L7: Memory Hierarchy Optimization, cont.

CS6963

Administrative

- Homework #2, posted on website
 - Due 5PM, Thursday, February 19
 - Use handin program to submit
- Project proposals
 - Due 5PM, Friday, March 13 (hard deadline)
 - Discuss today

CS6963

Memory Hierarchy II

Outline

- · Homework discussion
- · Project discussion
- Complete tiling discussion and matrix multiply example
- Calculating data reuse and data footprint

25062

3 L7: Memory Hierarchy I

Project Proposal

- · Project Logistics:
 - 2-3 person teams
 - Significant implementation, worth 55% of grade
 - Parts: proposal, design review (3/30 and 4/1), final presentation and report (end of semester)
 - Each person turns in the proposal (should be same as other team members)
- Proposal:
 - 3-4 page document (11pt, single-spaced)
 - Submit with handin program: "handin cs6963 prop <pdf-file>"

CS6963

Content of Proposal

- I. Team members: Name and a sentence on expertise for each member
- II. Problem description
 - What is the computation and why is it important?
 - Abstraction of computation: equations, graphic or pseudo-code, no more than 1 page
- III. Suitability for GPU acceleration
 - Amdahl's Law: describe the inherent parallelism. Argue that it is close to 100% of computation. Use measurements from CPU execution of computation if possible.
 - Synchronization and Communication: Discuss what data structures may need to be protected by synchronization, or communication through
 - Copy Overhead: Discuss the data footprint and anticipated cost of copying to/from host memory.
- IV. Intellectual Challenges
 - Generally, what makes this computation worthy of a project?
 - Point to any difficulties you anticipate at present in achieving high

CS6963

Capacity Questions

- · How much shared memory, global memory, registers, constant memory, constant cache, etc.?
 - deviceQuery function (in SDK) instantiates variable of type cudaDeviceProp with this information and prints it out.
- Summary for 9400 M (last homework problem)
 - 8192 registers per SM
 - 16KB shared memory per SM
 - 64KB constant memory
 - stored in global memory
 - presumably, 8KB constant cache
 - 256MB global memory

Main points from Previous Lecture

- · Considered latencies of different levels of memory hierarchy
 - Global memory latency roughly hundreds of cycles
 - Registers, shared memory and constant cache roughly single cycle latency
 Constant memory (stored in global memory) can be used for read-only data, but only a win if it is cached
- Examples showing how to place data in constant or shared memory
- Tiling transformation for managing limited capacity storage (shared memory, constant cache, global memory, even registers)

L7: Memory Hierarchy II

Targets of Memory Hierarchy **Optimizations**

- Reduce memory latency
 - The latency of a memory access is the time (usually in cycles) between a memory request and its completion
- Maximize memory bandwidth
 - Bandwidth is the amount of useful data that can be retrieved over a time interval
- Manage overhead
 - Cost of performing optimization (e.g., copying) should be less than anticipated gain

Optimizing the Memory Hierarchy on **GPUs**

- · Device memory access times non-uniform so data placement significantly affects performance.
 - But controlling data placement may require additional copying, so consider overhead.
- · Optimizations to increase memory bandwidth. Idea: maximize utility of each memory access.
 - Align data structures to address boundaries
 - Coalesce global memory accesses
 - Avoid memory bank conflicts to increase memory access parallelism

Reuse and Locality

- · Consider how data is accessed
 - Data reuse:
 - · Same data used multiple times
 - Intrinsic in computation
 - Data locality:
 - · Data is reused and is present in "fast memory"
 - Same data or same data transfer
- · If a computation has reuse, what can we do to get locality?
 - · Appropriate data placement and layout
 - Code reordering transformations

Now Let's Look at Shared Memory

- Common Programming Pattern (5.1.2 of CUDA manual)
 - Load data into shared memory
 - Synchronize (if necessary)
 - Operate on data in shared memory
 - Synchronize (if necessary)
 - Write intermediate results to global memory
 - Repeat until done

Can Use Reordering Transformations!

- Analyze reuse in computation
- Apply loop reordering transformations to improve locality based on reuse
- · With any loop reordering transformation, always ask
 - Safety? (doesn't reverse dependences)
 - Profitablity? (improves locality)

Legality of Tiling

- Tiling = strip-mine and permutation
 - -Strip-mine does not reorder iterations
 - -Permutation must be legal OR
 - strip size less than dependence distance

963 18 L6: Memory Hierarchy I

A Few Words On Tiling

- Tiling can be used hierarchically to compute partial results on a block of data wherever there are capacity limitations
 - Between grids if data exceeds global memory capacity
 - Across thread blocks if shared data exceeds shared memory capacity
 - Within threads if data in constant cache exceeds cache capacity
 - Special form (unroll-and-jam) used for registers

63 19 L7: Memory Hierarchy II OF UTAH

Locality Optimization

- Reuse analysis can be formulated in a manner similar to dependence analysis
 - Particularly true for temporal reuse
 - Spatial reuse requires special handling of most quickly varying dimension (still ignoring)
- Simplification for today's lecture
 - Estimate data footprint for innermost loop for different scenarios
 - Select scenario that minimizes footprint

20 17: Memory H 20

"Tiling" for Registers

- A similar technique can be used to map data to registers
- · Unroll-and-jam
 - Unroll outer loops in a nest and fuse together resulting inner loops
- · Scalar replacement
 - May be followed by replacing array references with scalar variables to help compiler identify register opportunities

CS6963

7: Memory Hierarchy I

Unroll II, TI = 4 (Equiv. to unroll-and-jam) DO K = 1, N by T_K DO I = 1, N by 4 DO J = 1, N DO KK = K, min (KK+ T_K , N) C(I,J) = C(I,J) + A(I,KK) *B(KK,J) C(I+1,J) = C(I+1,J) + A(I+1,KK) *B(KK,J) C(I+2,J) = C(I+2,J) + A(I+2,KK) *B(KK,J) C(I+3,J) = C(I+3,J) + A(I+3,KK) *B(KK,J) In other architectures with deep instruction pipelines, this optimization can also be used to expose instruction-level parallelism.

First-order Size Considerations

- Each Thread Block should have a minimal of 192 threads
 BLOCK_SIZE of 16 gives 16*16 = 256 threads
- A minimal of 32 Thread Blocks
 - A 1024*1024 P Matrix gives 64*64 = 4096 Thread Blocks
- Each thread block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 - Memory bandwidth no longer a limiting factor

David Kirk/NVIDIA and Wen-mel W. Hwu, 2007

81

E 498AL, University of Illinois, Urbana-Champaign

L7: Memory Hierarchy II

CUDA Code - Kernel Execution Configuration

// Setup the execution configuration dim3 dimBlock(BLOCK SIZE, BLOCK SIZE); dim3 dimGrid(N.width / dimBlock.x, M.height / dimBlock.y);

For very large N and M dimensions, one will need to add another level of blocking and execute the second-level blocks sequentially.

CUDA Code - Kernel Overview

```
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;
// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;
// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {</pre>
    code from the next few slides ];
```

CUDA Code - Load Data to Shared Memory // Get a pointer to the current sub-matrix Msub of M Matrix Msub = GetSubMatrix(M, m, by); // Get a pointer to the current sub-matrix Nsub of N Matrix Nsub = GetSubMatrix(N, bx, m); _shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE]; __shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE]; // each thread loads one element of the sub-matrix Ms[ty][tx] = GetMatrixElement(Msub, tx, ty); // each thread loads one element of the sub-matrix Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

CUDA Code - Compute Result

David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

498AL, University of Illinois, Urbana-Champalgn

L7: Memory Hierarchy II

```
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// each thread computes one element of the block sub-matrix
for (int k = 0; k < BLOCK SIZE; ++k)
    Pvalue += Ms[ty][k] * Ns[k][tx];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration
__syncthreads();
```

This code should run at about 45 GFLOPS

SetMatrixElement(Psub, tx, ty, Pvalue);

CUDA Code - Save Result

Matrix Psub = GetSubMatrix(P, bx, by);

// Get a pointer to the block sub-matrix of P

// Write the block sub-matrix to device memory;

// each thread writes one element

David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

GE 498AL, University of Illinois, Urbana-Champaign

L7: Memory Hierarchy II

