
4/16/09

1

CS6963

L17: Lessons from
Particle System
Implementations

L17: Particle Systems
2 CS6963

Administrative
• Still missing some design reviews

-  Please email to me slides from presentation
- And updates to reports
-  By Thursday, Apr 16, 5PM

• Grading
-  Lab2 problem 1 graded, problem 2 under construction
-  Return exams by Friday AM

• Upcoming cross-cutting systems seminar,
 Monday, April 20, 12:15-1:30PM, LCR: “Technology Drivers

 for Multicore Architectures,” Rajeev Balasubramonian,
 Mary Hall, Ganesh Gopalakrishnan, John Regehr

•  Final Reports on projects
-  Poster session April 29 with dry run April 27
-  Also, submit written document and software by May 6
-  Invite your friends! I’ll invite faculty, NVIDIA, graduate

students, application owners, ..

L17: Particle Systems
3 CS6963

Particle Systems
• MPM/GIMP
• Particle animation and other special effects
• Monte-carlo transport simulation
• Fluid dynamics
• Plasma simulations
• What are the performance/implementation

challenges?
- Global synchronization
- Global memory access costs (how to reduce)
-  Copy to/from host overlapped with computation

• Many of these issues arise in other projects
-  E.g., overlapping host copies with computation image

mosaicing
L17: Particle Systems

4 CS6963

Sources for Today’s Lecture
• A particle system simulation in the CUDA Software

Developer Kit called particles
• Implementation description in /Developer/CUDA/

projects/particles/doc/particles.pdf
• Possibly related presentation in
 http://www.nvidia.com/content/cudazone/download/

Advanced_CUDA_Training_NVISION08.pdf

 This presentation also talks about finite differencing
and molecular dynamics.

• Asynchronous copies in CUDA Software Developer Kit
called asyncAPI

4/16/09

2

L17: Particle Systems
5 CS6963

Relevant Lessons from Particle Simulation
1.  Global synchronization using atomic operation
2.  Asynchronous copy from Host to GPU
3.  Use of shared memory to cache particle data
4.  Use of texture cache to accelerate particle lookup
5.  OpenGL rendering

L17: Particle Systems
6 CS6963

1. Global synchronization
• Concept:

- We need to perform some computations on particles, and
others on grid cells

-  Existing MPM/GIMP provides a mapping from particles to
the grid nodes to which they contribute

- Would like an inverse mapping from grid cells to the
particles that contribute to their result

• Strategy:
- Decompose the threads so that each computes results at a

particle
- Use global synchronization to construct an inverse mapping

from grid cells to particles
-  Primitive: atomicAdd

L17: Particle Systems
7 CS6963

Example Code to Build Inverse Mapping

__device__ void addParticleToCell(int3 gridPos, uint
index, uint* gridCounters, uint* gridCells)

{
 // calculate grid hash
 uint gridHash = calcGridHash(gridPos);

 // increment cell counter using atomics
 int counter = atomicAdd(&gridCounters[gridHash], 1);

counter = min(counter, params.maxParticlesPerCell-1);
 // write particle index into this cell (very

uncoalesced!)
 gridCells[gridHash*params.maxParticlesPerCell +

counter] = index;
}

index refers to index of
particle

gridPos represents
grid cell in 3-d space

gridCells is data structure
in global memory for the
inverse mapping

What this does:
Builds up gridCells as array
limited by max # particles
per grid
atomicAdd gives how many
particles have already been
added to this cell

L17: Particle Systems
8 CS6963

2. Asynchronous Copy To/From Host
• Warning: I have not tried this, and could not find a

lot of information on it.
• Concept:

- Memory bandwidth can be a limiting factor on GPUs
- Sometimes computation cost dominated by copy cost
-  But for some computations, data can be “tiled” and

computation of tiles can proceed in parallel (some of our
projects)

-  Can we be computing on one tile while copying another?

• Strategy:
- Use page-locked memory on host, and asynchronous copies
-  Primitive cudaMemcpyAsync
- Synchronize with cudaThreadSynchronize()

4/16/09

3

L17: Particle Systems
9 CS6963

Copying from Host to Device
• cudaMemcpy(dst, src, nBytes, direction)

•  Can only go as fast as the PCI-e bus and not eligible for
asynchronous data transfer

• cudaMallocHost(…): Page-locked host memory
- Use this in place of standard malloc(…) on the host
-  Prevents OS from paging host memory
- Allows PCI-e DMA to run at full speed

• Asynchronous data transfer
-  Requires page-locked host memory

L17: Particle Systems
10 CS6963

Example of Asynchronous Data Transfer

cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst1, src1, size, dir, stream1);
kernel<<<grid, block, 0, stream1>>>(…);
cudaMemcpyAsync(dst2, src2, size, dir, stream2);
kernel<<<grid, block, 0, stream2>>>(…);

src1 and src2 must have been allocated using cudaMallocHost
stream1 and stream2 identify streams associated with asynchronous
call (note 4th “parameter” to kernel invocation)

L17: Particle Systems
11 CS6963

Particle Data has some Reuse
• Two ideas:

-  Cache particle data in shared memory (3.)
-  Cache particle data in texture cache (4.)

11

 L2:Introduction to CUDA
 L17: Particle Systems

12 CS6963

Code from Oster presentation
• Newtonian mechanics on point masses:
struct particleStruct{
float3 pos;
float3 vel;
float3 force;
};

pos = pos+ vel*dt
vel = vel+ force/mass*dt

4/16/09

4

L17: Particle Systems
13 CS6963

3. Cache Particle Data in Shared Memory
__shared__ float3 s_pos[N_THREADS];
__shared__ float3 s_vel[N_THREADS];
__shared__ float3 s_force[N_THREADS];
int tx= threadIdx.x;
idx= threadIdx.x+ blockIdx.x*blockDim.x;
s_pos[tx] = P[idx].pos;
s_vel[tx] = P[idx].vel;
s_force[tx] = P[idx].force;
__syncthreads();
s_pos[tx] = s_pos[tx] + s_vel[tx] * dt;
s_vel[tx] = s_vel[tx] + s_force[tx]/mass * dt;
P[idx].pos= s_pos[tx];
P[idx].vel= s_vel[tx];

L17: Particle Systems
14 CS6963

4. Use texture cache for read-only data
• Texture memory is special section of device global

memory
-  Read only
-  Cached by spatial location (1D, 2D, 3D)

• Can achieve high performance
-  If reuse within thread block so access is cached
- Useful to eliminate cost of uncoalesced global memory

access

• Requires special mechanisms for defining a texture,
and accessing a texture

L17: Particle Systems
15 CS6963

Using Textures: from Finite Difference Example
• Declare a texture ref
 texture<float, 1, …> fTex;

• Bind f to texture ref via an array

 cudaMallocArray(fArray,…)
cudaMemcpy2DToArray(fArray, f, …);
cudaBindTextureToArray(fTex, fArray…);

• Access with array texture functions
 f[x,y] = tex2D(fTex, x,y);

L17: Particle Systems
16 CS6963

Use of Textures in Particle Simulation
• Macro determines whether texture is used
a. Declaration of texture references in

particles_kernel.cu

#if USE_TEX
// textures for particle position and velocity
texture<float4, 1, cudaReadModeElementType> oldPosTex;
texture<float4, 1, cudaReadModeElementType> oldVelTex;

texture<uint2, 1, cudaReadModeElementType> particleHashTex;
texture<uint, 1, cudaReadModeElementType> cellStartTex;

texture<uint, 1, cudaReadModeElementType> gridCountersTex;
texture<uint, 1, cudaReadModeElementType> gridCellsTex;
#endif

4/16/09

5

L17: Particle Systems
17 CS6963

Use of Textures in Particle Simulation

#if USE_TEX
 CUDA_SAFE_CALL(cudaBindTexture(0, oldPosTex, oldPos,

numBodies*sizeof(float4)));
 CUDA_SAFE_CALL(cudaBindTexture(0, oldVelTex, oldVel,

numBodies*sizeof(float4)));
#endif

 reorderDataAndFindCellStartD<<< numBlocks, numThreads
>>>((uint2 *) particleHash, (float4 *) oldPos, (float4 *) oldVel,
(float4 *) sortedPos, (float4 *) sortedVel, (uint *) cellStart);

#if USE_TEX
 CUDA_SAFE_CALL(cudaUnbindTexture(oldPosTex));
 CUDA_SAFE_CALL(cudaUnbindTexture(oldVelTex));
#endif

b. Bind/Unbind Textures right before kernel invocation

L17: Particle Systems
18 CS6963

Use of Textures in Particle Simulation
c. Texture fetch (hidden in a macro)

ifdef USE_TEX
#define FETCH(t, i) tex1Dfetch(t##Tex, i)
#else
#define FETCH(t, i) t[i]
#endif

• Here’s an access in particles_kernel.cu
float4 pos = FETCH(oldPos, index);

L17: Particle Systems
19 CS6963

5. OpenGL Rendering
• OpenGL buffer objects can be mapped into the
CUDA address space and then used as global
memory

- Vertex buffer objects
-  Pixel buffer objects

• Allows direct visualization of data from
computation

- No device to host transfer
- Data stays in device memory –very fast compute / viz
- Automatic DMA from Tesla to Quadro (via host for now)

•  Data can be accessed from the kernel like any other global
data (in device memory)

L17: Particle Systems
20 CS6963

OpenGL Interoperability
•  Register a buffer object with CUDA

-  cudaGLRegisterBufferObject(GLuintbuffObj);
- OpenGL can use a registered buffer only as a source
- Unregister the buffer prior to rendering to it by OpenGL

•  Map the buffer object to CUDA memory
-  cudaGLMapBufferObject(void**devPtr, GLuintbuffObj);
-  Returns an address in global memory Buffer must be registered

prior to mapping
•  Launch a CUDA kernel to process the buffer
•  Unmap the buffer object prior to use by OpenGL

-  cudaGLUnmapBufferObject(GLuintbuffObj);
•  Unregister the buffer object

-  cudaGLUnregisterBufferObject(GLuintbuffObj);
- Optional: needed if the buffer is a render target

•  Use the buffer object in OpenGL code

4/16/09

6

L17: Particle Systems
21 CS6963

Final Project Presentation
• Dry run on April 27

-  Easels, tape and poster board provided
- Tape a set of Powerpoint slides to a standard 2’x3’ poster,

or bring your own poster.

• Final Report on Projects due May 6
- Submit code
- And written document, roughly 10 pages, based on earlier

submission.
-  In addition to original proposal, include

-  Project Plan and How Decomposed (from DR)
- Description of CUDA implementation
-  Performance Measurement
- Related Work (from DR)

L17: Particle Systems
22 CS6963

Final Remaining Lectures
• This one:

•  Particle Systems

• April 20
•  Sorting

• April 22
-  ?
- Would like to talk about dynamic scheduling?
-  If nothing else, following paper:

 “Efficient Computation of Sum-products on GPUs Through Software-
Managed Cache,” M. Silberstein, A. Schuster, D. Geiger, A. Patney, J.
Owens, ICS 2008.
 http://www.cs.technion.ac.il/~marks/docs/SumProductPaper.pdf

