L17: Lessons from
Particle System
Implementations

CS6963

Administrative
+ Still missing some design reviews
- Please email to me slides from presentation
- And updates to reports
- By Thursday, Apr 16, 5PM
* 6rading
- Lab2 problem 1 graded, problem 2 under construction
- Return exams by Friday AM

* Upcoming cross-cutting systems seminar,

Monday, April 20, 12:15-1:30PM, LCR: "Technology Drivers
for Multicore Architectures,” Rajeev Balasubramonian,
Mary Hall, Ganesh Gopalakrishnan, John Regehr

+ Final Reports on projects
- Poster session April 29 with dry run April 27
- Also, submit written document and software by May 6

- Invite your friends! T'll invite faculty, NVIDIA, graduate -
cseess Students, application owners!’; Particle Systems u UNIVERSITY
2 OF UTAH

Particle Systems
* MPM/GIMP
* Particle animation and other special effects

* Monte-carlo transport simulation
+ Fluid dynamics
* Plasma simulations

* What are the performance/implementation
challenges?
- Global synchronization
- Global memory access costs (how to reduce)
- Copy to/from host overlapped with computation

* Many of these issues arise in other projects

- E.g., overlapping host copies with computation image
mosaicing

L17: Particle Systems

THE
UUN[VERS[TY
3 OF UTAH

CS6963

Sources for Today's Lecture

+ A particle system simulation in the CUDA Software
Developer Kit called particles

+ Implementation description in /Developer/CUDA/
projects/particles/doc/particles.pdf

* Possibly related presentation in

http://www.nvidia.com/content/cudazone/download/
Advanced_CUDA_Training_NVISIONO8.pdf

This presentation also talks about finite differencing
and molecular dynamics.

. AS\{nchr‘onous copies in CUDA Software Developer Kit
called asyncAPT

L17: Particle Systems

THE
UUN[VERS[TY
4 OF UTAH

CS6963

4/16/09

Relevant Lessons from Particle Simulation

Global synchronization using atomic operation

. Asynchronous copy from Host to GPU

. Use of shared memory to cache particle data

Use of texture cache to accelerate particle lookup

o s W e

OpenGL rendering

THE
56963 L17: Particle Systems u UNIVERSITY
5 OF UTAH

1. Global synchronization

* Concept:

- We need to perform some computations on particles, and
others on grid cells

- Exisﬂng MPM/GIMP provides a mapping from particles to
the grid nodes to which they contribute

- Would like an inverse mapping from grid cells to the
particles that contribute to their result
+ Strategy:

- Decompose the threads so that each computes results at a
particle

- Use global synchronization to construct an inverse mapping
from grid cells to particles

- Primitive: atomicAdd

THE
56963 L17: Particle Systems u UNIVERSITY
6 OF UTAH

Example Code to Build Inverse Mapping

index refers to index of

device___ void addParticleToCell(int3 q'r‘is:lPos, uint el
s particle

“index, uint* gridCounters, uint* gridCe
{

// calculate grid hash

uint gridHash = calcGridHash(gridPos);

gridPos represents
grid cell in 3-d space

gridCells is data structure
in global memory for the

// increment cell counter using atomics inverse mapping

int counter = atomicAdd(&gridCounters]; ridHash} 1));
counter = min(counter, params.maxParticlesPerCell-1);
What this does:
Builds up gridCells as array|

// write par)'ricla index into this cell (very
limited by max # particles

uncoalesced!

gridCells[gridHash*params.maxParticlesPerCell + per grid
counter] ="index; ;)
atomicAdd gives how many
} particles have already been|

added to this cell

THE
u UNIVERSITY
OF UTAH

L17: Particle Systems
€S6963 7

2. Asynchronous Copy To/From Host

* Warning: I have not tried this, and could not find a
lot of information on it.
* Concept:
- Memory bandwidth can be a limiting factor on GPUs
- Sometimes computation cost dominated by copy cost

- But for some computations, data can be “tiled" and
computation of tiles can proceed in parallel (some of our
projects)

- Can we be computing on one tile while copying another?

* Strategy:

- Use page-locked memory on host, and asynchronous copies

- Primitive cudaMemcpyAsync

- Synchronize with cudaThreadSynchronize()

L17: Particle Systems
8

THE
u UNIVERSITY
OF UTAH

CS6963

4/16/09

Copying from Host to Device

+ cudaMemcpy(dst, src, nBytes, direction)

+ Can only go as fast as the PCI-e bus and nhot eligible for
asynchronous data transfer

+ cudaMallocHost(...): Page-locked host memory
- Use this in place of standard malloc(...) on the host
- Prevents OS from paging host memory
- Allows PCI-e DMA to run at full speed

+ Asynchronous data transfer
- Requires page-locked host memory

THE
56963 L17: Particle Systems u UNIVERSITY
9 OF UTAH

Example of Asynchronous Data Transfer

cudaStreamCreate(&streaml);
cudaStreamCreate(&stream?2);
cudaMemcpyAsync(dstl, srcl, size, dir, streaml);
kernel««grid, block, 0, stream1>>>(...);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel««grid, block, 0, stream2>>>(...);

src1 and src2 must have been allocated using cudaMallocHost
stream1 and stream? identify streams associated with asynchronous
call (note 4t “parameter” to kernel invocation)

CS6963

THE
L17: Particle Systems u UNIVERSITY
10 OF UTAH

Particle Data has some Reuse

+ Two ideas:
- Cache particle data in shared memory (3.)
- Cache particle data in texture cache (4.)

CS6963

oAl

THE
u UNIVERSITY
OF UTAH

Code from Oster presentation

 Newtonian mechanics on point masses:
struct particleStruct{

float3 pos;

float3 vel;

float3 force:

Y

pos = pos+ vel*dt

vel = vel+ force/mass*dt

L17: Particle Systems
€S6963 12

THE
u UNIVERSITY
OF UTAH

4/16/09

3. Cache Particle Data in Shared Memory
__shared___ float3 s_pos[N_THREADS];
__shared___ float3 s_vel[N_THREADS]:
__shared__ float3 s_force[N_THREADS]:
int tx= threadIdx.x;
idx= threadIdx.x+ blockIdx.x*blockDim.x;
s_pos[tx] = P[idx].pos:;
s_vel[tx] = P[idx].vel;
s_force[tx] = P[idx].force;

__syncthreads();

s_pos[tx] = s_pos[tx] + s_vel[tx] * dt;
s_vel[tx] = s_vel[tx] + s_force[tx]/mass * dt;
Plidx].pos= s_pos[tx];

Plidx].vel= s_vel[tx];

THE
56963 L17: Particle Systems u UNIVERSITY
= OF UTAH

4, Use texture cache for read-only data

+ Texture memory is special section of device global
memory

- Read only
- Cached by spatial location (1D, 2D, 3D)

+ Can achieve high performance
- If reuse within thread block so access is cached
- Useful to eliminate cost of uncoalesced global memory
access

*Re guwes special mechanisms for defining a texture,
accessing a texture

THE
56963 L17: Particle Systems u UNIVERSITY
1 OF UTAH

Using Textures: from Finite Difference Example

- Declare a texture ref
texture<float, 1, ..> fTex;

+ Bind f to texture ref via an array

cudaMaIIocAr‘ra¥(fArm

cudaMemcpy2D oAr‘r‘oy(fAr'r'ay f, .):
udaBdeex‘rureToAr‘ray(fTex fArray..);

+ Access with array texture functions

flx,y] = tex2D(fTex, x,y):

L17: Particle Systems

- Parti THE
CS6963 . UUN[VERS[TY
15 OF UTAH

Use of Textures in Particle Simulation
* Macro determines whether texture is used

a. Declaration of texture references in
particles_kernel.cu

#if USE_TEX

// textures for particle position and velocity
texture<float4, 1, cudaReadModeElement Type> oldPosTex;
texture<float4, 1, cudaReadModeElement Type> oldVelTex;

texture<uint2, 1, cudaReadModeElement Type> particleHashTex;
texturecuint, 1, cudaReadModeElement Type> cellStart Tex;

texturecuint, 1, cudaReadModeElement Type> gridCountersTex;
texturecuint, 1, cudaReadModeElement Type> gridCells Tex;
#endif L17: Particle Systems

i - Parti THE
CS6963 . UUN[VERS[TY
16 OF UTAH

4/16/09

Use of Textures in Particle Simulation

b. Bind/Unbind Textures right before kernel invocation
#if USE_TEX

CUDA_SAFE_CALL(cudaBindTexture(0, oldPosTex, oldPos,
numBodies*sizeof(float4)));

CUDA_SAFE_CALL(cudaBindTexture(0, oldVelTex, oldVel,
numBodies*sizeof (float4)));

#endif

reorderDataAndFindCellStartD<« numBlocks, humThreads
>»((uint2 *) particleHash, sfloaf4 *) oldPos, (float4 *) oldVel,
(float4 *) sortedPos, (float:

*) sortedVel, (uint *) cellStart);

#if USE_TEX
CUDA_SAFE_CALL(cudaUnbindTexture(oldPosTex));
CUDA_SAFE_CALL(cudaUnbindTexture(oldVelTex));

#endif

THE
56963 L17: Particle Systems u UNIVERSITY
i OF UTAH

CS6963

Use of Textures in Particle Simulation
c. Texture fetch (hidden in a macro)

ifdef USE_TEX

#define FETCH(t, i) tex1Dfetch(t##Tex, i)
#Helse

#define FETCH(t, i) 1[i]

#endif

* Here's an access in particles_kernel.cu
float4 pos = FETCH(oldPos, index);

F UTAH

THE
L17: Parlli\g Systems u 8N[VERSITY

5. Open6l Rendering

- OpenGL buffer objects can be maefed into the
CUDA address space and then used as global
memory

- Vertex buffer objects
- Pixel buffer objects

+ Allows direct visualization of data from
computation

- No device to host transfer
- Data stays in device memory -very fast compute / viz
- Automatic DMA from Tesla to Quadro (via host for now)

+ Data can be accessed from the kernel like any other global
data (in device memory)

L17: Particle Systems u"ﬂ
UNIVERSITY
56963 19 OF UTAH

Open6GL Interoperability
* Register a buffer object with CUDA

- cudaGLRegisterBufferObject(GLuintbuffObj):

- OpenGL can use a registered buffer only as a source

- Unregister the buffer prior to rendering to it by OpenGL
* Map the buffer object to CUDA memory

- cudaGLMapBufferObject(void**devPtr, GLuintbuffObj):

- Returns an address in global memory Buffer must be registered
prior to mapping

+ Launch a CUDA kernel to process the buffer

+ Unmap the buffer object prior to use by OpenGL
- cuda6LUnmapBufferObject(GLuintbuffObj);

* Unregister the buffer object
- cudaGLUnregisterBufferObject(GLuintbuffObj):
- Optional: needed if the buffer is a render target

CS696:

. Usse the buffer object in OpenGl. cade e
20 OF UTAH

4/16/09

Final Project Presentation

* Dry run on April 27
- Easels, tape and poster board provided
- Tape a set of Powerpoint slides to a standard 2'x3' poster,
or bring your own poster.
+ Final Report on Projects due May 6
- Submit code

- And written document, roughly 10 pages, based on earlier
submission.

- In addition to original proposal, include
- Project Plan and How Decomposed (from DR)
- Description of CUDA implementation
- Performance Measurement
- Related Work (from DR)

THE
56963 L17: Particle Systems u UNIVERSITY

2 OF UTAH

.

CS6963

Final Remaining Lectures
This one:
+ Particle Systems
April 20
+ Sorting
April 22

-2

- Would like to talk about dynamic scheduling?

- If nothing else, following paper:
“Efficient Computation of Sum-products on GPUs Through Software-
Managed Cache,” M. Silberstein, A. Schuster, D. Geiger,”A. Patney, J.
Owens, ICS 2008.

http://www.cs.technion.ac.il/~marks/docs/SumProductPaper.pdf

THE
L17: Particle Systems u UNIVERSITY
22 OF UTAH

4/16/09

