
1/12/11

1

CS6963

L1: Introduction to
CS6963 and CUDA

January 12, 2011

Outline of Today’s Lecture
• Introductory remarks
• A brief motivation for the course
• Course plans
• Introduction to CUDA

- Motivation for programming model
-  Presentation of syntax
- Simple working example (also on website)

• Reading:
-  CUDA 3.2 Manual, particularly Chapters 2 and 4
-  Programming Massively Parallel Processors, Chapters 1 and 2

CS6963 L1: Course/CUDA Introduction

This lecture includes slides provided by:
 Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
 see http://courses.ece.illinois.edu/ece498/al/Syllabus.html

CS6963: Parallel Programming for GPUs,
MW 10:45-12:05, MEB 3147

•  Website: http://www.eng.utah.edu/~cs6963/

•  Mailing lists:
-  cs6963s11-discussion@list.eng.utah.edu for open discussions on

assignments
-  cs6963s11-teach@list.eng.utah.edu for communicating with

instructors

•  Professor:
Mary Hall
MEB 3466, mhall@cs.utah.edu, 5-1039
Office hours: M 12:20-1:00PM, Th 11:00-11:40 AM, or by appointment

•  Teaching Assistant:
Sriram Aananthakrishnan, sriram@cs.utah.edu
MEB 3115,
Office hours: ?

L1: Course/CUDA IntroductionCS6963

Administrative
• First assignment due Friday, January 21, 5PM

-  Your assignment is to simply add and multiply two vectors to
get started writing programs in CUDA. In the regression
test (in driver.c). The addition and multiplication are coded
into the functions, and the file (CMakeLists.txt) compiles
and links.

- Use handin on the CADE machines for all assignments
-  “handin cs6963 lab1 <probfile>”
-  The file <probfile> should be a gzipped tar file of the CUDA

program and output

CS6963 L1: Course/CUDA Introduction

1/12/11

2

Course Objectives
• Learn how to program “graphics” processors for

general-purpose multi-core computing applications
- Learn how to think in parallel and write correct

parallel programs
- Achieve performance and scalability through

understanding of architecture and software mapping

• Significant hands-on programming experience
- Develop real applications on real hardware

• Discuss the current parallel computing context
- What are the drivers that make this course timely
- Contemporary programming models and

architectures, and where is the field going
CS6963 L1: Course/CUDA Introduction

Outcomes from 2010 Course
•  Paper at POPL (premier programming language conference) and

Masters project
 “EigenCFA: Accelerating Flow Analysis with GPUs.” Tarun Prabhu, Shreyas
Ramalingam , Matthew Might, Mary Hall, POPL ‘11, Jan. 2011.

•  Poster paper at PPoPP (premier parallel computing conference)
 “Evaluating Graph Coloring on GPUs.” Pascal Grosset, Peihong Zhu, Shusen
Liu, Mary Hall, Suresh Venkatasubramanian, Poster paper, PPoPP ‘11, Feb.
2011.

•  Posters at Symposium on Application Accelerators for High-
Performance Computinghttp://saahpc.ncsa.illinois.edu/10/
[Early May deadline]
 “Takagi Factorization on GPU using CUDA.” Gagandeep S. Sachdev, Vishay
Vanjani and Mary W. Hall, Poster paper, July 2010.
 “GPU Accelerated Particle System for Triangulated Surface MeshesBrad
Peterson, Manasi Datar, Mary Hall and Ross Whitaker, Poster paper, July
2010.

• Nvidia Project + new hardware
-  “Echelon: Extreme-scale Compute Hierarchies with Efficient

Locality-Optimized Nodes
-  In my lab, GTX 480 and C2050 (Fermi)

CS6963 1: Course/CUDA Introduction

Outcomes from 2009 Course
•  Paper and poster at Symposium on Application Accelerators for

High-Performance Computing http://saahpc.ncsa.illinois.edu/09/
(late April/early May submission deadline)

-  Poster:
Assembling Large Mosaics of Electron Microscope Images using GPU -
Kannan Venkataraju, Mark Kim, Dan Gerszewski, James R. Anderson, and
Mary Hall

-  Paper:
 GPU Acceleration of the Generalized Interpolation Material Point Method

Wei-Fan Chiang, Michael DeLisi, Todd Hummel, Tyler Prete, Kevin Tew,
Mary Hall, Phil Wallstedt, and James Guilkey

•  Poster at NVIDIA Research Summit
http://www.nvidia.com/object/gpu_tech_conf_research_summit.html
 Poster #47 - Fu, Zhisong, University of Utah (United States)
Solving Eikonal Equations on Triangulated Surface Mesh with CUDA

•  Posters at Industrial Advisory Board meeting
•  Integrated into Masters theses and PhD dissertations
•  Jobs and internships

CS6963 L1: Course/CUDA Introduction

Grading Criteria
• Homeworks and mini-projects (4): 30%

• Midterm test: 15%

• Project proposal: 10%

• Project design review: 10%

• Project presentation/demo 15%

• Project final report 20%

CS6963 L1: Course/CUDA Introduction

1/12/11

3

Primary Grade: Team Projects

• Some logistical issues:
- 2-3 person teams
- Projects will start in late February

• Three parts:
- (1) Proposal; (2) Design review; (3) Final report and

demo

• Application code:
- I will suggest a few sample projects, areas of

future research interest.
- Alternative applications must be approved by me

(start early).

CS6963 L1: Course/CUDA Introduction

Collaboration Policy
• I encourage discussion and exchange of information

between students.
• But the final work must be your own.

- Do not copy code, tests, assignments or written reports.
- Do not allow others to copy your code, tests, assignments or

written reports.

CS6963 L1: Course/CUDA Introduction

Lab Information

Primary lab
•  Linux lab: LOCATION

Secondary

•  Tesla S1070 system in SCI (Linux)

Tertiary

•  Windows machines in WEB, (lab5/lab6)

•  Focus of course will be on Linux, however

Interim
•  Until we get to timing experiments, assignments can be

completed on any machine running CUDA 3.2 (Linux, Windows,
MAC OS)

CS6963 L1: Course/CUDA Introduction

 NVIDIA Recognizes University Of Utah As A Cuda Center Of Excellence
University of Utah is the Latest in a Growing List of Exceptional Schools
Demonstrating Pioneering Work in Parallel (JULY 31, 2008—NVIDIA
Corporation)

Nvidia Tesla system:
240 cores per chip, 960 cores
per unit, 32 units.

Over 30,000 cores!

Hosts are Intel Nehalems

PCI+MPI between units

A Few Words About Tesla System

CS6963 L1: Course/CUDA Introduction

1/12/11

4

Text and Notes
1.  NVidia, CUDA Programming Guide,

available from http://www.nvidia.com/
object/cuda_develop.html for CUDA
3.2 and Windows, Linux or MAC OS.

2.  [Recommended] Programming Massively
Parallel Processors, Wen-mei Hwu and
David Kirk, available from http: //
courses.ece.illinois.edu/ece498/al/
Syllabus.html (to be available from
Morgan Kaufmann in about 2 weeks!)

3.  [Additional] Grama, A. Gupta, G.
Karypis, and V. Kumar, Introduction to
Parallel Computing, 2nd Ed. (Addison-
Wesley, 2003).

4.  Additional readings associated with
lectures.

CS6963 L1: Course/CUDA Introduction

•  A quiet revolution and potential build-up
-  Calculation: 367 GFLOPS vs. 32 GFLOPS
-  Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
-  Until last year, programmed through graphics API

-  GPU in every PC and workstation – massive volume and
potential impact

G
FL

O
P

S

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

Why Massively Parallel Processor

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign L1: Course/CUDA Introduction

Concept of GPGPU
(General-Purpose Computing on GPUs)

• Idea:
-  Potential for very high performance at low cost
-  Architecture well suited for certain kinds of parallel

applications (data parallel)
-  Demonstrations of 30-100X speedup over CPU

• Early challenges:
- Architectures very customized to graphics problems

(e.g., vertex and fragment processors)
- Programmed using graphics-specific programming models

or libraries

• Recent trends:
- Some convergence between commodity and GPUs and

their associated parallel programming models

See http://gpgpu.org

CS6963 L1: Course/CUDA Introduction

CUDA (Compute Unified Device Architecture)
• Data-parallel programming interface to GPU

- Data to be operated on is discretized into independent partition of
memory

-  Each thread performs roughly same computation to different
partition of data

- When appropriate, easy to express and very efficient parallelization

• Programmer expresses
- Thread programs to be launched on GPU, and how to launch
- Data placement and movement between host and GPU
- Synchronization, memory management, testing, …

• CUDA is one of first to support heterogeneous
architectures (more later in the semester)

• CUDA environment
-  Compiler, run-time utilities, libraries, emulation, performance

L1: Course/CUDA IntroductionCS6963

1/12/11

5

Today’s Lecture
• Goal is to enable writing CUDA programs right away

- Not efficient ones – need to explain architecture and
mapping for that (soon)

- Not correct ones – need to discuss how to reason about
correctness (also soon)

- Limited discussion of why these constructs are used or
comparison with other programming models (more as
semester progresses)

- Limited discussion of how to use CUDA environment
(more next week)

- No discussion of how to debug. We’ll cover that as best
we can during the semester.

L1: Course/CUDA IntroductionCS6963

What Programmer Expresses in CUDA

•  Computation partitioning (where does computation occur?)
- Declarations on functions __host__, __global__, __device__
- Mapping of thread programs to device: compute <<<gs, bs>>>(<args>)

• Data partitioning (where does data reside, who may access it and
how?)

•  Declarations on data __shared__, __device__, __constant__, …

• Data management and orchestration
•  Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

•  Concurrency management
-  E.g. __synchthreads()

L1: Course/CUDA Introduction

P

M

P

H
O

S
T

 (C
P

U
)

M D
E

V
IC

E
 (G

P
U

)

Interconnect between devices and memories

CS6963

Minimal Extensions to C + API
•  Declspecs

-  global, device,
shared, local,
constant

•  Keywords
-  threadIdx, blockIdx

•  Intrinsics
-  __syncthreads

•  Runtime API
-  Memory, symbol,
execution management

•  Function launch

__device__ float filter[N];

__global__ void convolve (float *image)
{

 __shared__ float region[M];
 ...

region[threadIdx] = image[i];

 __syncthreads()
 ...

 image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign L1: Course/CUDA Introduction

NVCC Compiler’s Role: Partition Code and
Compile for Device

L1: Course/CUDA Introduction

mycode.cu

__device__ dfunc() {
 int ddata;
}

__global__ gfunc() {
 int gdata;
}

Main() { }
__host__ hfunc () {
 int hdata;
 <<<gfunc(g,b,m)>>>();
}

D
ev

ic
e

O
nl

y
In

te
rfa

ce

H
os

t O
nl

y

int main_data;
__shared__ int sdata;

Main() {}
__host__ hfunc () {
 int hdata;
<<<gfunc(g,b,m)>>>
();
}

__global__ gfunc() {
 int gdata;
}

Compiled by native
compiler: gcc, icc, cc

__shared__ sdata;

__device__ dfunc() {
 int ddata;
}

Compiled by nvcc
compiler

int main_data;

CS6963

1/12/11

6

CUDA Programming Model:
A Highly Multithreaded Coprocessor
•  The GPU is viewed as a compute device that:

-  Is a coprocessor to the CPU or host
-  Has its own DRAM (device memory)
-  Runs many threads in parallel

•  Data-parallel portions of an application are executed
on the device as kernels which run in parallel on many
threads

•  Differences between GPU and CPU threads
-  GPU threads are extremely lightweight

-  Very little creation overhead
-  GPU needs 1000s of threads for full efficiency

-  Multi-core CPU needs only a few

CS6963 L1: Course/CUDA Introduction

Thread Batching: Grids and Blocks
•  A kernel is executed as a grid

of thread blocks
-  All threads share data

memory space

•  A thread block is a batch of
threads that can cooperate
with each other by:
-  Synchronizing their execution

-  For hazard-free shared
memory accesses

-  Efficiently sharing data through
a low latency shared memory

•  Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign L1: Course/CUDA Introduction

Block and Thread IDs

•  Threads and blocks have
IDs
-  So each thread can decide

what data to work on
-  Block ID: 1D or 2D

(blockIdx.x, blockIdx.y)
-  Thread ID: 1D, 2D, or 3D

(threadIdx.{x,y,z})

•  Simplifies memory
addressing when processing
multidimensional data
-  Image processing
-  Solving PDEs on volumes
-  …

Device
Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign L1: Course/CUDA Introduction

Simple working code example
• Goal for this example:

-  Really simple but illustrative of key concepts
-  Fits in one file with simple compile command
-  Can absorb during lecture

• What does it do?
- Scan elements of array of numbers (any of 0 to 9)
- How many times does “6” appear?
- Array of 16 elements, each thread examines 4 elements, 1

block in grid, 1 grid

L1: Course/CUDA Introduction

3 6 5 7 3 5 2 6 0 9 6 3 9 1 7 2

threadIdx.x = 0 examines in_array elements 0, 4, 8, 12
threadIdx.x = 1 examines in_array elements 1, 5, 9, 13
threadIdx.x = 2 examines in_array elements 2, 6, 10, 14
threadIdx.x = 3 examines in_array elements 3, 7, 11, 15

} Known as a
cyclic data
distribution

CS6963

1/12/11

7

CUDA Pseudo-Code

MAIN PROGRAM:
Initialization
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

L1: Course/CUDA Introduction

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

GLOBAL FUNCTION:
Thread scans subset of array elements
Call device function to compare with “6”
Compute local result

DEVICE FUNCTION:
Compare current element

and “6”
Return 1 if same, else 0

CS6963

Main Program: Preliminaries

L1: Course/CUDA Introduction

MAIN PROGRAM:
Initialization
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

int main(int argc, char **argv)
{
 int *in_array, *out_array;
 …
}

CS6963

Main Program: Invoke Global Function

L1: Course/CUDA Introduction

MAIN PROGRAM:
Initialization (OMIT)
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute

 (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
 int *in_array, *out_array;
 /* initialization */ …
 outer_compute(in_array, out_array);
 …
}

CS6963

Main Program: Calculate Output & Print Result

MAIN PROGRAM:
Initialization (OMIT)
•  Allocate memory on host for

input and output
•  Assign random numbers to

input array
Call host function
Calculate final output from
per-thread output
Print result

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4
__host__ void outer_compute

 (int *in_arr, int *out_arr);
int main(int argc, char **argv)
{
 int *in_array, *out_array;
 int sum = 0;
 /* initialization */ …
 outer_compute(in_array, out_array);
 for (int i=0; i<BLOCKSIZE; i++) {
 sum+=out_array[i];
 }
 printf (”Result = %d\n",sum);
}

CS6963 L1: Course/CUDA Introduction

1/12/11

8

Host Function: Preliminaries & Allocation

L1: Course/CUDA Introduction

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 …
}

CS6963

Host Function: Copy Data To/From Host

L1: Course/CUDA Introduction

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 cudaMemcpy(d_in_array, h_in_array,
 SIZE*sizeof(int),
 cudaMemcpyHostToDevice);

 … do computation ...
 cudaMemcpy(h_out_array,d_out_array,

 BLOCKSIZE*sizeof(int),
 cudaMemcpyDeviceToHost);

}

CS6963

Host Function: Setup & Call Global Function

HOST FUNCTION:
Allocate memory on device for

copy of input and output
Copy input to device
Set up grid/block
Call global function
Synchronize after completion
Copy device output to host

__host__ void outer_compute (int
*h_in_array, int *h_out_array) {

 int *d_in_array, *d_out_array;

 cudaMalloc((void **) &d_in_array,
 SIZE*sizeof(int));

 cudaMalloc((void **) &d_out_array,
 BLOCKSIZE*sizeof(int));

 cudaMemcpy(d_in_array, h_in_array,
 SIZE*sizeof(int),
 cudaMemcpyHostToDevice);

compute<<<(1,BLOCKSIZE)>>> (d_in_array,
d_out_array);

cudaThreadSynchronize();
 cudaMemcpy(h_out_array, d_out_array,

 BLOCKSIZE*sizeof(int),
 cudaMemcpyDeviceToHost);

}
CS6963 L1: Course/CUDA Introduction

Global Function

L1: Course/CUDA Introduction

GLOBAL FUNCTION:
Thread scans subset of array

elements
Call device function to compare

with “6”
Compute local result

__global__ void compute(int
*d_in,int *d_out) {

 d_out[threadIdx.x] = 0;
 for (int i=0; i<SIZE/BLOCKSIZE;

 i++)
 {
 int val = d_in[i*BLOCKSIZE +

threadIdx.x];
 d_out[threadIdx.x] +=

compare(val, 6);
 }
}

CS6963

1/12/11

9

Device Function

L1: Course/CUDA Introduction

DEVICE FUNCTION:
Compare current element

and “6”
Return 1 if same, else 0

__device__ int
compare(int a, int b) {

 if (a == b) return 1;
 return 0;
}

CS6963

Reductions

• This type of computation is called a parallel reduction
- Operation is applied to large data structure
-  Computed result represents the aggregate solution across the large

data structure
-  Large data structure computed result (perhaps single number)
[dimensionality reduced]

• Why might parallel reductions be well-suited to GPUs?
• What if we tried to compute the final sum on the GPUs?

L1: Course/CUDA IntroductionCS6963

Standard Parallel Construct
• Sometimes called “embarassingly parallel” or

“pleasingly parallel”
• Each thread is completely independent of the others
• Final result copied to CPU
• Another example, adding two matrices:

- A more careful examination of decomposing computation
into grids and thread blocks

L1: Course/CUDA IntroductionCS6963

Summary of Lecture
• Introduction to CUDA
• Essentially, a few extensions to C + API supporting

heterogeneous data-parallel CPU+GPU execution
-  Computation partitioning
- Data partititioning (parts of this implied by decomposition into

threads)
- Data organization and management
-  Concurrency management

• Compiler nvcc takes as input a .cu program and produces
-  C Code for host processor (CPU), compiled by native C compiler
-  Code for device processor (GPU), compiled by nvcc compiler

• Two examples
-  Parallel reduction
-  Embarassingly/Pleasingly parallel computation (your assignment)

CS6963 L1: Course/CUDA Introduction

1/12/11

10

L1: Course/CUDA Introduction

Next Week
• Hardware Execution Model

CS6963

