
2/25/11

1

L11: Sparse Linear Algebra
on GPUs

CS6963 

Administrative Issues
•  Next assignment, triangular solve

– Due 5PM, Tuesday, March 15
–  handin cs6963 lab 3 <probfile>”

•  Project proposals
– Due 5PM, Wednesday, March 7 (hard

deadline)
– handin cs6963 prop <pdffile>

CS6963 
2

L12: Sparse Linear Algebra 

Triangular Solve (STRSM)
for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 if (B[j*n+k] != 0.0f) {
 for (i = k+1; i < n; i++)
 B[j*n+i] -= A[k * n + i] * B[j * n + k];
 }

Equivalent to:
cublasStrsm('l' /* left operator */, 'l' /* lower triangular */,
 'N' /* not transposed */, ‘u' /* unit triangular */,
 N, N, alpha, d_A, N, d_B, N);

See: http://www.netlib.org/blas/strsm.f

3
L11: Dense Linear Algebra 

CS6963 

A Few Details
•  C stores multi-dimensional arrays in row

major order
•  Fortran (and MATLAB) stores multi-

dimensional arrays in column major
order
– Confusion alert: BLAS libraries were

designed for FORTRAN codes, so column
major order is implicit in CUBLAS!

4
L11: Dense Linear Algebra 

CS6963 

2/25/11

2

Dependences in STRSM
for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 if (B[j*n+k] != 0.0f) {
 for (i = k+1; i < n; i++)
 B[j*n+i] -= A[k * n + i] * B[j * n + k];
 }

Which loop(s) “carry” dependences?
Which loop(s) is(are) safe to execute in
parallel?

5
L11: Dense Linear Algebra 

CS6963 

Assignment
•  Details:

– Integrated with simpleCUBLAS test in SDK
– Reference sequential version provided

1. Rewrite in CUDA
2. Compare performance with CUBLAS

library

6
L11: Dense Linear Algebra 

CS6963 

Performance Issues?
•  + Abundant data reuse
•  - Difficult edge cases
•  - Different amounts of work for

different <j,k> values
•  - Complex mapping or load imbalance

7
L11: Dense Linear Algebra 

CS6963 

Outline
•  Next assignment
•  For your projects:

–  “Debunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput
Computing on CPU and GPU”, Lee et al., ISCA 2010.

•  Sparse Linear Algebra
•  Readings:

–  “Implementing Sparse Matrix-Vector Multiplication on Throughput Oriented
Processors,” Bell and Garland (Nvidia), SC09, Nov. 2009.

–  “Model-driven Autotuning of Sparse Matrix-Vector Multiply on GPUs”, Choi,
Singh, Vuduc, PPoPP 10, Jan. 2010.

–  “Optimizing sparse matrix-vector multiply on emerging multicore platforms,”
Journal of Parallel Computing, 35(3):178-194, March 2009. (Expanded from
SC07 paper.)

CS6963 
8

L11: Sparse Linear Algebra 

2/25/11

3

Overview:
CPU and GPU Comparisons

•  Many projects will compare speedup
over a sequential CPU implementation
– Ok for this class, but not for a research

contribution
•  Is your CPU implementation as “smart”

as your GPU implementation?
– Parallel?
– Manages memory hierarchy?
– Minimizes synchronization or accesses to

global memory?

The Comparison
•  Architectures

–  Intel i7, quad-core, 3.2GHz, 2-way hyper-
threading, SSE, 32KB L1, 256KB L2, 8MB L3

–  Same i7 with Nvidia GTX 280
•  Workload

– 14 benchmarks, some from the GPU
literature

Architectural Comparison
Core i7‐960  GTX280 

Number PEs  4  30 

Frequency (GHz)  3.2  1.3 

Number Transistors  0.7B  1.4B 

BW (GB/sec)  32  141 

SP SIMD width  4  8 

DP SIMD width  2  1 

Peak SP Scalar 
FLOPS (GFLOPS) 

25.6  116.6 

Peak SP SIMD 
Flops (GFLOPS) 

102.4  311.1/933.1 

Peak DP SIMD 
Flops (GFLOPS) 

51.2  77.8 

Workload Summary

2/25/11

4

Performance Results CPU optimization
•  Tile for cache utilization
•  SIMD execution on multimedia

extensions
•  Multi-threaded, beyond number of cores
•  Data reorganization to improve SIMD

performance

Sparse Linear Algebra
•  Suppose you are applying matrix-vector

multiply and the matrix has lots of zero
elements
– Computation cost? Space requirements?

•  General sparse matrix representation
concepts
– Primarily only represent the nonzero data

values
– Auxiliary data structures describe

placement of nonzeros in “dense matrix”
15

L11: Sparse Linear Algebra 
CS6963 

GPU Challenges
•  Computation partitioning?
•  Memory access patterns?
•  Parallel reduction

BUT, good news is that sparse linear
algebra performs TERRIBLY on
conventional architectures, so poor
baseline leads to improvements!

16
L12: Sparse Linear Algebra 

CS6963 

2/25/11

5

Some common representations
 1 7 0 0
 0 2 8 0
 5 0 3 9
 0 6 0 4

[] A =

data =
 * 1 7
 * 2 8
 5 3 9
 6 4 *

[]
 1 7 *
 2 8 *
 5 3 9
 6 4 *

[] 0 1 *
 1 2 *
 0 2 3
 1 3 *

[]

offsets = [-2 0 1]

data = indices =

ptr = [0 2 4 7 9]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

row = [0 0 1 1 2 2 2 3 3]
indices = [0 1 1 2 0 2 3 1 3]
data = [1 7 2 8 5 3 9 6 4]

DIA: Store elements along a set of diagonals.

Compressed Sparse Row (CSR):
Store only nonzero elements, with
“ptr” to beginning of each row and
“indices” representing column.

ELL: Store a set of K elements per row and
pad as needed. Best suited when number
non-zeros roughly consistent across rows.

COO: Store nonzero elements and
their corresponding “coordinates”.

CSR Example
for (j=0; j<nr; j++) {
 for (k = ptr[j]; k<ptr[j+1]-1; k++)
 t[j] = t[j] + data[k] * x[indices[k]];

18
L11: Sparse Linear Algebra 

CS6963 

Summary of Representation
and Implementation

 Bytes/Flop
Kernel Granularity Coalescing 32-bit 64-bit
DIA thread : row full 4 8
ELL thread : row full 6 10
CSR(s) thread : row rare 6 10
CSR(v) warp : row partial 6 10
COO thread : nonz full 8 12
HYB thread : row full 6 10

Table 1 from Bell/Garland: Summary of SpMV kernel
properties.

19
L12: Sparse Linear Algebra 

CS6963 

Other Representation Examples
•  Blocked CSR

–  Represent non-zeros as a set of blocks, usually of
fixed size

–  Within each block, treat as dense and pad block
with zeros

–  Block looks like standard matvec
–  So performs well for blocks of decent size

•  Hybrid ELL and COO
–  Find a “K” value that works for most of matrix
–  Use COO for rows with more nonzeros (or even

significantly fewer)

20
L11: Sparse Linear Algebra 

CS6963 

2/25/11

6

Stencil Example
What is a 3-point stencil? 5-point stencil?

7-point? 9-point? 27-point?
Examples:
a[i] = (b[i-1] + b[i+1])/2;

a[i][j] = (b[i-1][j] + b[i+1][j] + b[i][j-1] + b[i][j+1])/4;

How is this represented by a sparse
matrix?

21
L11: Sparse Linear Algebra 

CS6963 

Stencil Result
(structured matrices)

See Figures 11 and 12, Bell and Garland

22
L11: Sparse Linear Algebra 

CS6963 

Unstructured Matrices
See Figures 13 and 14

Note that graphs can also be represented
as sparse matrices. What is an
adjacency matrix?

23
L11: Sparse Linear Algebra 

CS6963 

PPoPP paper
•  What if you customize the

representation to the problem?
•  Additional global data structure

modifications (like blocked
representation)?

•  Strategy
– Apply models and autotuning to identify

best solution for each application

24
L11: Sparse Linear Algebra 

CS6963 

2/25/11

7

Summary of Results
BELLPACK (blocked ELLPACK) achieves up

to 29 Gflop/s in SP and 15.7 Gflop/s in
DP

Up to 1.8x and 1.5x improvement over Bell
and Garland.

25
L11: Sparse Linear Algebra 

CS6963 

This Lecture
•  Exposure to the issues in a sparse

matrix vector computation on GPUs
•  A set of implementations and their

expected performance
•  A little on how to improve performance

through application-specific knowledge
and customization of sparse matrix
representation

26
L11: Sparse Linear Algebra 

CS6963 

What’s coming
•  Next time: Application case study from

Kirk and Hwu (Ch. 8, real-time MRI)
•  Wednesday, March 2: two guest

speakers from last year’s class
– BOTH use sparse matrix representation!
– Shreyas Ramalingam: program analysis on

GPUs
– Pascal Grosset: graph coloring on GPUs

CS6963 
27

L11: Sparse Linear Algebra 

