L1: Introduction to
CS6963 and CUDA

January 12, 2011

CS6963

Outline of Today's Lecture
* Introductory remarks

+ A brief motivation for the course
+ Course plans

* Introduction o CUDA
- Motivation for programming model
- Presentation of syntax
- Simple working example (also on website)
* Reading:
- CUDA 3.2 Manual, particularly Chapters 2 and 4
- Programming Massively Parallel Processors, Chapters 1 and 2

This lecture includes slides provided by:
Wen-mei Hwu (UIUC) and David Kirk (NVIDIA)
see http://courses.ece.illinois.edu/ece498/al/Syllabus.html
CS6963 L1: Course/CUDA Introduction u

THE
UNIVERSITY
OF UTAH

C56963: Parallel Programming for GPUs,
MW 10:45-12:05, MEB 3147

+ Website: http://www.eng.utah.edu/~cs6963/
* Mailing lists:

- cs6963s11-discussion@list.eng.utah.edu for open discussions on
assignments

- ¢s6963s11-teach@list.eng.utah.edu for communicating with
instructors

* Professor:

Mary Hall

MEB 3466, mhall@cs.utah.edu, 5-1039

Office hours: M 12:20-1:00PM, Th 11:00-11:40 AM, or by appointment
+ Teaching Assistant:

Sriram Aananthakrishnan, sriram@cs.utah.edu

MEB 3115,

Office hours: ?

CS6963 L1: Course/CUDA Introduction

Administrative

THE
u UNIVERSITY
OF UTAH

* First assignment due Friday, January 21, 5PM

- Your assignment is to simply add and multiply two vectors to
get started wr'iTing‘_ﬁr'ogr'ams in CUDA. In the regression
test (in driver.c). The addition and multiplication are coded
into the functions, and the file (CMakeLists.txt) compiles
and links.

- Use handin on the CADE machines for all assignments

- “handin cs6963 labl <probfile>"

- The file <probfile> should be a gzipped tar file of the CUDA
program and output

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

1/12/11

Course Objectives

+ Learn how to program “graphics” processors for
general-purpose multi-core computing applications

- Learn how to think in parallel and write correct
parallel programs

- Achieve performance and scalability through
understanding of architecture and software mapping
+ Significant hands-on programming experience
- Develop real applications on real hardware
+ Discuss the current parallel computing context
- What are the drivers that make this course timely

- Contemporary programming models and
architectures, and where is the field going
CS6963 L1: Course/CUDA Introduction u

THE
UNIVERSITY
OF UTAH

Outcomes from 2010 Course

+ Paper at POPL (?r‘emier‘ programming language conference) and
Masters projec

"EigenCFA: Acceleruﬁnﬂflow Analysis with GPUs." Tarun Prabhu, Shreyas
Ramalingam , Matthew Might, Mary Hall, POPL ‘11, Jan. 2011.

Poster paper at PPoPP (premier parallel computing conference)
“Evalua‘ring{émgh Coloring on 6PUs." Pascal Grosset, Paihor&% Zhu, Shusen
Ié:(t).ll,]Mury all, Suresh Venkatasubramanian, Poster paper, PPoPP ‘11, Feb.
Posters at Symposium on Application Accelerators for Hi?h—
Performance Computinghttp://saahpc.ncsa.illinois.edu/10
[Early May deadline]
“Takagi Factorization on GPU using CUDA." Gaz%mdeep S. Sachdev, Vishay
Vanjani and Mary W. Hall, Poster paper, July 2010.

"GPU Accelerated Particle System for Triangulated Surface MeshesBrad
g%‘rl%r‘son, Manasi Datar, Mary Hall and Ross %Vhl‘raker‘, Poster paper, July

* Nvidia Project + new hardware

- "Echelon: Extreme-scale Compute Hierarchies with Efficient
Locality-Optimized Nodes

- Inmy lab, GTX 480 and €2050 (Fermi)

CS6963 1: Course/CUDA Introduction u

THE
UNIVERSITY
OF UTAH

Outcomes from 2009 Course

* Paper and poster at Symposium on A/pplica*rion Accelerators for
High-Performance Computing http://saahpc.ncsa.illinois.edu/09/
(late April/early May submission deadline)

- Poster:

Assembling Large Mosaics of Electron Microscope Images using GPU -
Kannan Venkataraju, Mark Kim, Dan Gerszewski, James R. Anderson, and
Mary Hall

- Paper:
GPU Acceleration of the Generalized Interpolation Material Point Method

Wei-Fan Chiang, Michael DeLisi, Todd Hummel, Tyler Prete, Kevin Tew,
Mary Hall, Phil"Wallstedt, and James Guilkey

+ Poster at NVIDIA Research Summit)
http://www.nvidia.com/object/gpu_tech_conf_research_summit.html

Poster #47 - Fu, Zhisong, University of Utah (United States,
Solving Eikonal Equations on Triangulated Surface Mesh with A

* Posters at Industrial Advisory Board meeting
+ Integrated into Masters theses and PhD dissertations
+ Jobs and internships

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

Grading Criteria

- Homeworks and mini-projects (4): 30%
* Midterm test: 15%
* Project proposal: 10%
* Project designh review: 10%
* Project presentation/demo 15%
* Project final report 20%
Cs6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

1/12/11

Primary Grade: Team Projects

+ Some logistical issues:
- 2-3 person teams
-Projects will start in late February

* Three parts:
- (1) Proposal; (2) Design review; (3) Final report and
demo
* Application code:

- I will suggest a few sample projects, areas of
future research interest.

- Alternative applications must be approved by me
(start early).

THE
UNIVERSITY

CS6963 L1: Course/CUDA Introduction u
OF UTAH

Collaboration Policy

+ I encourage discussion and exchange of information
between students.
* But the final work must be your own.
- Do hot copy code, tests, assignments or written reports.

- Do nhot allow others to copy your code, tests, assignments or
written reports.

CS6963 L1: Course/CUDA Introduction u
OF UTAH

THE
UNIVERSITY

Lab Information

Primary lab

+ Linux lab: LOCATION

Secondary

+ Tesla 51070 system in SCI (Linux)
Tertiary

+ Windows machines in WEB, (lab5/lab6)

+ Focus of course will be on Linux, however
Interim

+ Until we get to timing experiments, assignments can be
completed on any machine running CUDA 3.2 (Linux, Windows,
MAC 0S)

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

A Few Words About Tesla System

Nvidia Tesla system:

240 cores per chip, 960 cores
per unit, 32 units.

Over 30,000 cores!

Hosts are Intel Nehalems

PCI+MPI between units

NVIDIA Recognizes University Of Utah As A Cuda Center Of Excellence
University of Utah is the Latest in a Growing List of Exceptional Schools
Demonstrating Pioneering Work in Parallel (JULY 31, 20086—NVIDIA
Corporation,

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

1/12/11

Text and Notes

1. NVidia, CUDA Programming Guide,
available from ht¥p://www.nvidia.com/
obéec‘r/cuda develop.html for CUDA
3.2 and Windows, Lihux or MAC OS.

2. [Recommended] Programming Massively
arallel Processors, Wen-meil Hwu and
David Kirk, available from http: //
courses.ece.illinois.edu/ece493/al/
Syllabus.htm/ (to be available from
organ Kaufmann in about 2 weeks!)

3. kAddifionaIé Grama, A. Gupta, 6.
qal V.

...‘\x;

Programmi
Parallel

ry?is, an Kumar, Introduction to
Parallel Corr(t,ouf/ng, 2nd Ed. (Addison-
Wesley, 2003).
4. Additional readings associated with
lectures.
CS6963 L1: Course/CUDA Introduction o
U Sy

Why Massively Parallel Processor

A quiet revolution and potential build-up
- Calculation: 367 GFLOPS vs. 32 GFLOPS
- Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
- Until last year, programmed through graphics APT

[%2]
o
(e}
=
TR
[}

N 3.0 GHz
NV3S NG Intel Core2 Duc

NV30.

Jan Jun Apr May Nov Mar Nov
2003 2004 2003 2006

- GPU in every PC and workstation - massive volume and
potential impact

THE
UNIVERSITY

OF UTAH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign L1: Course/CUDA Introduction

m—wntep‘r—ar—sl’rar'u
GPU (General-Purpose Computing on GPUs)

See http://gpgpu.org

* Idea:
- Potential for very high performance at low cost

- Architecture well suited for certain kinds of parallel
applications (data parallel)

- Demonstrations of 30-100X speedup over CPU

* Early challenges:

- Architectures very customized to graphics problems
(e.g., vertex and fragment processor's?

- Programmed using graphics-specific programming models
or libraries

* Recent frends:
- Some convergence between commodity and GPUs and

their associated parallel programming models
T
uUN[VERSITY
OF UTAH

CS6963 L1: Course/CUDA Introduction

CUDA (Compute Unified Device Architecture)
* Data-parallel programming interface to GPU

- Data to be operated on is discretized into independent partition of
memory

- Each thread performs roughly same computation to different
partition of data

- When appropriate, easy to express and very efficient parallelization
* Programmer expresses

- Thread programs to be launched on 6PU, and how to launch

- Data placement and movement between host and GPU

- Synchronization, memory management, testing, ...
+ CUDA is one of first to support heterogeneous

architectures (more later in the semesfter)

* CUDA environment

- Compiler, run-time utilities, libraries, emulation, performance

THE
u UNIVERSITY
OF UTAH

CS6963 L1: Course/CUDA Introduction

1/12/11

Today's Lecture

* Goal is to enable writing CUDA programs right away

- Not efficient ones - need to explain architecture and
mapping for that (soon)

- Not correct ones - need to discuss how to reason about
correctness (also soon)

- Limited discussion of why these constructs are used or
comparison with other programming models (more as
semester progresses)

- Limited discussion of how to use CUDA environment
(more next week)

- No discussion of how to debug. We'll cover that as best
we cah during the semester.

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

What Programmer Expresses in CUDA

n Interconnect between devices and memories -

- Computation partitioning (where does computation occur?)
- Declarations on functions __host__, __global__, __device___
- Mapping of thread programs to device: compute ««<gs, bs>»>(<args>)

HOST (CPU
DEVICE (GPU

.

hm‘g)par"riﬁoning (where does data reside, who may access it and
ow?
+ Declarations on data ___shared, device__, __constant__, ..

- Data management and orchestration
+ Copying to/from host: e.g., cudaMemcpy(h_obj,d_obj, cudaMemcpyDevicetoHost)

+ Concurrency management

- E.g. __synchthreads()
CS6963

. THE
L1: Course/CUDA Introduction u UNIVERSITY
OF UTAH

Minimal Extensions to C + APT

- Declspecs
- global, device,

device float filter([N];

shared, local, __global__ void convolve (float *image)
constant
__shared__ float region[M];
+ Keywords
- threadIdx, blockIdx .. (nrcaarax) - image(il;
* Intrinsics syncthreads ()
- __syncthreads

image[j] = result;
. }
* Runtime API
- Memory, symbol,
execution management void *myimage = cudaMalloc (bytes)

// Allocate GPU memory

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

THE
L1: Course/CUDA Introduction u UNIVERSITY
OF UTAH

+ Function launch

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign

NVCC Compller s Role: Partition Code and
Compile for Device
mycode.cu Compiled by native Compiled by nvce
) . . compiler: gcc, icc, cc compiler
int main_data;
__shared__ int sdata;
: >
TAZ&B hfunc () { § int main_data; _ shared__ sdata;
int hdata; 3 :
N T Main() {}
<<<gfunc(g,b,m)>>>(); __host__ hfunc (){
int hdata;
3 <<<gfunc(g,b,m)>>>
< .
s
=
__device__ dfunc() { > __device__ dfunc() {
int ddata; 5 int ddata;
} 8 }
>
Jo)
[a}

L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

CS6963

1/12/11

CUDA Programming Model:

A Highly Multithreaded Coprocessor

+ The GPU is viewed as a compute device that:
- Isacoprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel

Data-parallel portions of an uﬁplicuﬁon are executed
on the device as kernels which run in parallel on many
threads

+ Differences between GPU and CPU threads
- GPU threads are extremely lightweight
- Very little creation overhead
- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

CS6963

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign L1: Course/CUDA Introduction

F UTAH

. THE
L1: Course/CUDA Introduction u l%N IVERSITY
O

Thread Batching: 6rids and Blocks

A kernel is executed as a grid

of thread blocks Host

- All threads share data
memory space

A thread block is a batch of

threads that can cooperate
with each other by:

- Synchronizing their execution
- For hazard-free shared Kernel —
memory accesses 2
- Efficiently sharing data through
a low latency shared memory Block (1, 1)

Two threads from two
different blocks cannot
cooperate

Courtesy: NDVIA|

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois, Urbana-Champaign ~ L1: Course/CUDA Introduction

Block and Thread IDs

+ Threads and blocks have
IDs

- So each thread can decide
what data to work on

- Block ID: 1D or 2D

(0,0) 1,0) (2,0)
Block Block
(blockTdx.x, blockIdx.y)) \—“’"
- Thread ID: 1D, 2D, or 3D

(threadIdx.{x.y,z}) Block (1, 1)

Device

Grid 1

Block

CE)

+ Simplifies memory
addressing when processing
multidimensional data

- Image processing

- Solving PDEs on volumes
Courtesy: NDVIA

THE
u UNIVERSITY
OF UTAH

Simple working code example

+ Goal for this example:
- Really simple but illustrative of key concepts
- Fits in one file with simple compile command
- Can absorb during lecture
* What does it do?
- Scan elements of array of numbers (any of 0 to 9)
- How many times does “6" appear?

- Array of 16 elements, each thread examines 4 elements, 1
block in grid, 1 grid

0066000000 00000

threadldx.x = 0 examines in_array elements 0, 4, 8, 12

threadldx.x = 1 examines in_array elements 1, 5, 9, 13 Knoyvn asa
cyclic data
distribution

threadldx.x = 3 examines in_array elements 3, 7, 11, 15

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

1/12/11

CUDA Pseudo-Code

MAIN PROGRAM:

Initialization

+ Allocate memor¥ on host for
input and outpu

. Assi?n random numbers to
inpuf array

Call host function

Calculate final output from
per-thread output

Print result

GLOBAL FUNCTION:

Thread scans subset of array elements
Call device function to compare with "6"

Compute local result

THE
56963 L1: Course/CUDA Introduction u UNIVERSITY

HOST FUNCTION:

Allocate memory on device for
copy of input and output

Copy input to device

Set up grid/block

Call global function
Synchronize after completion
Copy device output to host

DEVICE FUNCTION:

Compare, current element
and 6

Return 1 if same, else O

OF UTAH

Main Program: Preliminaries

#include <stdio.h>
#define SIZE 16
#define BLOCKSIZE 4

MAIN PROGRAM:

int main(int argc, char **argv)

int *in_array, *out_array;
56963 L1: Course/CUDA Introduction u‘l}‘;\IIVERSITY
OF UTAH

Main Program: Invoke Global Function

MAIN PROGRAM:
(OMIT)

Call host function

CS6963 L1: Course/CUDA Introduction

__host,

void outer_compute
“@Gnt *in_arr, int *out_arr);

/* initialization */ ...
ouTer_compu‘re(in_ar‘r‘ay, ouf_ar'r‘ay);

THE
u UNIVERSITY
OF UTAH

Main Program: Calculate Output & Print Result
MAIN PROGRAM:

Calculate final output from

per-thread output int sum = O;
Print result
for (int i=0; i<BLOCKSIZE; i++) {
sum+=out_array[i].
printf ("Result = %d\n" sum);
086063 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

1/12/11

Host Function: Preliminaries & Allocation
HOST FUNCTION:

Allocate memory on device for
copy of input and output

host___ void outer_compute (int
“*h_in_array, int *h_out_array) {

int *d_in_array, *d_out_array:;
Copy input to device
Set up grid/block
Call global function

cudaMalloc((void **) &d_in_array,
SIZE*sizeof(int));

cudaMalloc((void **) &d_out_array,

Synchronize after completion BLOCKSIZE*sizeof(int));

Copy device output to host

. THE
©S6963 L1: Course/CUDA Introduction u UNIVERSITY
OF UTAH

Host Function: Copy Data To/From Host
HOST FUNCTION: st o eutercompute (o

Allocate memory on device for int *d in *d_out .
copy of input and output ' Sy ey

Copy input to device cudaMalloc((void **) &d_in_array,

Set up grid/block SIZE*sizeof(int)):

cudaMalloc%void **) &d_out_array,
BLOCKSIZE*sizeof(inT)):

cudaMemcpy(d_in_array, h_in_array,
SIZ| >Ys(iz_eo int ,y . Y
cudaMemcpyHost ToDevice);

do computation ...

cudaMemcpy(h_out_array,d_out_array,
BLOEI)(IgIZE*Eizeo 1an, Y
o

Call global function
Synchronize after completion

Copy device output to host

cudaMemcpyDevice ToHost);
©S6963 L1: Course/CUDA Introduction u U‘lk\l IVERSITY
OF UTAH

Host Function: Setup & Call Global Function
. host___ void outer_compute (int
HOST FUNCTION: “®h_in_array, int *h:ouT_Parmg/) {
Allocate memory on device for int *d_in array, *d_out_array:
copy of input and output - o
Copy input to device cudaMalloc((void **) &d_in_array,
Set up grid/block SIZE*sizeof(int));

: cudaMalloc((void **) &d_out_array,
Call global function BLOCSSSIZE*S)izeEf(inﬂ); Y

cudaMemc X(d_in array, h_in_array,
SIZE*sizeof(int),
cudaMemcpyHostToDevice);

compute<<«(1,BLOCKSIZE)>>> (d_in_array,
d_out_array);

cudaThreadSynchronize():
cudaMemcpy(h_out_array, d_out_array,
BLOE%%TZE*?&@O{?M /
(o}

Synchronize after completion
Copy device output to host

cudaMemcpyDevice ToHost);
}

. i THE
CS6963 L1: Course/CUDA Introduction u UNIVERSITY
OF UTAH

Global Function

GLOBAL FUNCTION:

Thread scans subset of array
elements

lobal__ void compute(int
d_in,int *d_out) {

d_out[threadIdx.x] = O;

Call device function to compare for (int i=0; i«SIZE/BLOCKSIZE;
ith 6" i++)

wi
Compurte local result {

int val = d_in[i*BLOCKSIZE +
threadIdx.x];

d_out[threadIdx.x] +=
compare(val, 6);

}
}

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

1/12/11

Device Function

DEVICE FUNCTION: __device__in

T
compare(int a, int b) {

C
%r;‘\gq‘réq,currenf element i (a == b) return L;

Return 1 if same, else O return O;

}

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

Reductions

* This type of computation is called a parallel reduction
- Operation is applied to large data structure

- Computed result represents the aggregate solution across the large
data structure

- Large data structure < computed result (perhaps single number)
[dimensionality reduced]

* Why might parallel reductions be well-suited to GPUs?
* What if we tried to compute the final sum on the GPUs?

THE
56963 L1: Course/CUDA Introduction u 8N[VERSITY

F UTAH

Standard Parallel Construct

+ Somefimes called "embarassingly parallel” or
pleasingly parallel

* Each thread is completely independent of the others

* Final result copied to CPU
+ Another example, adding two matrices:

- A more careful examination of decomposing computation

into grids and thread blocks

CS6963 L1: Course/CUDA Introduction

THE
u UNIVERSITY
OF UTAH

Summary of Lecture
+ Infroduction to CUDA
+ Essentially, a few extensions to C + APT supporting
heterogeneous data-parallel CPU+GPU execution
- Computation partitioning

- Data partititioning (parts of this implied by decomposition into
threads)

- Data organization and management
- Concurrency management

+ Compiler nvcc takes as input a .cu program and produces
- C Code for host processor (CPU), compiled by native C compiler
- Code for device processor (GPU), compiled by nvcc compiler

* Two examples
- Parallel reduction
- Embarassingly/Pleasingly parallel computation (your assignment)

! i Tie
CS6963 L1: Course/CUDA Introduction u e ——
OF UTAH

1/12/11

Next Week

* Hardware Execution Model

CS6963

L1: Course/CUDA Introduction

UOF

THE
UNIVERSITY
UTAH

1/12/11

10

