
2/11/09 

1 

L7: Memory Hierarchy Optimization,
cont.

CS6963 

Administrative

•  Homework #2, posted on website
– Due 5PM, Thursday, February 19
– Use handin program to submit

•  Project proposals
– Due 5PM, Friday, March 13 (hard deadline)
– Discuss today

2

L7: Memory Hierarchy II 

CS6963 

Outline

•  Homework discussion
•  Project discussion
•  Complete tiling discussion and matrix

multiply example
•  Calculating data reuse and data

footprint

3

L7: Memory Hierarchy II 

CS6963 

Project Proposal

•  Project Logistics:
–  2-3 person teams
–  Significant implementation, worth 55% of grade
–  Parts: proposal, design review (3/30 and 4/1), final

presentation and report (end of semester)
–  Each person turns in the proposal (should be same

as other team members)
•  Proposal:

–  3-4 page document (11pt, single-spaced)
–  Submit with handin program:

 “handin cs6963 prop <pdf-file>”

CS6963 

2/11/09 

2 

Content of Proposal
I.  Team members: Name and a sentence on expertise for each member
II.  Problem description

-  What is the computation and why is it important?
-  Abstraction of computation: equations, graphic or pseudo-code, no more

than 1 page
III.  Suitability for GPU acceleration

-  Amdahl’s Law: describe the inherent parallelism. Argue that it is close
to 100% of computation. Use measurements from CPU execution of
computation if possible.

-  Synchronization and Communication: Discuss what data structures may
need to be protected by synchronization, or communication through
host.

-  Copy Overhead: Discuss the data footprint and anticipated cost of
copying to/from host memory.

IV.  Intellectual Challenges
-  Generally, what makes this computation worthy of a project?
-  Point to any difficulties you anticipate at present in achieving high

speedup
CS6963 

Capacity Questions
•  How much shared memory, global memory,

registers, constant memory, constant cache, etc.?
–  deviceQuery function (in SDK) instantiates

variable of type cudaDeviceProp with this
information and prints it out.

•  Summary for 9400 M (last homework problem)
–  8192 registers per SM
–  16KB shared memory per SM
–  64KB constant memory

•  stored in global memory
•  presumably, 8KB constant cache

–  256MB global memory

6

L7: Memory Hierarchy II 

CS6963 

Main points from Previous Lecture

•  Considered latencies of different levels of
memory hierarchy
–  Global memory latency roughly hundreds of cycles
–  Registers, shared memory and constant cache roughly

single cycle latency
–  Constant memory (stored in global memory) can be used

for read-only data, but only a win if it is cached
•  Examples showing how to place data in

constant or shared memory
•  Tiling transformation for managing limited

capacity storage (shared memory, constant
cache, global memory, even registers)

7

L7: Memory Hierarchy II 

CS6963 

Targets of Memory Hierarchy
Optimizations

•  Reduce memory latency
–  The latency of a memory access is the time

(usually in cycles) between a memory request
and its completion

•  Maximize memory bandwidth
– Bandwidth is the amount of useful data that

can be retrieved over a time interval
•  Manage overhead

– Cost of performing optimization (e.g., copying)
should be less than anticipated gain

CS6963 
8

L7: Memory Hierarchy II 

2/11/09 

3 

Optimizing the Memory Hierarchy on
GPUs

•  Device memory access times non-uniform so
data placement significantly affects
performance.
•  But controlling data placement may require

additional copying, so consider overhead.
•  Optimizations to increase memory bandwidth.

Idea: maximize utility of each memory access.
•  Align data structures to address boundaries
•  Coalesce global memory accesses
•  Avoid memory bank conflicts to increase memory

access parallelism

CS6963 
9

L6: Memory Hierarchy I 

Reuse and Locality

•  Consider how data is accessed
– Data reuse:

•  Same data used multiple times
•  Intrinsic in computation

– Data locality:
•  Data is reused and is present in “fast memory”
•  Same data or same data transfer

•  If a computation has reuse, what can we do to get
locality?
•  Appropriate data placement and layout
•  Code reordering transformations

CS6963 
10

L6: Memory Hierarchy I 

Now Let’s Look at Shared Memory

•  Common Programming Pattern (5.1.2
of CUDA manual)
–  Load data into shared memory
–  Synchronize (if necessary)
–  Operate on data in shared memory
–  Synchronize (if necessary)
–  Write intermediate results to global

memory
–  Repeat until done

Shared 
memory 

Global memory 

CS6963 
11

L7: Memory Hierarchy II 
12 

Can Use Reordering Transformations!

•  Analyze reuse in computation
•  Apply loop reordering transformations

to improve locality based on reuse
•  With any loop reordering

transformation, always ask
– Safety? (doesn’t reverse dependences)
– Profitablity? (improves locality)

CS6963 
12

L7: Memory Hierarchy II 

2/11/09 

4 

Loop Permutation:
A Reordering Transformation

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order

Which one is better for row-major storage?

CS6963 
13

L7: Memory Hierarchy II 

Safety of Permutation
•  Intuition: Cannot permute two loops i and j in a loop

nest if doing so reverses the direction of any
dependence.

•  Loops i through j of an n-deep loop nest are fully
permutable if for all dependences D,

 either
 (d1, … di-1) > 0
 or

 forall k, i ≤ k ≤ j, dk ≥ 0
•  Stated without proof: Within the affine domain, n-1

inner loops of n-deep loop nest can be transformed to
be fully permutable.

CS6963 
14

L7: Memory Hierarchy II 

Simple Examples: 2-d Loop Nests

•  Distance vectors

•  Ok to permute?

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)
 A[i+1][j-1]=A[i][j]

 +B[j]; 

CS6963 
15

L6: Memory Hierarchy I 

Tiling (Blocking):
Another Loop Reordering Transformation
•  Blocking reorders loop iterations to

bring iterations that reuse data closer
in time

J 

I 

J 

I 

CS6963 
16

L6: Memory Hierarchy I 

2/11/09 

5 

Tiling Example

for (j=1; j<M; j++)
for (i=1; i<N; i++)
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++)
for (ii=1; ii<N; ii+=s)
 for (i=ii, i<min(ii+s-1,N), i++)
 D[i] = D[i] +B[j][i]; 

Strip
mine

for (ii=1; ii<N; ii+=s)
      for (j=1; j<M; j++)

 for (i=ii, i<min(ii+s-1,N),i++)
 D[i] = D[i] +B[j][i];

Permute

CS6963 
17

L6: Memory Hierarchy I 

Legality of Tiling

•  Tiling = strip-mine and permutation
– Strip-mine does not reorder iterations
– Permutation must be legal
OR
–  strip size less than dependence

distance

CS6963 
18

L6: Memory Hierarchy I 

A Few Words On Tiling

•  Tiling can be used hierarchically to compute
partial results on a block of data wherever
there are capacity limitations
–  Between grids if data exceeds global memory

capacity
–  Across thread blocks if shared data exceeds

shared memory capacity
–  Within threads if data in constant cache exceeds

cache capacity
–  Special form (unroll-and-jam) used for registers

CS6963 
19

L7: Memory Hierarchy II 
20 

Locality Optimization

•  Reuse analysis can be formulated in a manner
similar to dependence analysis
–  Particularly true for temporal reuse
–  Spatial reuse requires special handling of most

quickly varying dimension (still ignoring)
•  Simplification for today’s lecture

–  Estimate data footprint for innermost loop for
different scenarios

–  Select scenario that minimizes footprint

20

L7: Memory Hierarchy II 

CS6963 

2/11/09 

6 

21 

Reuse Analysis:
Use to Estimate Data Footprint

for (i=0; i<N; i++)
for (j=0; j<M; j++)
 A[i]=A[i]+B[j][i];

for (j=0; j<M; j++)
 for (i=0; i<N; i++)
 A[i]=A[i]+B[j][i];

21

L7: Memory Hierarchy II 

CS6963 

Allen & Kennedy:
Innermost memory cost

•  Innermost memory cost: CM(Li)
–  assume Li is innermost loop

•  li = loop variable, N = number of iterations of Li
–  for each array reference r in loop nest:

•  r does not depend on li : cost (r) = 1
•  r such that li strides over a dimension: cost (r) = N
•  (Can be more precise if taking transfer size into

account, ignored today)
–  CM(Li) = sum of cost (r)

Implicit in this cost function is that N is unknown and sufficiently large
that “storage” capacity is exceeded by data footprint in innermost loop.

CS6963 
22

L7: Memory Hierarchy II 

Canonical Example: matrix multiply
Selecting Loop Order for Cache-based

Architecture

•  CM(I) = 2N3/cls + N2
•  CM(J) = 2N3 + N2
•  CM(K) = N3 + N3/cls + N2

•  Ordering by innermost loop cost: (J, K, I)

DO I = 1, N
 DO J = 1, N
 DO K = 1, N
 C(I,J)= C(I,J) + A(I,K) * B(K,J)

CS6963 
23

L7: Memory Hierarchy II 
24 

Canonical Example: Matrix Multiply
Selecting Tile Size

DO K = 1, N by TK
 DO I = 1, N by TI
 DO J = 1, N
 DO KK = K, min(KK+ TK,N)
 DO II = I, min(II+ TI,N)
 C(II,J)= C(II,J)+A(II,KK)*B(KK,J)

C  A  B 

BI

BK

Choose Ti and Tk such that data footprint does not exceed cache capacity

24

L7: Memory Hierarchy II 

CS6963 

2/11/09 

7 

“Tiling” for Registers

•  A similar technique can be used to map
data to registers

•  Unroll-and-jam
•  Unroll outer loops in a nest and fuse together

resulting inner loops

•  Scalar replacement
–  May be followed by replacing array references

with scalar variables to help compiler identify
register opportunities

25

L7: Memory Hierarchy II 

CS6963 

Unroll II, TI = 4 (Equiv. to unroll-and-jam)

DO K = 1, N by TK
 DO I = 1, N by 4
 DO J = 1, N
 DO KK = K, min(KK+ TK,N)
 C(I,J)= C(I,J)+A(I,KK)*B(KK,J)
 C(I+1,J)= C(I+1,J)+A(I+1,KK)*B(KK,J)
 C(I+2,J)= C(I+2,J)+A(I+2,KK)*B(KK,J)
 C(I+3,J)= C(I+3,J)+A(I+3,KK)*B(KK,J)

In other architectures with deep instrucJon pipelines, this opJmizaJon can also be 
used to expose instrucJon‐level parallelism. 

26

L7: Memory Hierarchy II 

CS6963 

Scalar Replacement

DO K = 1, N by TK
 DO I = 1, N by 4
 DO J = 1, N

 C1 = C(I,J) C2 =C(I+1,J) C3=C(I+2,J) C4=C(I+3,J)
 DO KK = K, min(KK+ TK,N)
 C1 = C1+A(I,KK)*B(KK,J)
 C2 = C2+A(I+1,KK)*B(KK,J)
 C3 = C3+A(I+2,KK)*B(KK,J)
 C4 = C4+A(I+3,KK)*B(KK,J)

Now C accesses are to named registers. 
Compiler guaranteed to map to registers. 

27

L7: Memory Hierarchy II 

CS6963 
© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007‐2009 
ECE498AL, University of Illinois, Urbana‐Champaign 

Matrix Multiplication
A Simple Host Version in C

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

// Matrix mulJplicaJon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏
{
 for (int i = 0; i < Width; ++i)‏
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}

i 

k 

k 

j 

28

L7: Memory Hierarchy II 

2/11/09 

8 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Tiled Multiply Using Thread Blocks

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE

•  One thread computes one element
of Psub

•  Assume that the dimensions of M
and N are multiples of
BLOCK_SIZE and square shape

M

N

P

Psub

BLOCK_SIZE

WIDTH WIDTH

BLOCK_SIZE BLOCK_SIZE

bx

tx
01 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B

L
O

C
K

_S
IZ

E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W

ID
T

H

29

L7: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

Shared Memory Usage

•  Assume each SMP has 16KB shared memory and
BLOCK_SIZE = 16
–  Each Thread Block uses 2*256*4B = 2KB of shared memory.
–  Can potentially have up to 8 Thread Blocks actively executing
–  For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096

pending loads
•  In practice, there will probably be up to half of this due to

scheduling to make use of SPs.
–  The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB

shared memory usage per Thread Block, allowing only up to
two Thread Blocks active at the same time

30

L7: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

First-order Size Considerations

•  Each Thread Block should have a minimal of
192 threads
– BLOCK_SIZE of 16 gives 16*16 = 256 threads

•  A minimal of 32 Thread Blocks
– A 1024*1024 P Matrix gives 64*64 = 4096

Thread Blocks

•  Each thread block performs 2*256 = 512
float loads from global memory for 256 *
(2*16) = 8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

31

L7: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(N.width / dimBlock.x,
 M.height / dimBlock.y);

For very large N and M dimensions, one
will need to add another level of blocking

and execute the second-level blocks
sequentially.

32

L7: Memory Hierarchy II 

2/11/09 

9 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code – Kernel Overview
// Block index
int bx = blockIdx.x;
int by = blockIdx.y;
// Thread index
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue stores the element of the block sub-matrix
// that is computed by the thread
float Pvalue = 0;

// Loop over all the sub-matrices of M and N
// required to compute the block sub-matrix
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) {

 code from the next few slides };

33

L7: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Load Data to Shared
Memory

// Get a pointer to the current sub-matrix Msub of M

Matrix Msub = GetSubMatrix(M, m, by);

// Get a pointer to the current sub-matrix Nsub of N

Matrix Nsub = GetSubMatrix(N, bx, m);

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE];

// each thread loads one element of the sub-matrix

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty);

// each thread loads one element of the sub-matrix

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty);

34

L7: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Compute Result

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation

__syncthreads();

// each thread computes one element of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)
 Pvalue += Ms[ty][k] * Ns[k][tx];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of M and N in the next iteration

__syncthreads();

35

L7: Memory Hierarchy II 

© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University of Illinois, Urbana‐Champaign 

CUDA Code - Save Result

// Get a pointer to the block sub-matrix of P

Matrix Psub = GetSubMatrix(P, bx, by);

// Write the block sub-matrix to device memory;
// each thread writes one element

SetMatrixElement(Psub, tx, ty, Pvalue);

This code should run at about 45 GFLOPS 

36

L7: Memory Hierarchy II 

