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Abstract 

A broad class of engineering problems including penetration, tmpact and large rotations of solid bodies causes severe numerical 
problems. For these problems, the constitutive equations are history dependent so material points must be followed; this is 
difficult to implement in a Eulerian scheme. On the other hand, purely Lagrangian methods typically result in severe mesh 
distortion and the consequence is ill conditioning of the element stiffness matrix leading to mesh lookup or entanglement. 
Remeshing prevents the lookup and tangling but then interpolation must be performed for history dependent variables, a process 
which can introduce errors. Proposed here is an extension of the particle-in-cell method in which particles are interpreted to be 
material points that are followed through the complete loading process. A fixed Eulerian grid provides the means for determining 
a spatial gradient. Because the grid can also be interpreted as an updated Lagrungian frame, the usual convection term in the 
acceleration associated with Eulerian formulations does not appear. With the use of maps between material points and the grid, 
the advantages of both Eulerian and Lagrangian schemes are utilized so that mesh tangling is avoided while material variables are 
tracked through the complete deformation history. Example solutions in two dimensions are given to illustrate the robustness of 
the proposed convection algorithm and to show that typical elastic behavior can be reproduced. Also, it is shown that impact with 
no slip is handled without any spe~cial algorithm for bodies governed by elasticity and strain hardening plasticity. 

1. Introduction 

The particle-in-cell (PIC) method represents a fluid by Lagrangian mass points, called particles, 
moving through a computational grid. The 'classical' PIC method [1] is partially Lagrangian in that only 
a mass and position is attributed to each particle. The procedure is highly successful in tracking contact 
discontinuities and in modeling highly distorted flow. To reduce the amount of numerical dissipation, a 
'full-particle' formulation called FLIP has been developed in which each particle is attributed all the 
properties of the fluid, including momentum and energy [2, 3]. It has been shown [4] that, with the use 
of a consistent mass matrix, kinetic energy is conserved by the mappings that are required between 
particles and grid vertices (nodes). This further reduction in dissipation is attained at the expense of 
inverting a new mass matrix for each time step. For comparable accuracy of results, the use of a large 
time step seems to compensate for the cost of inverting the consistent mass matrix in comparison with 
the alternative procedure of using a small time step and a diagonal mass matrix. 

Recently, Sulsky and Brackbill [5] have extended FLIP to handle elastic bodies and elastic bodies in 
contact with a fluid. Because the positions of the particles are forced to be single valued through 
mappings inherent in the method, interpenetration cannot occur. In effect, the procedure automatically 
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provides a non-slipping contact algorithm between two bodies or any two media with different 
path-independent constitutive relations. 

So far, FLIP has been used for materials governed by history independent constitutive equations for 
which it is natural to apply the constitutive equation at grid nodes. In this paper, we choose to invoke 
the constitutive equation at the material points. Since each material point is followed, history- 
dependent variables, such as plastic strain and strain-hardening parameters, can be associated with the 
material point for the complete evolution of the problem, in addition, the equations are presented in 
the format of a weak formulation consistent with the finite element method which ensures that the 
tangent stiffness matrix (if it were to be determined) is symmetric. The formulation actually follows that 
of many current dynamic finite element codes in that a stiffness matrix is never computed and the 
internal force vector is determined by sweeping over the elements. 

To illustrate the usefulness of the new approach, several sample problems in two dimensions are 
included. The first is one of large rotation of a rigid body to show that the dissipation normally present 
with Eulerian codes is not present. Next, the fundamental vibration mode for an elastic body is 
reproduced. One great advantage of the method is its application to impact. It is shown that elastic 
impact can be handled with no special algorithm for interfaces. Because the velocity field is forced to be 
single valued, the algorithm is actually one of no slip. Plastic behavior is also included to illustrate the 
fact that history-dependent variables are easily accommodated. 

2. Governing equations 

To present the method in the simplest possible context, the formulation is limited to small 
deformations although large translations are allowed. Therefore there is no need to select from among 
the various strain and stress tensors and the gradient operators associated with large-deformation 
theory. 

Let x denote the position of a material point at time, t. The position of the same material point at 
t = 0 is X ~j, i.e. if x is considered to be a function of X ° and t, then x(X °, O) = X °. The velocity, v, is the 
derivative of x with respect to t, denoted v = .~. 

Let L denote the gradient of velocity with respect to the spatial variable, x. Then 

L-- v V = O  + W, (2.1) 

in which the rate of deformation, D, is the symmetric part of L and the vorticity, W, is the 
skew-symmetric part. Frequently, a strain tensor, e, is defined such that # = D. Such a strain tensor is 
often used for computational convenience, as it is here, even though there is no correspondence with 
physical measurements, as exists, for example, with Lagrangian or logarithmic strain tensors. 

The tangent modulus, T, is a fourth-order tensor defined such that 

= T : ~ ,  (2.2)  

in which o" is the stress tensor. For linearly elastic materials, T is just the elasticity tensor, T E. For 
elastic-plastic materials, suppose that the material strain is decomposed into elastic and plastic parts, 

e - -  • e + eP  . 

If M is the evolution function for plastic strain rate, then 

ip = ~ / .  

(2.3) 

(2.4) 

The rate of the monotonically increasing parameter, A, must satisfy the consistency condition, f =  O, 
where the yield function f is a function of o', aa~ stress hardening (and softening) parameters. The yield 
function is chosen such that f < 0 denotes elastic behavior, f =  0 denotes yielding, and f > 0 is not 
permitted. Let the gradient of f with respect to o" b,e the tensor, N. Then the tangent modulus is 
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1 T =  r E - ~ - ( T  E ' M ) ® ( N ' T  E) 

A = N : T E : M - H  
(2.5) 

in which H is a hardening modulus that depends on the specific form of the yield function. For 
hardening, perfect plasticity and softening, H is positive, zero and negative, respectively. The symbol, 
®, denotes the tensor product. 

If p denotes the mass density, then the specific stress, or~, is defined such that 

porS = or. (2.6) 

The specific stress proves to be useful in the weak form of the equation of motion. The specific stress 
requires the use of a 'specific' tangent modulus, T s, defined such that 

&~=T~:# .  ' (2.7) 

For small deformations, the mass density can be taken as constant so it follows that 

p T S = T .  (2.8) 

If b denotes the body force per unit mass and a is the acceleration, then the equation of motion is 

(por~). V + pb  = pa , a = f~ . (2 .9)  

In addition, the stress is symmetric, or = or r. For the proposed numerical algorithm, the specific stress 
will be taken as a function of x and t to form the Eulerian part of the formulation whereas the velocity 
will be considered a function of X ° and t. The latter is a Lagrangian formulation which implies that the 
acceleration does not contain the convection term which causes a significant amount of numerical error 
if a purely Eulerian approach is used. Convection is handled in a separate step by mapping quantities 
from the material points to the grid. The separation of the calculation into a Lagrangian phase and a 
convective phase is also the basis of ALE methods [6, 7]. A comprehensive review of Lagrangian and 
Eulerian schemes together with a host cff other topics including contact algorithms has recently been 
provided by Benson [8]. 

In the finite element literature associated with solid mechanics, a mixed Lagrangian-Eulerian 
formulation is also quite common and is sometimes called an 'updated Lagrangian' scheme. In an 
updated Lagrangian approach, the position, X, of the material points at the end of the time step is used 
as the reference configuration for the subsequent step. By contrast, a 'fully Lagrangian' approach uses 
X ° as the independent variable. However, in the fluid dynamics literature, the term Lagrangian often 
refers to the method defined here as updated Lagrangian. 

3. Mixed weak form of governing equations 

The governing equations are summarized as follows: 

(por ~). V + pb  = pa 
(3.1) 

= ½[(vV) + (vV) l. 

Suppose each of these equations is multiplied by the weighting functions, w, pW, and pW*, in turn, and 
an integration over the current configuration,/2, is performed. After the use of the divergence theorem 
for the first equation, the resulting set of equations is 
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faP[w'a+°'~:wV]dV= fapw'bdV + foa w.¢dS, 

f pw:[c,  ]dV= 0, T~: (3.2) 

L : - ½[(vV) + (vV)TI} dV= 0. 

Here, ¢ denot~'s the prescribed part of the traction on thc surface 0n. Differentials of volume and 
surface arc denoted by dV and dS, respectively. 

In (3.2), the momentum equation is to bc solved on a grid, whereas the second two equations are to 
be evaluated at material points in the PIC formulation. Invoking constitutive equations at material 
points simplifies thc treatment of history-dependent variables. 

With a particular choice of basis functions, the numerical procedure can be described in the finite 
clement framework as follows. First consider the material points. Suppose the domain of the body in 
the original configuration is composed of the subdomains, n ° , P= I, .... N as illustrated in Fig. 1. 
Associated with each subdomain is a rcfcrcnce material poinL as defined by the position vector, X~, 
and a mass, Mp. With time, these subdomains dcform into the subdomains, rip, with the reference 
material points located at Xp and with the same mass. From compatibility, these material subdomains 
remain simply connected but, in gencral, the shapes of the subdomains will bc unknown. Nevertheless, 
as shown below, the material points, Xe, can bc tracked. 

Over the material subdomains, define piecewise constant basis functions Ue such that Up = 1 for all 
points on ,Or; otherwise U e = 0. It follows that UI(Xj) = 8~. Suppose these basis functions are used to 
represent the functions W, W* , o', and e in the weak form of the equations. For example, 

N N 

o "~= ~ or~Ut,, e = Z et, Up, (3.3) 
P ~ I  P = l  

where ~,~, and ep are the time-dependent stress and strain variables which are taken to beconstant  
over ~'~p. 

Dirac delta functions are used as basis functions for the mass density: 
N 

p-- ~ MpS[x-Xp]. (3.4) 

Then, with the argument that the generalized variables Wp and ;¢~ are arbitrary, the last two weak 
equations become 

o't, '~ -- T~(Xp): i t , ,  (3.s) 
6 = ½[(vV) + 

in which the subscript, Xp, in the expression for the strain rate indicates that the function in the square 
brackets is evaluated at the material point. In other words, the stress and strain rates are evaluated at 
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Fig. 1. Sketch of typical computational grid and material elements. (;:) Initial configuration, (b) final configuration. 
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those material points which will be tracked as part of the computational procedure. In many finite 
element codes, stress and strain rates are determined at element centers or at Gauss points. Here, the 
tracked material points may appear at arbitrary points within an element. 

Now, consider basis functions for the grid. The remaining variables w, v and a must be continuous at 
least in the limit as the spatial mesh size goes to zero. Suppose a computational grid is constructed of 
elements which are used to form nodal basis functions N~(x) associated with spatial points x~ with 
i = 1 , . . . ,  n. Then the conventional finite element representations for the continuous variables are 

w = w,Ni(x ) , v = vi(t)Ni(x),  a = ai(t)Ni(x ) , (3.6) 
i=1  i=1  i--I 

in which w~, v~ and at denote the nodal vectors for the respective functions. Introduce the mapping 
matrix, [S], whose components, Sp~, are values of the nodal basis functions at the current locations of 
the material points. IS] can be thought of as a stochastic matrix in the sense that all entries are positive 
or zero and each row sum is one. Also define the set of gradient vectors, Gp~, which represents the 
gradient of each basis function at the current locations of the material points. The components of these 
matrices are 

= 

Gpi = N / V I x  e . 

(3.7) 

Consider the weak form of the equation of motion given as the first equation in (3.2). With the use of 
(3.4), (3.6) and (3.7), the first and second terms in the equation become 

n N 

L p w . a d V =  ~,  w, m o . a  ~ , m o =  ~, MeS~eSe~ , (3.8) 
i , ]ff i l  P = I  

N 

fa E = E ~re ~ (3.9) n • F i n t  lint _ G M p "  O'p p o  "~" wV dV= - wi - i  , - i  
i---! P = I  

a n d f  int is The term m 0 denotes a component of the mass matrix associated with the computational grid o~ 
the internal force vector associated with node i. Nodal vectors for the body force field, b~, and the 
surface traction are defined as a natural consequence of the volume and surface integrals involving 
applied forces: 

n N 

f pw'bdV= E w,.b,, b, = X STwMpbp, 
J~ J-l e-I (3.10) 

f0 ,, - f0 w . ~ d S  = wi  " , ~ = N?r dS . 
f~ i ffi l n 

Alternatively, since the body force and surface traction are explicitly given, the conventional finite 
element form can be used in which these functions are evaluated at the grid nodes. The external force 

t ~t is defined to be vector, - i  , 

f f X t = b ,  + ;r, ( 3 . 1 1 )  
i 

The components of w~ are arbitrary except for those points where components of the displacement are 
prescribed. With the understanding that the constraints on the displacement field are invoked, the weak 
form of the equation of motion yields 

n 

moa=tim.,~ +f ix ,  , i ffi 1, . . .  ,n  . (3.12) 
j---I 

The set of equations given by (3.5) and (3.12) are similar in form to those obtained by conventional 
finite element schemes. For example, the internal and external force vectors associated with nodes are 
developed by sweeping over elements at each time step. The components of physical vectors are 
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arranged sequentially to form a vector of scalar components. The constitutive equation subroutines are 
also traditional. 

However, there are important differences between the present algorithm and the conventional finite 
element approach. First, the mass matrix, mo, varies with time and therefore must be computed at each 
time step. To simplify calculations, as in the conventional finite element procedure for transient 
problems, a diagonal mass matrix can be employed in which each diagonal term consists of the row sum 
of mij. Second, the gradient, stress and strain are evaluated at material points that can move from one 
element to another rather than remain at the center or at the Gauss points of an element. Third, the use 
of the point mass representation for the mass density results in the appearance of point masses in 
expressions for the internal and external force vectors. Fourth, the specific stress is used to provide a 
convenient form of the equation of motion in which the stress is evaluated only at the material points. 

4. The convective phase 

A great advantage of this approach is that the computational grid can be chosen for convenience. For 
example, the grid can be kept fixed in contrast to updated Lagrangian schemes in which elements can 
become severely distorted and even entangled. However, fixing the grid in space implicitly means that 
material points cross grid lines and the convection associated with material motion must be included in 
the computational procedure. With a procedure initiated by Brackbill and Ruppel 121, the convection 
phase is handled by mapping the velocity field based on values at the material points to values at the 
nodes of the computational grid. The procedure is described in this section. 

Once the accelerations at the grid nodes are determined from (3.12), explicit time integration gives 
values for the nodal velocity vectors. This integration is carried out as if the grid were an updated 
Lagrangian frame so that convection terms are not required. Information obtained during this 
Lagrangian step is then transferred to the material points to update their properties. When the material 
points move, they transport material propertie,; assigned to them without error With the use of 
information carried by the material points, the solution can be reconstructed on any ~,rid. In contrast to 
methods that continue to use the current updated Lagrangian frame, the freedom to choose the grid 
means mesh entanglement can be avoided. In the numerical examples of Section 7, information is 
mapped from material points to a uniform Eulerian grid to begin each time step. The mappings 
between the g~id ~nd material points are detailed below. 

if the representation for the velocity given by (3.6) is evaluated at a material point, Xt,, the result is 

vp= ~ viN,(Xe). (4.1) 

Eq. (4.1) maps the Velocity on the grid to material-point locations. The use of the nodal basis functions 
assures single-valuedness and continuity of the velocity field. 

Let the vector of N terms, {V}, denote one component (the x-component, say) of the velocity for all 
material points. Similarly, let the vector of n terms, {v}, represent the same component of velocity at 
the grid nodes, Then with the use of the mapping matrix [S] with components, Sei, defined in (3.7), 
each component of the above equation can be given in matrix form as 

{v)  ffi [Sl{v}.  (4.2) 

Explicit time integration is used to obtain the updated position of each material point with the use of 
these components of the velocity vector. Strain can also be updated by using the gradient of this 
velocity field evaluated at the current locations of the material points. Then stress is obtained from the 
constitutive equation. 

The convective phase consists of mapping the velocity back from the updated material points to the 
grid points. Because [S] is rectangular, the procedure is not straightforward. The approach used in 
FLIP can be interpreted as using weighted least squares to determine the nodal velocities from the 
velocities at the material point. The weighting consists of the diagonal matrix [Mo] formed from the 
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point masses, M e ,  associated with the material points. The result is the following equation which must 
be solved for {v }: 

[ml{v} = [SIT[MoI{V}  , (4.3) 

where the components of [m] are m 0, the same grid mass matrix, (3.8), that appears in the equation of 
motion. However, we also use the diagonal form of the grid mass matrix for computation efficiency in 
obtaining {v}. 

Burgess et al. [4] have shown that this particular formulation for mapping velocity from material 
points to grid nodes implies that kinetic energy, linear momentum and angular momentum are 
conserved. Kinetic energy is conserved provided the consistent mass matrix, [m], is used with grid 
quantities. The result of using a diagonal mass matrix is some dissipation of kinetic energy that has been 
quantified by Brackbill and Ruppel [2], Brackbill et al. [3] and Burgess et al. [4]. The same analysis 
applies in the context of this study. 

5. Generation of material points 

The method followed here is an adaptation of a procedure used by BrackbiU and Ruppel [2]. Suppose 
the computational grid is constructed in a convenient manner to cover the potential domain for the 
boundary value problem. Unless there is some reason to do otherwise, choose square elements. 
Suppose further that the initial configuration for each material is defined analytically by a set of 
relations 

(5.1) 
Each function, go, might describe one segment of a surface. Voids can also be described within the 
framework. The current implementation in 2-D allows combinations of straight line segments, circles 
and ellipses but more general forms can be used. 

Each material region is discretized by prescribing the number of material points and their locations 
within each element. A loop is performed over the computational grid with trial material points in each 
element. If the trial point does not satisfy the inequalities (5.1) for that material region, then the trial 
point is discarded. Otherwise, the material point is added to an array associated with a specific 
constitutive equation and the initial values of parameters for that material are stored. Initial values 
consist of position, velocity, and mass which is determined based on mass density and number of 
material points per cell. No attempt is made to allocate partial masses to account for the fact that 
material boundaries can pass through a cell. The effect of not allocating partial masses can be assessed 
by performing a convergence study with respect to changes in the number of material points assigned to 
each cell. 

The result is a mesh and material point generation scheme that is remarkably general and easy to 
implement. In effect, all that is needed is a description of the region in a form given by (5.1) for each 
material type, the size of each element (cell) in a regular grid, and the number of material points to be 
assigned initially to each element. 

6. Numerical algorithm 

For the time integration, let the time step be s and the discrete time be t k "- ks  with k = 0, 1, 2, . . . .  
The diagonal mass matrix IMp] associated with the materiai points is based on the initial discretization 
and is fixed for all time, i.e. the mass of a material point does not change. 

Suppose the following parameters are known at t~: (i) the maPkping matrix, IS]k; (ii) the gradient 
matrix, [G]k; (iii) the diagonal form of the grid mass matrix, [too] ; (iv) the grid nodal values of each 
component of velocity, {v} k; (V) each component of the position of the material points, {X} ; (vi) each 
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component of the internal force vector, {fint}; and (vii) each component of the external force vector, 
{f°xt}. 

In the following description, only one of the components (x, y and z for three dimensions) of the 
matrices [G]*, {v} k, iX} k, i f  iat} and {ff~t} will be used to simplify the presentation. 

The algorithm consists of the following steps: 

(1) Determine the acceleration, {a} k, at the grid nodes from the equation of motion (3.12): 

[molk{a}k  = {fiat}* + {f~xt}k . (6.1) 

(2) Use an explicit time integrator to obtain the velocity, {v*} k+l, of points located at the grid 
nodes: 

iv*W ' =  iv} + sia}" • (6.2) 

(3) Obtain the velocity gradients at the material points. There are nine such combinations in three 
dimensions of which a typical expression is [G]k{v*} k+~. 

(4) The strain rate at material points, ep'k+l, is formed from the components of the velocity gradient 
tensor, as in (3.5). 

(5) The stress at material points is updated with the increment obtained from the constitutive 
equation subroutine. History-dependent variables such as plastic strain and strain-hardening 
parameters are also updated for each material point. 

(6) Map to obtain velocities and accelerations at the material points, as in (4.1): 

iV*} *+1 = [ S ] k i v }  ~+' , { A } k = [ s ] k { a }  * . (6.3) 

(7) Use an explicit time integrator to update components of the position vector and velocity of the 
material points, 

ix} k+'= ix}* +s iv ' }  *+' , {V}k+L= iV} k + s { a } * .  (6.4) 

(8) Determine new mapping and gradient matrices as in (3.7): 

[S] k+t-- {N}(X**'), [G] *+l= (N}V[x,+,. (6.s) 

(9) The internal force vector is determined in terms of the current stress and gradient matrices, as in 
(3.9). 

(10) Update the consistent mass matrix associated with the grid, 

[ml *+' = [Sv] *+'[MoIIsl* +'.  (6.6) 

Sum rows to obtain the diagonal version, [rod] k+~. 
(11) Map back to obtain velocities at the grid nodes, i.e. solve 

[mo lk+l i v }  *+' = [STI*+'[Mvl{V *÷1} (6.7) 

for iv } k + ~. This step corresponds to (4.3) where the diagonal form of the grid mass matrix has 
been substituted in the left-hand side of the equation. 

(12) The cycle for one time step is complete; go to (1). 

We want to emphasize that the matrices used to describe the procedure are never formed. Rather, 
quantities are accumulated by sweeping over elements as done in many finite element programs. The 
details are not included because the procedure is well established in the finite element literature. 
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7. Numerical examples 

7.1. Rotation test 

A model proble m that is often used to illustrate properties of convection algorithms is the continuity 
equation describing transport of the non-diffusive scalar quantity qffx, t), 

d ~  og t 
+ v - ( ~ V )  = - ~ ( v - V ) .  (7.1) d t -  Ot 

In this model problem, the velocity field v(x, t) is prescribed. A common test is to prescribe a velocity 
field corresponding to rigid body motion. One example used by Smolarkiewicz [8] is that of a cylinder 
with a sharp notch cut out. The function qffx, 0) is assigned the height of the cylinder and the velocity is 
prescribed to be one of rigid body rotation in the plane perpendicular to the unit vector k in the 
z-direction, 

v(x, t) = O k  x (x - Xc) , (7.2) 
in which x¢ is the fixed center of rotation. The velocity field is divergence free so after one full rotation 
qt should be the same as its initial value. Typical convection algorithms on Eulerian grids artificially 
diffuse ~F and/or produce ripples in the solution [8]. 

In FLIP, ~Fp = gt(X°, 0) is assigned to the material points. Since the velocity field is divergence free, qt 
is a Lagrangian invariant; so ~ is fixed and transported by the particles without error. 

The top view of the cylinder, computational grid and material points are shown in Fig. 2(a). The 
cylinder has radius 0.15 and height 4.0 so that initially ~ = 4.0. The computational domain is a square 
with side length 1.0. The angular velocity is /2 = 0.1 and the components of Xc are (0.5, 0.5, 0). The 
grid has 51 nodes in each coordinate direction and the time step is s = 0.1. One full rotation corresponds 
to 628 time steps. Initially, four material points were assigned to each element where ~ is non-zero. 
This formulation contains fewer grid points than the number used by Smolarkiewicz [9], but because of 
the material points, the computational effort is greater. However, even when the number of elements is 
reduced, our results are unchanged. 

The algorithm for this test problem differs slightly from the algorithm in Section 6. There is no 
acceleration and the velocity in Step 2 is prescribed rather than computed: 

{v*} k+l = D k  x (x*+t'2-xc), (7.3) 

where x k+t¢2 is the time-centered position, ½(x k + xk+t), and 
{x}k÷, = {x}k + S(V*}~+' . (7.4) 

After the velocity on the grid is prescribed, it is mapped to the material points according to Step 6 and 
the positions of the material points are updated as in Step 7. 

The result of applying the algorithm is shown in Fig. 2(b) which is a plot of the computed surface 
qt(x, t) after one full revolution. The only source of numerical error is the mapping of the velocity from 
the grid to the material points at each step and the discrete-time integration algorithm used to update 
the positions of the material points. The errors associated with the process are neglible compared with 
the errors associated with convection algorithms on Eulerian grids. 

In the discretized equation of motion combined with a time integrator, if there is no acceleration and 
if the solution for the velocity can be represented exactly by the element shape functions, then the 
numerical solution will be exact. A particular case is uniform translation, another standard test problem 
in which v(x, t) is a prescribed constant. Numerical illustrations are given in some of the following 
examples. 

Z2.  Vibrating sol~d elastic cylinder 

Consider an infinitely long, solid cylinder of radius R = 0.6 cm. For copper, the mass density is 
p = 8.92 kg/m 3, and the elastic parameters are Young's modulus, E = 126 GPa, and Poisson's ratio, 
v = 0.35. The cylinder will vibrate in its fundamental mode which is a Bessel function of order one with 
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(a) 

° O  

Fig, 2, Notched cylinder subjected to rigid body rotation. (a) [nilia| configuration of material points and grid (top view), (b) 
surface after one revolution. 

a frequency of ~o ~ -- 1.73 × 10 ~ Hz for plane strain. The cylinder is subjected to a uniform radial strain 
of 2% so that only the first mode is excited. 

Again, four material points per element are used, Results for various time steps and element sizes are 
given in the form of energy plotted as a function of time in Fig. 3. Dotted lines denote elastic strain 
energy, dashed lines represent kinetic energy, and solid lines the sum. Fig. 3(a) shows the results for a 
time step of s = 0.2 P,s (co% = 0.35) and a square mesh spacing of h = 0.80 cm = 0.133R. The predicted 
frequency is 1.68 × 106 Hz. A measure of numerical dispersion is co d=  co/~o ~ which for this case is 
oJ o= 0.97. If the amplitude for total energy is approximated with an expression of the type E = 
E 0 exp(-~/cot/2~r) then 1, can be considered a measure of numerical dissipation. For this case, ~/= 0.121. 

The results of a convergence study for consecutive halving of both the time step and element size are 
given in Table 1. Both dissipation and dispersion are reduced to an insignificant amount with mesh and 



D. Sulsky et al. I Comput. Methods Appl. Mech. Engrg. 118 (1994) 179-196 

(a) 
0 

0 

: .  it. : .  ' ~ : . .  

~. ~ r  
;i . ' l Y~I ~t I ~I I I : I  :I I 

I I I I I o.o ~.o ~o.o z~.o eo.o ~.o a0.0 
t ime  

189 

(b) 

~ ..... ~.,'",i~: 
I i I ql  I I I I ~ 

I I * --  I - i : . ~  ~ . , ' ; I . , ; ~  1 | I 1 I 1 
I I I $ I I i I I 

: l  ~ : t  ~ :11 r . i  • : i  ~ : t  ,: :i i~. ~I : It ~ : l  i; 

• it, . l l "  • I I . . l l . . I  I i "  

0.0 5.0 

fi!ii iYiiiiii !Y 
I I • 

t ime 

(c) 
?<:>o. 

41. 

o i:i  

w td- ~,' 

: i i ' . . "  
; l t  : . '  

0.0 
I 

5.0 

iii!liiiiiiiiiii!ii 
to.0 15.o e0.0 25.0 

Lime 
Fig. 3. Energy plots for vibrating solid-elastic cylinder. (a) h - 0.8 cm and s -- 0.2 Its, (b) h = 0. cm and s - 0.1 it s, (c) h = 0.2 cm 
and s - 0.05 Its. 

time step refinement. This problem was also studied previously [4,5], with similar results. The 
difference between our algorithm and the one in these references is that we apply constitutive equations 
at the material points rather than at grid nodes. 

7.3. Impact of two elastic bodies 

Fig. 4 shows the impact of two identical elastic disks, with Young's modulus E = 1000, Poisson's ratio 
v--0 .3  and density p = 1000. The disks start in the lower left and upper right corners with initial 
velocities of (0.1, 0.1) and (-0.1,  -0 .1) ,  respectively. The grid is uniform with square elements of side 
h -  0.05 and the time step is s = 0.001. In Fig. 4(a), the disks have already travelled some distance 
through the grid. The displacement of each disk makes an angle of 45 ° with respect to either grid line. 
As mentioned previously, there is no error in the numerical solution associated with a uniform 
translation of an object through a grid. Fig. 4(b) shows the distortion that results when the disks are in 
contact during impact under the assumption of plane strain. Figs. 4(c) and 4(d) show how the disks 
rebound and translate in the opposite direction after impact has occurred. 

Energy plots are given in Fig. 5(a). All of the initial energy is kinetic energy (dashed line). The 

Table 1 
Results of convergence study for vibrating solid cylinder 
$ S toe h ¢o d 
!.gs) (cm) 

0.2 0,35 0.08 0.97 
0.1 0.17 0.04 0.99 
0.05 0.087 0.02 1.00 

0.121 
0.0126 
0.0041 
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Fig. 4, Positions of disks at various times for elastic impact, (a) t = t.0, (b) r -- 1.5, (c) t = 2,0, (d) r -- 2.5. 

kinetic energy decreases during impact and then is mostly recovered after separation. The strain energy 
(dotted line) attains its maximum value at the point of maximum deformation during impact and then 
decreases to a nominal value associated with free vibration of the disks after impact. The strain energy 
is small but not zero at discrete times after impact. The fact that a zero value is not achieved can be 
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Fig. 5. Energy and momentum plots for elastic impact. (a) Energy as a function of  time, {b) momentum as a function of  time• 
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attributed to the activation of several modes which do not exhibit zeros at the same time. The total 
energy (solid line) decreases slightly with time indicating some numerical dissipation. 

For the disk located initially in the lower left comer, the x-component of momer~tum is plotted as a 
solid line in Fig. 5(b). As expected, the momentum switches sign after impact. Also plotted is the 
y-component of momentum (dotted line) which is indistinguishable from the x-component both before 
and after impact. 

7.4. Bouncing bar 

Consider a rectangular elastic bar of dimensions 0.2 x 0.4X/2 moving with a uniform initial velocity of 
( -0 .1 ,  -0.1).  A comer of a bar strikes an elastic layer 0.25 thick. For both materials, E = 1000, 
v = 0.3, and p = 1000. Initially, four particles per square element with size h = 0.05 are assigned as 
indicated in Fig. 6(a) and the time step is s = 0.005. The subsequent configurations are shown in the 
series of particle plots given in Fig. 6. 

When one comer of the bar strikes the layer, the bar rebounds and starts to rotate. A second corner 
of the bar then strikes the layer. Then the second rebound velocity distribution implies that the bar will 
not strike the layer again. 

Velocity plots on the grid are shown in Fig. 7 for the same configurations given by the particle plots in 
Fig. 6. Localized velocities at the points of impact are shown in the layer. All points in the layer are 
actually excited but velocities below a certain level were excluded from the plot. 

7.5. Impact of two inelastic bodies 

The calculation in Section 7.3 is repeated using the same parameters except that the disks are now 
considered to be elastic-plastic solids. The model is yon Mises plasticity with a yield function, f, and 
strain hardening function, H, given by 

f ffi t~ - H ,  H = c I + c2~, (7.5) 

in which • is the second invariant of the stress oeviator, (3¢0 .  ~ro)t~2, and # is the plastic strain path 
invariant f ({~P' #p)i~2 dt. In the numerical calculation, cl ffi 100 (0.1E) and c2 = 400. The positions of 
the material points are very similar to those shown in Fig. 4 for the elastic impact and are not plotted. A 
small difference appears after impact, where a part of each disk is flattened and remains permanently 
distorted after separation. The amount of separation is not as large as that shown in Fig. 4(d) for the 
corresponding elastic case. 

The energy plot of Fig. 8(a) shows a large dissipation in the total energy (solid line) after impact 
because of plastic dissipation. After impact, the kinetic energy (dashed line) oscillates about a lower 
value than existed before the impact and the elastic strain energy (dotted line) does not achieve a value 
of zero for any time. In addition to the argument concerning the activation of several modes as a reason 
for non-zero strain energy, there is now the additional factor that residual plastic strains can prevent the 
elastic strain (and stress) from achieving a zero state even in the unloaded condition. 

As in the elastic czs~', x- and y-components of momentum (solid and dotted lines, respectively) for 
the lower-left disk switches sign after impact as indicated in Fig. 8(b). However, the magnitude of each 
component now significantly decreases after impact. Again, the x- and y-components are indistinguish- 
able. 

7.6. Impact of an elastic disk with a strain-hardening disk 

Similar to the problems of Section 7.3 and 7.5, two disks are allowed to impact. However, now one 
disk is elastic (lower left) and one is elastic-strain hardening plastic (upper right). The properties, 
computational grid, initial velocities and time step used in the previous examples are used here as well. 
However, here the initial velocity is chosen to make an angle of 30 ° with respect to the horizontal 
coordinate and the initial separation of the centers is 0.55 which is slightly smaller than the initial 
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separation of 0,71 used for the previous examples. Particle plots are given in Fig. 9 and show a slight 
flattening of one side of the plastic disk after impact. The energy plot of Fig. 10(a) shows results 
intermediate to those of the problems in Sections 7.3 and 7,5. The components of momentum are 
shown in Figs. 10(b) and 10(c) for the elastic and plastic disks, respectively. Because of the direction of 
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motion, the x and y components of momentum are not equal. Furthermore, the relative magnitude of 
the two components of momentum switches after impact as expected. 

8. Conclusion 

With an extension of the particle-in-cell method, a numerical algorithm has been developed that 
combines several desirable features. In effect, the grid can be interpreted as an updated Lagrangian one 
so that the diffusion associated with the numerical evaluation of convective derivatives in a Eulerian 
description is not present. Material points are followed so that interpolation for history-dependent 
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variables is not required. Furthermore, the symmetry associated with the weak formulation and the 
formation of an internal force vector generally associated with the finite element method have been 
retained. The additional cost of the method over existing finite element algorithms appears in the form 
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Fig. 9. Impact of disks composed of different materials. (a) t = 0.5, (b) t = 1.0, (c) t = 1.5, (d) t = 2.0. 
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of maps between the material points and the grid. The benefit is no mesh distortion and, consequently, 
no need to remesh in the event that large deformations occur. 

An advantage of applying the constitutive equation at the particle locations is an automatic treatment 
of 'mixed cells'. In purely Eulerian codes, elements (cells) that contain more than one material require 
special treatment. In order to insure that the correct constitutive equation be applied to each material in 
the element, an algorithm is usually developed to partition element variables among the materials 
present. For impact problems, the situation arises naturally in that frequently one body remains elastic 
while the other is inelastic. By following material points, the appropriate constitutive equation is 
invoked no matter how many or what kind of material points are located within a single element. 

Recently, there has been considerable research activity on a procedure called smooth particle 
hydrodynamics [10]. Since basis functions are constructed at each time step based on the current 
location of material points, the method has the advantage of being grid-free. Howevei'," as material 
points separate, the basis functions can become severely distorted and special algorithms to handle such 
cases must be constructed. The proposed approach uses a regular grid so the method is fundamentally 
different from smooth particle hydrodynamics and the problem with basis fu~::tions does not arise. 

The sample problems with the particle method show that conventional elastic vibrations can be 
reproduced. For impact, the enforcement of a single-valued velocity field within any element, no matter 
how many material points are in that element, implies that no sliding occurs along the impact surface. 
Since no slideline algorithm is required the computational procedure is remarkably efficient for this 
class of problems. 

The purpose of this work has been to demonstrate the potential benefit of combining features of the 
particle-in-cell method with those of the finite element method normally used for inelastic deformations 
of solid structures. Numerous points remain to be investigated in detail, including boundary conditions, 
relaxation of the no slip condition, the utility of using more or fewer material points per element, and 
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close observations in the material failure zone w~e,a softening occurs. Numerical solutions to a rather 
extensive set of model problems have shown no difficulties with locking or hourglassing but a detailed 
analysis of typical cells have not been performed. With a satisfactory completion of these investigations, 
the fact that solid-solid as well as solid-fluid interfaces can be handled so effortlessly suggests that the 
method will have numerous applications. 
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