application-specific knowledge 
and customization of sparse matrix 
representation 
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What’s coming 
•  Next time: Application case study from 

Kirk and Hwu (Ch. 8, real-time MRI) 
•  Wednesday, March 2: two guest 

speakers from last year’s class 
– BOTH use sparse matrix representation! 
– Shreyas Ramalingam: program analysis on 

GPUs 
– Pascal Grosset: graph coloring on GPUs 
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