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L7: Memory Hierarchy Optimization, 
cont.   

CS6963 

Administrative 

•  Homework #2, posted on website 
– Due 5PM, Thursday, February 19 
– Use handin program to submit 

•  Project proposals 
– Due 5PM, Friday, March 13 (hard deadline) 
– Discuss today 
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Outline 

•  Homework discussion 
•  Project discussion 
•  Complete tiling discussion and matrix 

multiply example 
•  Calculating data reuse and data 

footprint 
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Project Proposal 

•  Project Logistics: 
–  2-3 person teams 
–  Significant implementation, worth 55% of grade 
–  Parts: proposal, design review (3/30 and 4/1), final 

presentation and report (end of semester) 
–  Each person turns in the proposal (should be same 

as other team members) 
•  Proposal: 

–  3-4 page document (11pt, single-spaced) 
–  Submit with handin program:  

  “handin cs6963 prop <pdf-file>” 

CS6963 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Content of Proposal 
I.  Team members: Name and a sentence on expertise for each member 
II.   Problem description 

-  What is the computation and why is it important? 
-  Abstraction of computation: equations, graphic or pseudo-code, no more 

than 1 page 
III.   Suitability for GPU acceleration 

-  Amdahl’s Law: describe the inherent parallelism.  Argue that it is close 
to 100% of computation.  Use measurements from CPU execution of 
computation if possible. 

-  Synchronization and Communication: Discuss what data structures may 
need to be protected by synchronization, or communication through 
host. 

-  Copy Overhead: Discuss the data footprint and anticipated cost of 
copying to/from host memory. 

IV.  Intellectual Challenges 
-  Generally, what makes this computation worthy of a project? 
-  Point to any difficulties you anticipate at present in achieving high 

speedup 
CS6963 

Capacity Questions 
•  How much shared memory, global memory, 

registers, constant memory, constant cache, etc.? 
–  deviceQuery function (in SDK) instantiates 

variable of type cudaDeviceProp with this 
information and prints it out. 

•  Summary for 9400 M (last homework problem) 
–  8192 registers per SM  
–  16KB shared memory per SM 
–  64KB constant memory  

•  stored in global memory 
•  presumably, 8KB constant cache 

–  256MB global memory  
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Main points from Previous Lecture 

•  Considered latencies of different levels of 
memory hierarchy 
–  Global memory latency roughly hundreds of cycles 
–  Registers, shared memory and constant cache roughly 

single cycle latency 
–  Constant memory (stored in global memory) can be used 

for read-only data, but only a win if it is cached 
•  Examples showing how to place data in 

constant or shared memory 
•  Tiling transformation for managing limited 

capacity storage (shared memory, constant 
cache, global memory, even registers) 
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Targets of Memory Hierarchy 
Optimizations 

•  Reduce memory latency 
–   The latency of a memory access is the time 

(usually in cycles) between a memory request 
and its completion 

•  Maximize memory bandwidth 
– Bandwidth is the amount of useful data that 

can be retrieved over a time interval 
•  Manage overhead 

– Cost of performing optimization (e.g., copying) 
should be less than anticipated gain 

CS6963 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Optimizing the Memory Hierarchy on 
GPUs 

•  Device memory access times non-uniform so 
data placement significantly affects 
performance. 
•  But controlling data placement may require 

additional copying, so consider overhead. 
•  Optimizations to increase memory bandwidth.  

Idea: maximize utility of each memory access.  
•  Align data structures to address boundaries 
•  Coalesce global memory accesses 
•  Avoid memory bank conflicts to increase memory 

access parallelism 

CS6963 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Reuse and Locality 

•  Consider how data is accessed 
– Data reuse:  

•  Same data used multiple times  
•  Intrinsic in computation  

– Data locality:  
•  Data is reused and is present in “fast memory” 
•  Same data or same data transfer 

•  If a computation has reuse, what can we do to get 
locality?  
•  Appropriate data placement and layout 
•  Code reordering transformations 

CS6963 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Now Let’s Look at Shared Memory 

•  Common Programming Pattern (5.1.2 
of CUDA manual) 
–  Load data into shared memory 
–  Synchronize (if necessary) 
–  Operate on data in shared memory 
–  Synchronize (if necessary) 
–  Write intermediate results to global 

memory 
–  Repeat until done 

Shared 
memory 

Global memory 

CS6963 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Can Use Reordering Transformations! 

•  Analyze reuse in computation 
•  Apply loop reordering transformations 

to improve locality based on reuse 
•  With any loop reordering 

transformation, always ask 
– Safety? (doesn’t reverse dependences) 
– Profitablity? (improves locality) 

CS6963 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Loop Permutation: 
A Reordering Transformation 

for (j=0; j<6; j++) 
 for (i= 0; i<3; i++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

i 

j 

new traversal order! i 

j 

Permute the order of the loops to modify the traversal order 

Which one is better for row-major storage? 

CS6963 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Safety of Permutation 
•  Intuition: Cannot permute two loops i and j in a loop 

nest if doing so reverses the direction of any 
dependence. 

•  Loops i through j of an n-deep loop nest are fully 
permutable if for all dependences D, 

    either 
      (d1, … di-1) > 0 
 or  

             forall k, i ≤ k ≤ j, dk ≥ 0 
•  Stated without proof: Within the affine domain, n-1 

inner loops of n-deep loop nest can be transformed to 
be fully permutable. 

CS6963 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Simple Examples: 2-d Loop Nests 

•  Distance vectors 

•  Ok to permute? 

for (i= 0; i<3; i++) 
 for (j=0; j<6; j++) 

A[i][j+1]=A[i][j]+B[j]; 

for (i= 0; i<3; i++) 
  for (j=0; j<6; j++) 
    A[i+1][j-1]=A[i][j] 

      +B[j]; 

CS6963 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Tiling (Blocking): 
Another Loop Reordering Transformation 
•  Blocking reorders loop iterations to 

bring iterations that reuse data closer 
in time 

J 

I 

J 

I 

CS6963 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Tiling Example 

for (j=1; j<M; j++) 
for (i=1; i<N; i++) 
 D[i] = D[i] + B[j][i]; 

for (j=1; j<M; j++) 
for (ii=1; ii<N; ii+=s) 
    for (i=ii, i<min(ii+s-1,N), i++) 
   D[i] = D[i] +B[j][i]; 

Strip 
mine 

for (ii=1; ii<N; ii+=s) 
      for (j=1; j<M; j++) 

  for (i=ii, i<min(ii+s-1,N),i++) 
   D[i] = D[i] +B[j][i]; 

Permute 

CS6963 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Legality of Tiling 

•  Tiling = strip-mine and permutation 
– Strip-mine does not reorder iterations 
– Permutation must be legal 
OR 
–  strip size less than dependence 

distance 

CS6963 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A Few Words On Tiling 

•  Tiling can be used hierarchically to compute 
partial results on a block of data wherever 
there are capacity limitations 
–  Between grids if data exceeds global memory 

capacity 
–  Across thread blocks if shared data exceeds 

shared memory capacity  
–  Within threads if data in constant cache exceeds 

cache capacity   
–  Special form (unroll-and-jam) used for registers 

CS6963 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Locality Optimization 

•  Reuse analysis can be formulated in a manner 
similar to dependence analysis 
–  Particularly true for temporal reuse 
–  Spatial reuse requires special handling of most 

quickly varying dimension (still ignoring) 
•  Simplification for today’s lecture 

–  Estimate data footprint for innermost loop for 
different scenarios 

–  Select scenario that minimizes footprint 
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Reuse Analysis:  
Use to Estimate Data Footprint 

for (i=0; i<N; i++) 
for (j=0; j<M; j++) 
  A[i]=A[i]+B[j][i]; 

for (j=0; j<M; j++) 
   for (i=0; i<N; i++) 
     A[i]=A[i]+B[j][i]; 
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Allen & Kennedy:  
Innermost memory cost 

•  Innermost memory cost: CM(Li) 
–  assume Li is innermost loop 

•   li = loop variable, N = number of iterations of Li  
–  for each array reference r in loop nest: 

•  r does not depend on li : cost (r) = 1 
•  r such that li strides over a dimension: cost (r) = N 
•  (Can be more precise if taking transfer size into 

account, ignored today) 
–  CM(Li) = sum of cost (r)  

Implicit in this cost function is that N is unknown and sufficiently large 
that “storage” capacity is exceeded by data footprint in innermost loop.  

CS6963 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Canonical Example: matrix multiply 
Selecting Loop Order for Cache-based 

Architecture 

•  CM(I) = 2N3/cls + N2 
•  CM(J) = 2N3 + N2  
•  CM(K) = N3 + N3/cls + N2 

•  Ordering by innermost loop cost: (J, K, I) 

DO I = 1, N 
 DO J = 1, N 
  DO K = 1, N 
     C(I,J)= C(I,J) + A(I,K) * B(K,J) 

CS6963 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Canonical Example: Matrix Multiply 
Selecting Tile Size 

DO K = 1, N  by TK 
   DO I = 1, N by TI 
  DO J = 1, N 
     DO KK = K, min(KK+ TK,N) 
   DO II = I, min(II+ TI,N) 
      C(II,J)= C(II,J)+A(II,KK)*B(KK,J) 

C  A  B 

BI 

BK 

Choose Ti and Tk such that data footprint does not exceed cache capacity 
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“Tiling” for Registers 

•  A similar technique can be used to map 
data to registers 

•  Unroll-and-jam 
•  Unroll outer loops in a nest and fuse together 

resulting inner loops 

•  Scalar replacement 
–  May be followed by replacing array references 

with scalar variables to help compiler identify 
register opportunities 

25
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Unroll II, TI = 4 (Equiv. to unroll-and-jam) 

DO K = 1, N  by TK 
   DO I = 1, N by 4 
  DO J = 1, N 
     DO KK = K, min(KK+ TK,N) 
      C(I,J)= C(I,J)+A(I,KK)*B(KK,J) 
    C(I+1,J)= C(I+1,J)+A(I+1,KK)*B(KK,J) 
    C(I+2,J)= C(I+2,J)+A(I+2,KK)*B(KK,J) 
    C(I+3,J)= C(I+3,J)+A(I+3,KK)*B(KK,J) 

In other architectures with deep instrucJon pipelines, this opJmizaJon can also be 
used to expose instrucJon‐level parallelism. 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Scalar Replacement 

DO K = 1, N  by TK 
   DO I = 1, N by 4 
  DO J = 1, N 

       C1 = C(I,J) C2 =C(I+1,J) C3=C(I+2,J) C4=C(I+3,J) 
     DO KK = K, min(KK+ TK,N) 
      C1 = C1+A(I,KK)*B(KK,J) 
    C2 = C2+A(I+1,KK)*B(KK,J) 
    C3 = C3+A(I+2,KK)*B(KK,J) 
    C4 = C4+A(I+3,KK)*B(KK,J) 

Now C accesses are to named registers. 
Compiler guaranteed to map to registers. 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Matrix Multiplication 
A Simple Host Version in C 

M 

N 

P 

W
ID

T
H

 
W

ID
T

H
 

WIDTH WIDTH 

// Matrix mulJplicaJon on the (CPU) host in double precision 
void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 
{    
    for (int i = 0; i < Width; ++i)‏ 
        for (int j = 0; j < Width; ++j) { 
            double sum = 0; 
            for (int k = 0; k < Width; ++k) { 
                double a = M[i * width + k]; 
                double b = N[k * width + j]; 
                sum += a * b; 
            } 
            P[i * Width + j] = sum; 
        } 
} 

i 

k 

k 

j 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© David Kirk/NVIDIA and Wen‐mei W. Hwu, 2007 
ECE 498AL, University 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Illinois, Urbana‐Champaign 

Tiled Multiply Using Thread Blocks 

•  One block computes one square sub-
matrix Psub of size BLOCK_SIZE 

•  One thread computes one element 
of Psub 

•  Assume that the dimensions of M 
and N are multiples of 
BLOCK_SIZE and square shape 

M 

N 

P 

Psub 

BLOCK_SIZE 

WIDTH WIDTH 

BLOCK_SIZE BLOCK_SIZE 

bx 

tx 
01 bsize-1 2

0 1 2

by 
ty 

2
1
0

bsize-1 

2

1

0

B
L

O
C

K
_S

IZ
E

 
B

L
O

C
K

_S
IZ

E
 

B
L

O
C

K
_S

IZ
E

 

W
ID

T
H

 
W

ID
T

H
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Shared Memory Usage 

•  Assume each SMP has 16KB shared memory and 
BLOCK_SIZE = 16 
–  Each Thread Block uses 2*256*4B = 2KB of shared memory.  
–  Can potentially have up to 8 Thread Blocks actively executing 
–  For BLOCK_SIZE = 16, this allows up to 8*512 = 4,096 

pending loads 
•  In practice, there will probably be up to half of this due to 

scheduling to make use of SPs. 
–  The next BLOCK_SIZE 32 would lead to 2*32*32*4B= 8KB 

shared memory usage per Thread Block, allowing only up to 
two Thread Blocks active at the same time 
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First-order Size Considerations 

•  Each Thread Block should have a minimal of 
192 threads 
– BLOCK_SIZE of 16 gives 16*16 = 256 threads 

•  A minimal of 32 Thread Blocks 
– A 1024*1024 P Matrix gives 64*64 = 4096 

Thread Blocks 

•  Each thread block performs 2*256 = 512 
float loads from global memory for 256 * 
(2*16) = 8,192 mul/add operations.  
– Memory bandwidth no longer a limiting factor 
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CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); 
dim3 dimGrid(N.width  / dimBlock.x,  
      M.height / dimBlock.y); 

For very large N and M dimensions, one 
will need to add another level of blocking 

and execute the second-level blocks 
sequentially. 
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CUDA Code – Kernel Overview 
// Block index 
int bx = blockIdx.x; 
int by = blockIdx.y; 
// Thread index 
int tx = threadIdx.x; 
int ty = threadIdx.y; 

// Pvalue stores the element of the block sub-matrix 
// that is computed by the thread 
float Pvalue = 0; 

// Loop over all the sub-matrices of M and N 
// required to compute the block sub-matrix 
for (int m = 0; m < M.width/BLOCK_SIZE; ++m) { 

 code from the next few slides }; 
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CUDA Code - Load Data to Shared 
Memory 

// Get a pointer to the current sub-matrix Msub of M 

Matrix Msub = GetSubMatrix(M, m, by); 

// Get a pointer to the current sub-matrix Nsub of N 

Matrix Nsub = GetSubMatrix(N, bx, m); 

__shared__ float Ms[BLOCK_SIZE][BLOCK_SIZE]; 
__shared__ float Ns[BLOCK_SIZE][BLOCK_SIZE]; 

// each thread loads one element of the sub-matrix 

Ms[ty][tx] = GetMatrixElement(Msub, tx, ty); 

// each thread loads one element of the sub-matrix 

Ns[ty][tx] = GetMatrixElement(Nsub, tx, ty); 
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CUDA Code - Compute Result 

// Synchronize to make sure the sub-matrices are loaded 
// before starting the computation 

__syncthreads(); 

// each thread computes one element of the block sub-matrix 

for (int k = 0; k < BLOCK_SIZE; ++k) 
    Pvalue += Ms[ty][k] * Ns[k][tx]; 

// Synchronize to make sure that the preceding 
// computation is done before loading two new 
// sub-matrices of M and N in the next iteration 

__syncthreads(); 
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CUDA Code - Save Result 

// Get a pointer to the block sub-matrix of P 

Matrix Psub = GetSubMatrix(P, bx, by); 

// Write the block sub-matrix to device memory; 
// each thread writes one element 

SetMatrixElement(Psub, tx, ty, Pvalue); 

This code should run at about 45 GFLOPS 

36

L7: Memory Hierarchy II 


