
Wander Join and XDB: Online Aggregation via Random
Walks

Feifei Li 1, Bin Wu 2, Ke Yi 2, Zhuoyue Zhao 1

1University of Utah
2Hong Kong University of Science and Technology

{lifeifei, zyzhao}@cs.utah.edu {bwuac, yike}@cse.ust.hk

ABSTRACT
Joins are expensive, and online aggregation is an e↵ective ap-
proach to explore the tradeo↵ between query e�ciency and
accuracy in a continuous, online fashion. However, the state-
of-the-art approach, in both internal and external memory,
is based on ripple join, which is still very expensive and needs
strong assumptions (e.g., the tuples in a table are stored in
random order). This paper proposes a new approach, the
wander join algorithm, to the online aggregation problem
by performing random walks over the underlying join graph.
We also design an optimizer that chooses the optimal plan
for conducting the random walks without having to collect
any statistics a priori. Selection predicates and group-by
clauses can be handled as well. We have developed an on-
line engine called XDB by integrating wander join in the lat-
est version of PostgreSQL. Extensive experiments using the
TPC-H benchmark have shown the superior performance of
wander join. The XDB implementation has demonstrated
its practicality in a full-fledged database system.

1. INTRODUCTION
Joins are often considered to be the most central opera-

tion in relational databases, as well as the most costly one.
For many of today’s data-driven analytical tasks, users often
need to pose ad hoc complex join queries involving multiple
relational tables over gigabytes or even terabytes of data.
The TPC-H benchmark, which is the industrial standard
for decision-support data analytics, specifies 22 queries, 17
of which are joins, the most complex one involving 8 tables.
For such complex join queries, even a leading commercial
database system could take hours to process. This, unfor-
tunately, is at odds with the low-latency requirement that
users demand for interactive data analytics.

The research community has long realized the need for in-
teractive data analysis and exploration, and in 1997, began
a line of work known as “online aggregation” [7]. The ob-
servation is that such analytical queries do not really need

c�ACM 2017. This is a minor revision of the paper entitled Wander
Join: Online Aggregation via Random Walks, published in SIGMOD’16,
ISBN978-1-4503-3531-7/16/06, June 26-July 01, 2016, San Fran-
cisco, CA, USA. DOI: http://dx.doi.org/10.1145/2882903.2915235
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

a 100% accurate answer. It would be more desirable if the
database could first quickly return an approximate answer
with some form of quality guarantee (usually in the form of
confidence intervals), while improving the accuracy as more
time is spent. Then the user can stop the query processing
as soon as the quality is acceptable.
Unfortunately, despite of many nice research results and

well cited papers on this topic, online aggregation has had
limited practical impact — we are not aware of any full-
fledged, publicly available database system that supports it.
Central to this line of work is the ripple join algorithm [5].
Its basic idea is to repeatedly take samples from each ta-
ble, and only perform the join on the sampled tuples. The
result is then scaled up to serve as an estimation of the
whole join. However, the ripple join algorithm (including
its many variants) has two critical weaknesses: (1) Its per-
formance crucially depends on the fraction of the randomly
selected tuples that actually join. However, we observe that
this fraction is often exceedingly low, especially for equality
joins (a.k.a. natural joins) involving multiple tables, while
all queries in the TPC-H benchmark (thus arguably most
joins used in practice) are natural joins. (2) It demands
that the tuples in each table be stored in a random order.
This paper proposes a di↵erent approach, which we call

wander join, to the online aggregation problem. Our basic
idea is to not blindly take samples from each table and just
hope that they join, but to make the process much more fo-
cused by leveraging indexes. Specifically, wander join takes
a randomly sampled tuple only from one of the tables. Af-
ter that, it conducts a random walk using indexes on the
underlying join graph starting from that tuple. In every
step of the random walk, only the “neighbors” of the already
sampled tuples are considered, i.e., tuples in the unexplored
tables that can actually join with them. Compared with the
“blind search” of ripple join, this is more like a guided explo-
ration, where we only look at portions of the data that can
potentially lead to an actual join result. To summarize:

• We introduce wander join to achieve online aggrega-
tion for joins. The key idea is to model a join over k
tables as a join graph, and then perform random walks
in this graph. We show how the random walks lead to
unbiased estimators for various aggregation functions,
and give corresponding confidence interval formulas.

• It turns out that for the same join, there can be dif-
ferent ways to perform the random walks, which we
call walk plans. We design an optimizer that chooses
the optimal walk plan, without the need to collect any
statistics of the data a priori.

SIGMOD Record, March 2017 (Vol. 46, No. 1) 33

• We have conducted extensive experiments to compare
wander join with ripple join [5] and its system imple-
mentation DBO [2,10]. The results show that wander
join has outperformed ripple join and DBO by orders
of magnitude in speed for achieving the same accuracy
for in-memory data.

• We have implemented XDB by integrating wander join
in PostgreSQL. On the TPC-H benchmark with tens of
GBs of data, XDB is able to achieve 1% error with 95%
confidence for most queries in a few seconds, whereas
PostgreSQL may take minutes to return the exact re-
sults for the same queries.

2. BACKGROUND
Online aggregation. The concept of online aggregation
was first proposed in the classic work by Hellerstein et al. [7].
The idea is to provide approximate answers with error guar-
antees (in the form of confidence intervals) continuously dur-
ing the query execution process, where the approximation
quality improves gradually over time. Rather than having
a user wait for the exact answer, which may take an un-
known amount of time, this allows the user to explore the
e�ciency-accuracy tradeo↵, and to terminate the query ex-
ecution whenever a good approximation quality is met.

For queries over one table, e.g., SELECT SUM(quantity) FROM
R WHERE discount > 0.1, online aggregation is quite easy.
The idea is to simply take samples from table R repeatedly,
and compute the average of the sampled tuples (more pre-
cisely, on the value of the attribute on which the aggregation
function is applied), which is then appropriately scaled up
to get an unbiased estimator for the SUM. Standard statisti-
cal formulas can be used to estimate the confidence interval,
which shrinks as more samples are taken [4].
Online aggregation for joins. For join queries, the prob-
lem becomes much harder. When we sample tuples from
each table and join the sampled tuples, we get a sample of
the join results. The sample mean can still serve as an un-
biased estimator of the full join (after appropriate scaling),
but these samples are not independently chosen from the full
join results, even though the joining tuples are sampled from
each table independently. Haas et al. [4,6] studied this prob-
lem in depth, and derived new formulas for computing the
confidence intervals for such estimators, and later proposed
the ripple join algorithm [5]. Ripple join repeatedly takes
random samples from each table in a round-robin fashion,
and keep all the sampled tuples in memory. Every time a
new tuple is taken from one table, it is joined with all the
tuples taken from other tables so far.

There have been many variants and extensions to the basic
ripple join algorithm. First, if an index is available on one
of the tables, say R2, then for a randomly sampled tuple
from R1, we can find all the tuples in R2 that join with it.
Note that no random sampling is done on R2. This variant
is also known as index ripple join, which was actually noted
before ripple join itself was invented [12, 13]. In general,
for a multi-table join R1 ./ · · · ./ R

k

, the index ripple join
algorithm only does random sampling on one of the tables,
say R1. Then for each tuple t sampled from R1, it computes
t ./ R2 ./ · · · ./ R

k

, and all the joined results are returned
as samples from the full join.

Problem formulation. The type of queries we aim to

support is a SQL query of the form

SELECT g, AGG(expression) FROM R1, R2, . . . , Rk

WHERE join conditions AND selection predicates GROUP BY g

where AGG can be any of the standard aggregation functions
such as SUM, AVE, COUNT, VARIANCE, and expression can in-
volve any attributes of the tables. The join conditions
consist of equality or inequality conditions between pairs of
the tables, and selection predicates can also be applied
to any number of the tables. For example, in the follow-
ing query, the first three terms in the WHERE clause are join
conditions while the others are selection predicates:
SELECT SUM(l extended price ⇤ (1� l discount))

FROM nation, customer, orders, lineitem

WHERE n nationkey = c nationkey AND c custkey = o custkey

AND o orderkey = l orderkey AND n name =0 US0 AND l flag =0 R0

At any point in time during query processing, the algo-
rithm should output an estimator Ỹ for AGG(expression)
together with a confidence interval, i.e.,

Pr[|Ỹ � AGG(expression)|  "] � ↵.

Here, " is called the half-width of the confidence interval
and ↵ the confidence level. The user should specify one of
them and the algorithm will continuously update the other
as time goes on. The user can terminate the query when it
reaches the desired level. Alternatively, the user may also
specify a time limit on the query processing, and the algo-
rithm should return the best estimate obtainable within the
limit, together with a confidence interval.

3. WANDER JOIN

3.1 Wander join on a simple example
For concreteness, we first illustrate how wander join works

on the natural join between 3 tables R1, R2, R3:

R1(A,B) ./ R2(B,C) ./ R3(C,D), (1)

where R1(A,B) means that R1 has two attributes A and B,
etc. The natural join returns all combinations of tuples from
the 3 tables that have matching values on their common
attributes. We assume that R2 has an index on attribute
B, R3 has an index on attribute C, and the aggregation
function is SUM(D).

a1

a2

a3

a4

a6

a7

b1

b2

b3

b4

b5

b6

b7

c1

c2

c3

c4

c5

c6

c7

a5

R2 R3R1

Figure 1: The 3-table join data graph: there is an
edge between two tuples if they can join. Note that
this represents a join query with general join condi-
tions that are not necessiarly natural/equi-join.

We model the join relationships among the tuples as a
graph. More precisely, each tuple is modeled as a vertex
and there is an edge between two tuples if they can join.

34 SIGMOD Record, March 2017 (Vol. 46, No. 1)

For this natural join, it means that the two tuples have the
same value on their common attribute. We call the resulting
graph the join data graph (this is to be contrasted with the
join query graph introduced later). For example, the join
data graph for the 3-table natural join (1) may look like the
one in Figure 1. This way, each join result becomes a path
from some vertex in R1 to some vertex in R3, and sampling
from the join boils down to sampling a path. Note that this
graph is completely conceptual: we do not need to actually
construct the graph to do path sampling.

A path can be randomly sampled by first picking a vertex
in R1 uniformly at random, and then “randomly walking”
towards R3. Specifically, in every step of the random walk,
if the current vertex has d neighbors in the next table (which
can be found e�ciently by the index), we pick one uniformly
at random to walk to.

One problem an acute reader would immediately notice
is that, di↵erent paths may have di↵erent probabilities. In
the example above, the path a1 ! b1 ! c1 has probability
1
7
· 1
3
· 1
2
, while a6 ! b6 ! c7 has probability 1

7
·1·1. If the value

of the D attribute on c7 is very large, then obviously this
would tilt the balance, leading to an overestimate. Ideally,
each path should be sampled with equal probability so as to
ensure unbiasedness. However, it is well known that random
walks in general do not yield a uniform distribution.

Fortunately, a technique known in the statistics literature
as the Horvitz-Thompson estimator [8] can be used to re-
move the bias easily. Suppose path � is sampled with prob-
ability p(�), and the expression on � to be aggregated is
v(�), then v(�)/p(�) is an unbiased estimator of

P
�

v(�),
which is exactly the SUM aggregate we aim to estimate. This
can be easily proved by the definition of expectation, and is
also very intuitive: We just penalize the paths that are sam-
pled with higher probability proportionally. Also note that
p(�) can be computed easily on-the-fly as the path is sam-
pled. Suppose � = (t1, t2, t3), where t

i

is the tuple sampled
from R

i

, then we have

p(�) =
1

|R1|
· 1
d2(t1)

· 1
d3(t2)

, where (2)

d
i+1(ti) is the number of tuples in R

i+1 that join with t
i

.
Finally, we independently perform multiple random walks,

and take the average of the estimators v(�
i

)/p
i

. Since each
v(�

i

)/p
i

is an unbiased estimator of the SUM, their average
is still unbiased, and the variance of the estimator reduces
as more paths are collected.

A subtle question is what to do when the random walk
gets stuck, for example, when we reach vertex b3 in Figure 1.
In this case, we should not reject the sample, but return 0
as the estimate, which will be averaged together with all
the successful random walks. This is because even though
this is a failed random walk, it is still in the probability
space. It should be treated as a value of 0 for the Horvitz-
Thompson estimator to remain unbiased. Too many failed
random walks will slow down the convergence of estimation,
and we will deal with the issue in Section 4.

3.2 Wander join for acyclic queries
Although the algorithm above is described on a simple 3-

table chain join, it can be extended to arbitrary joins easily.
In general, we consider the join query graph (or query graph
in short), where each table is modeled as a vertex, and there
is an edge between two tables if there is a join condition

between the two; see Figure 2 for examples.

R1

(b)

(c)

R2 R3

R1 R2 R3

R4 R5

R1 R2 R3

R4 R5

(a)

Figure 2: The join query graph for a (a) chain join;
(b) acyclic join; (c) cyclic join.
When the join query graph is acyclic, wander join can

be extended in a straightforward way. First, we need to
fix a walk order such that each table in the walk order
must be adjacent (in the query graph) to another one ear-
lier in the order. For example, for the query graph in Fig-
ure 2(b), R1, R2, R3, R4, R5 and R2, R3, R4, R5, R1 are both
valid walk orders, but R1, R3, R4, R5, R2 is not since R3

(resp. R4) is not adjacent to R1 (resp. R1 or R3) in the
query graph. (Di↵erent walk orders may lead to very di↵er-
ent performance, and we will discuss how to choose the best
one in Section 4.)
Next, we simply perform the random walks as before, fol-

lowing the given order. The only di↵erence is that a random
walk may now consist of both “walks” and “jumps”. For ex-
ample, using the order R1, R2, R3, R4, R5 on Figure 2(b),
after we have reached a tuple in R3, the next table to walk
to is R4, which is connected to the part already walked via
R2. So we need to jump back to the tuple we picked in R2,
and continue the random walk from there.
Finally, we need to generalize Equation (2). Let d

j

(t) be
the number of tuples in R

j

that can join with t, where t is
a tuple from another table that has a join condition with
R

j

. Suppose the walk order is R
�(1), R�(2), . . . , R�(k), and

let R
⌘(i) be the table adjacent to R

�(i) in the query graph
but appearing earlier in the order. Note that for an acyclic
query graph and a valid walk order, R

⌘(i) is uniquely defined.
Then for the path � = (t

�(1), . . . , t�(k)), where t
�(i) 2 R

�(i),
the sampling probability of the path � is

p(�) =
1

|R
�(1)|

kY
i=2

1
d
�(i)(t⌘(i))

. (3)

3.3 Wander join for cyclic queries
The algorithm for acyclic queries can also be extended to

handle query graphs with cycles. Given a cyclic query graph,
e.g., the one in Figure 2(c), we first find any spanning tree,
such as the one in Figure 2(b). Then we just perform the
random walks on this spanning tree as before. After we
have sampled a path � on the spanning tree, we need to
put back the non-spanning tree edges, e.g., (R3, R5), and
check that � satisfies the join conditions on these edges. For
example, after we have sampled a path � = (t1, t2, t3, t4, t5)
on Figure 2(b) (assuming the walk order R1, R2, R3, R4, R5),
then we need to verify that � satisfies the non-spanning tree
edge (R3, R5), i.e., t3 should join with t5. If they do not
join, we consider � as a failed random walk and return an
estimator with value 0.

3.4 Estimators and confidence intervals

SIGMOD Record, March 2017 (Vol. 46, No. 1) 35

To derive estimators and confidence interval formulas for
various aggregation functions, we establish an equivalence
between wander join and sampling from a single table with
selection predicates, which has been studied by Haas [4].
Imagine that we have a single table that stores all the paths
in the join data graph, including the full paths, as well as
the partial paths (like a1 ! b3). Wander join essentially
samples from this imaginary table, though non-uniformly.

Suppose we have performed a total of n random walks
�1, . . . , �n. For each �

i

, let v(i) be the value of the expression
on �

i

to be aggregated, and set u(i) = 1/p(�
i

) if �
i

is a suc-
cessful walk, and 0 otherwise. With this definition of u and
v, we can rewrite the estimator for SUM as 1

n

P
n

i=1 u(i)v(i).
We observe that this has exactly the same form as the one
in [4] for estimating the SUM for a single table with a selec-
tion predicate, except for two di↵erences: (1) in [4], u(i) is
set to 1 if �

i

satisfies the selection predicate and 0 otherwise;
and (2) [4] does uniform sampling over the table, while our
sampling is non-uniform. However, by going through the
analysis in [4], we realize that it holds for any definition of
u and v, and for any sampling distribution. Thus, all the
results in [4] carry over to our case, but with u and v defined
in our way. The detailed formulas can be found in [11]; all
of them can be computed easily in O(n) time.

3.5 Selection predicates and Group By Clause
Wander join can deal with arbitrary selection predicates

in the query easily: in the random walk process, whenever
we reach a tuple t for which there is a selection predicate, we
check if it satisfies the predicate, and fail the random walk
immediately if not.

If the starting table of the random walk has an index on
the attribute with a selection predicate, and the predicate
is an equality or range condition, then we can directly sam-
ple a tuple that satisfies the condition from the index, using
Olken’s method [14]. Correspondingly, we replace |R

�(1)| in
(3) by the number of tuples in R

�(1) that satisfy the con-
dition, which can also be computed from the index. This
removes the impact of the predicate on the performance of
the random walk, thus it is preferable to start from such a
table. More discussion will be devoted on this topic under
walk plan optimization in Section 4.

Wander join supports a Group By clause by maintain-
ing multiple estimators simultaneously during the random
walk process, one per group with respect to the grouping
attribute(s). Each random walk is pushed to the group it
belongs to and used to update the corresponding estimator.

4. WALK PLAN OPTIMIZER
Di↵erent orders in which to perform the random walk may

lead to very di↵erent performance. This is akin to choosing
the best physical plan for executing a query. So we term
di↵erent ways to perform the random walks as walk plans.
A relational database optimizer usually needs statistics to be
collected from the tables a priori, so as to estimate various
intermediate result sizes for multi-table join optimization. In
this section we present a walk plan optimizer that chooses
the best walk plan without the need to collect statistics.

4.1 Walk plan generation
We first generate all possible walk plans. Recall that the

constraint we have for a valid walk order is that for each

table R
i

(except the first one), there must exist a table R
j

earlier in the order such that there is a join condition be-
tween R

i

and R
j

. In addition, R
i

should have an index on
the attribute that appears in the join condition. Note that
the join condition does not have to be equality. It can be
for instance an inequality or even a range condition, such as
R

j

.A  R
i

.B  R
j

.A + 100, as long as R
i

has an index on
B that supports range queries (e.g., a B-tree).

R1, R2, R3, R4, R5

R1, R2, R4, R3, R5

R1, R2, R4, R5, R3

R2, R1, R3, R4, R5

R2, R1, R4, R3, R5

R2, R1, R4, R5, R3

R2, R3, R1, R4, R5

R2, R3, R4, R1, R5

R2, R3, R4, R5, R1

R2, R4, R1, R3, R5

R2, R4, R1, R5, R3

R2, R4, R3, R1, R5

R2, R4, R3, R5, R1

R2, R4, R5, R1, R3

R2, R4, R5, R3, R1

R1 R2 R3

R4 R5

Figure 3: A directed join query graph and all its
walk plans.
To generate all possible walk orders, we first add direc-

tions to each edge in the join query graph. Specifically, for
an edge between R

i

and R
j

, if R
i

has an index on its at-
tribute in the join condition, we have a directed edge from
R

j

to R
i

; similarly if R
j

has an index on its attribute in
the join condition, we have a directed edge from R

i

to R
j

.
For example, after adding directions, the query graph in
Figure 2(b) might look like the one in Figure 3, and all pos-
sible walk plans are listed on the side. These plans can be
enumerated by a simple backtracking algorithm. Note that
there can be exponentially (in the number of tables) many
walk plans. However, this is not a real concern because (1)
there cannot be too many tables, and (2) more importantly,
having many walk plans does not have a major impact on
the plan optimizer, which we shall see later.
We can similarly generate all possible walk plans for cyclic

queries, just that some edges will not be walked, and they
will have to be checked after the random walk, as described
in Section 3.3. We call them non-tree edges, since the part
of the graph that is covered by the random walk form a tree.
An example is given in Figure 4.

4.2 Walk plan optimization
The performance of a walk order depends on many factors.

However, we observe that ultimately, the performance of
the random walk is measured by the variance of the final
estimator after a given amount of time, say t. Let X

i

be
the estimator from the i-th random walk (e.g., u(i)v(i) for
SUM if the walk is successful and 0 otherwise), and let T
be the running time of one random walk, successful or not.
Suppose a total of W random walks have been performed
within time t. Then the final estimator is 1

W

P
W

i=1 Xi

. We
show that

Var

"
1
W

WX
i=1

X
i

#
= Var[X1]E[T]/t.

Thus, for a given amount of time t, the variance of the
final estimator is proportional to Var[X1]E[T]. The next ob-
servation is that both Var[X1] and E[T] can also be estimated

36 SIGMOD Record, March 2017 (Vol. 46, No. 1)

R1, R2, R3, R4. non-tree edge: (R2, R4)

R1, R2, R4, R3. non-tree edge: (R2, R3)
R1 R2 R3

R4

Figure 4: Walk plan for a cyclic query graph.

by the random walks themselves! In particular, Var[X1] is
just estimated as another aggregation function; for E[T], we
simply count the number of index entries looked up, or the
number of I/Os in external memory, in each random walk,
and take the average.

Now, for each walk order, we perform a certain number of
“trial” random walks and estimate Var[X1] and E[T]. Then
we compute the product Var[X1]E[T] and pick the order with
the minimum Var[X1]E[T]. How to choose the number of
trials is the classical sample size determination problem [1],
which again depends on many factors such as the actual data
distribution, the level of precision required, etc. We adopt
the following strategy: We conduct random walks following
each plan in a round-robin fashion, and stop until at least
one plan has accumulated at least ⌧ successful walks. Then
we pick the plan with the minimum Var[X1]E[T] that has
at least ⌧/2 successful walks. This is actually motivated by
association rule mining, where a rule must both be good and
have a minimum support level. In our implementation, we
use a default threshold of ⌧ = 100.

Finally, we observe that all the trial runs are not wasted.
Since each random walk, no matter which plan it follows,
returns an unbiased estimator. So we can include all the
random walks, before and after the optimal one has been
picked, in computing the final estimator. The confidence
interval is also computed with all these random walks. This
is unlike traditional query optimization, where the cost in-
curred by the optimizer itself is pure “overhead”.

5. XDB: INTEGRATING WANDER JOIN IN-
SIDE A DBMS ENGINE

Wander Join can be easily integrated into existing data-
base engines. To demonstrate this point, we have devel-
oped XDB (approXimate DB) by integrating wander join in
the latest version of PostgreSQL (version 9.4; in particular,
9.4.2). Our implementation covers the entire pipeline from
SQL parsing to plan optimization to physical execution. We
build secondary B-tree indexes on all the join attributes and
the attributes used in the selection predicates. XDB is now
open-sourced at https://github.com/initialDLab/xdb.

XDB extends PostgreSQL’s parser, query optimizer, and
query executor to support keywords like CONFIDENCE, ONLINE,
WITHINTIME, and REPORTINTERVAL. We also integrated the
plan optimizer of wander join into the query optimizer of
PostgreSQL. For example, an example based on Q3 of TPC-
H benchmark is:

SELECT ONLINE

SUM(l_extendedprice * (1 - l_discount)), COUNT(*)

FROM customer, orders, lineitem

WHERE c_mktsegment=‘BUILDING’ AND c_custkey=o_custkey

AND l_orderkey=o_orderkey

WITHINTIME 20000 CONFIDENCE 95 REPORTINTERVAL 1000

This tells the engine that it is an online aggregation query,
such that the engine should report the estimations and their
associated confidence intervals, calculated with respect to

95% confidence level, for both SUM and COUNT every 1000
milliseconds for up to 20000 milliseconds.
Online aggregation queries are passed to an optimizer spe-

cific to wander join. The optimizer builds the join query
graph and generates valid walk paths from the join query
graph. The optimizer also replaces aggregation operators
with online aggregation estimators and relative confidence
interval operators. If the query contains an INITSAMPLE
clause, which allows the engine to execute a number of trial
runs using multiple paths to find the best walk order, all the
valid walk paths are retained in the query plan. The query
executor later iterates through all the walk paths, performs
a number of trial runs as specified by the query and com-
putes a rejection rate estimation and a variance estimation.
It then orders the walk plans by the rejection rate and breaks
tie (rejection rates di↵ered within 5%) by the variance esti-
mation.
The executor extracts samples from primary or secondary

B-tree indexes one by one given a walk path. The B-tree in-
dexes are augmented with counts of subtrees in their internal
nodes. The executor uses the counts to find the degrees of
the tuples in the join data graph and extract samples. Se-
lection predicates are immediately applied when the related
tuples are sampled, instead of waiting until the walk is com-
plete. Once a walk completes, the executor maintains a few
aggregations of the samples and probabilities for the esti-
mators. The executor returns the current estimators and
relative confidence intervals periodically. Finally, it returns
an empty tuple when the time budget is used up, which
informs PostgreSQL that no more tuples are available.
A Zeppelin frontend was also developed as part of the

XDB system, where its visualization module was modified
so that an online visualization of the (continuously updated)
query results as well as the confidence intervals is enabled.
The only system implementation available for ripple join

is the DBO system [2, 9, 10]. In fact, the algorithm imple-
mented in DBO is much more complex than the basic rip-
ple join in order to deal with limited memory, as described
in these papers. We compared XDB with Turbo DBO,
using the code at http://faculty.ucmerced.edu/frusu/
Projects/DBO/dbo.html, as a system-to-system comparison.
Note that due to the random order storage requirement,
DBO was built from ground up. Currently it is still a proto-
type that supports online aggregation only (i.e., no support
for other major features in a RDBMS engine, such as trans-
actions, locking, etc.). On the other hand, XDB retains the
full functionality of a RDBMS, with online aggregation as
an added feature. Thus, this comparison can only be to our
disadvantage due to the system overhead inside a full-fledged
DBMS for supporting other features and functionality.
Note that the original DBO papers [9] compared the DBO

engine against the PostgreSQL database by running the
same queries in both systems. We did exactly the same
in our experiments, but using XDB (which is a PostgreSQL
with wander join implemented inside its kernel).

6. EXPERIMENTS
6.1 Experimental setup
We have evaluated the performance of wander join in com-

parison with ripple join and its variants, the DBO engine,
under two settings: using a standalone implementation and
a system implementation (XDB) respectively. In the stan-

SIGMOD Record, March 2017 (Vol. 46, No. 1) 37

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.5 1 1.5 2

e
rr

o
r

(%
)

time (s)

RJ CI
RJ estimate

WJ CI
WJ estimate

(a) Q3

-60

-40

-20

 0

 20

 40

 60

 0 2 4 6 8 10

e
rr

o
r

(%
)

time (s)

RJ CI
RJ estimate

WJ CI
WJ estimate

(b) Q7

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 0.5 1 1.5 2

e
rr

o
r

(%
)

time (s)

RJ CI
RJ estimate

WJ CI
WJ estimate

(c) Q10

Figure 5: Standalone implementation: Confidence intervals and estimates on barebone queries on 2GB TPC-
H data set; confidence level is 95%.

0.01

0.1

1

10

1G 2G 3G

tim
e

 (
s)

RRJ
IRJ

WJ(B)
WJ(O)

WJ(M)

(a) Q3

0.01

0.1

1

10

1G 2G 3G

tim
e

 (
s)

RRJ
IRJ

WJ(B)
WJ(O)

WJ(M)

(b) Q7

0.01

0.1

1

10

1G 2G 3G

tim
e

 (
s)

RRJ
IRJ

WJ(B)
WJ(O)

WJ(M)

(c) Q10

Figure 6: Standalone implementation: Time to reach ±1% confidence interval and 95% confidence level on
TPC-H data sets of di↵erent sizes.

dalone setting, we implemented both wander join and ripple
join in C++. We ensure that the index structures fit in
memory; in fact, all the indexes together take space that is
a very small fraction of the total amount of data, because
they are all secondary indexes, storing only pointers to the
actual data records, which have many other attributes that
are not indexed. Building these indexes is very e�cient; in
fact, they can be built with minimal overhead while loading
data from the file system to the memory (which one has to
do anyway). Similarly, for ripple join, we gave it enough
memory so that all samples taken can be kept in memory.

The standalone implementation gives an ideal environ-
ment to both algorithms without any system overhead.

Data and queries. We used the TPC-H benchmark data
and queries for the experiments, which were also used by the
DBO work [2, 9, 10]. We used 5 tables, nation, supplier,
customer, orders, and lineitem. We used the TPC-H data
generator with the appropriate scaling factor to generate
data sets of various sizes. We picked queries Q3 (3 tables),
Q7 (6 tables; the nation table appears twice in the query)
and Q10 (5 tables) in the TPC-H specification for testing.

E↵ect of data skewness. There are two types of skewness.
Degree skewness refers to the skewness in the distribution
of the number of tuples in one table that join another, while
value skewness is the skewness of the distribution of the val-
ues being aggregated. The degree skewness will negatively
impact the random walk process of wander join if a good
walk order is not selected. This issue is addressed by our
walk order optimization. Depending on how the cardinality
of the join changes, it usually has no impact or even pos-
itive impact on the e�ciency of wander join. In contrast,
degree skewness often leads to worse performance for ripple
join due to the increasing join sparsity for most tuples. On
the other hand, value skewness has a negative impact on all
online aggregation methods because the higher variance of
aggregated values leads to a larger variance of the estimator.
Unless prior knowledge of the value distribution is available,
the e↵ectiveness of (any) sampling methods will be a↵ected.

6.2 Results on standalone implementation
We first run wander join (WJ) and ripple join (RJ) on a

2GB data set, i.e., the entire TPC-H database is 2GB, using
the “barebone” joins of Q3, Q7, and Q10, where we drop all
the selection predicates. Figure 5 plots how the confidence
interval (CI) shrinks over time, with the confidence level set
at 95%, as well as the estimates returned by the algorithms.
They are shown as a percentage error compared with the
true answer (obtained o✏ine by running the exact joins to
full completion). We can see that WJ converges much faster
than RJ, due to the much more focused exploration strat-
egy. Meanwhile, the estimates returned are indeed within
the confidence interval almost all the time. For example,
wander join converges to 1% confidence interval in less than
0.1 second whereas ripple join takes more than 4 seconds
to reach 1% confidence interval. The full exact join on Q3,
Q7, and Q10 in this case is 18 seconds, 28 seconds, and 19
seconds, respectively, using hash join.
Next, we ran the same queries on data sets of varying sizes.

Now we include both the random order ripple join (RRJ)
and the index-assisted ripple join (IRJ). For wander join,
we also considered two other versions to see how the plan
optimizer worked. WJ(B) is the version where the optimal
plan is used (i.e., we run the algorithm with every plan and
report the best result); WJ(M) is the version where we use
the median plan (i.e., we run all plans and report the median
result). WJ(O) is the version where we use the optimizer to
automatically choose the plan, and the time spent by the
optimizer is included. In Figure 6 we report the time spent
by each algorithm to reach ±1% confidence interval with
95% confidence level on data sets of sizes 1GB, 2GB, and
3GB. We also report the time costs of the optimizer in Table
1. From the results, we can draw the following observations:
(1) Wander join is in general faster than ripple join by two
orders of magnitude to reach the same confidence interval.
(2) The running time of ripple join increases with N , the
data size, though mildly. (3) The running time of wander
join is not a↵ected by N . This also agrees with our analysis:
When hash tables are used, its e�ciency is independent of N
altogether. (4) The optimizer has very low overhead, and is

38 SIGMOD Record, March 2017 (Vol. 46, No. 1)

0.01

0.1

1

10

100

80 83 88 91 94

tim
e

 (
s)

selectivity (%)
RRJ
IRJ

WJ(B)
WJ(O)

WJ(M)

(a) Q3

0.01

0.1

1

10

100

96.2 96.8 97.4 97.7 98

tim
e

 (
s)

selectivity (%)
RRJ
IRJ

WJ(B)
WJ(O)

WJ(M)

(b) Q7

0.01

0.1

1

10

100

75 78 82 85 90

tim
e

 (
s)

selectivity (%)
RRJ
IRJ

WJ(B)
WJ(O)

WJ(M)

(c) Q10

Figure 7: Standalone implementation: Time to reach ±1% confidence interval and 95% confidence level on
the 2GB TPC-H data set with multiple selection predicate of varying selectivity.

size (GB) optimization (ms) execution (ms)

Q3
1 2.8 88.7
2 2.8 91.3
3 2.9 101.9

Q7
1 6.4 106.1
2 6.4 112.1
3 6.6 123.7

Q10
1 7.0 105
2 7.3 105.6
3 8.8 116

Table 1: Standalone implementation: Time cost
of walk plan optimization (execution time to reach
±1% confidence interval and 95% confidence level on
TPC-H data sets of di↵erent sizes).

5GB 10GB 15GB 20GB
0

20

40

60

80

100

120

140

tim
e
 (

s)

Q3
Q7
Q10

(a) PostgreSQL full join
5GB 10GB 15GB 20GB

1.5

2

2.5

3

3.5

4

4.5

5

tim
e
 t
o
 ±

1
%

 C
I
(s

)

Q3
Q7
Q10

(b) Wander join in PG

Figure 8: XDB: system implementation experimen-
tal results with su�cient memory – 32GB memory.

very e↵ective. In fact, from the figures, we see that WJ(B)
and WJ(O) have almost the same running time, meaning
that the optimizer spends almost no time and indeed has
found either the best plan or a very good plan that is almost
as good as the best plan. Recall that all the trial runs used in
the optimizer for selecting a good plan are not wasted; they
also contribute to building the estimators. For barebone
queries, many plans actually have similar performance, as
seen by the running time of WJ(M), so even the trial runs
are of good quality.

Finally, we put back the selection predicates to the queries.
Figure 7 shows the time to reach ±1% confidence interval
with 95% confidence level for the algorithms on the 2GB
data set with all the predicates are put back. Here, we mea-
sure the overall selectivity of all the predicates as:

1� (join size with predicates)/(barebone join size), (4)

so higher means more selective.
From the results, we see that one selection predicate has

little impact on the performance of wander join, because
most likely its optimizer will elect to start the walk from
that table. Multiple highly selective predicates do a↵ect
the performance of wander join, but even in the worst case,
wander join maintains a gap with ripple join of more than
an order of magnitude.

These experiments also demonstrate the importance of the
plan optimizer: With multiple highly selective predicates, a

mediocre plan can be much worse than the optimal one,
and the plan optimizer almost always picks the optimal or a
close-to-optimal plan with nearly no overhead. Note that in
this case we do have poor plans, so some trial random walks
may contribute little to the estimation. However, the good
plans can accumulate ⌧ = 100 successful random walks very
quickly, so we do not waste too much time anyway.

6.3 Results on system implementation
For the experimental evaluation on XDB, which is our

PostgreSQL integration and implementation of wander join,
we first tested how it performs when there is su�cient mem-
ory, and then tested the case when memory is severely lim-
ited. We compared against Turbo DBO in the latter case.
Turbo DBO [2] is an improvement to the original DBO en-
gine, that extends ripple join to data on external memory
with many optimizations.

When there is su�cient memory. Due to the low-
latency requirement for data analytical tasks and thanks
to growing memory sizes, database systems are moving to-
wards the “in-memory” computing paradigm. So we first
would like to see how our system performs when there is suf-
ficient memory. For this purpose, we used a machine with
32GB memory and data sets of sizes up to 20GB. We ran
both online version of XDB and the built-in PostgreSQL full
join in XDB on the same queries, both through the standard
PostgreSQL SQL query interface.
Note that since we have built indexes on all the join at-

tributes and there is su�cient memory, the PostgreSQL op-
timizer chose index join for all the join operators. We used
Q3, Q7, and Q10 with all the selection predicates.
The results in Figure 8 clearly indicate a linear growth

of the full join, which is as expected because the index join
algorithm has running time linear in the table size. Also
because all joins are primary key-foreign key joins, the in-
termediate results have roughly linear size. On the other
hand, the data size has a mild impact on the performance of
wander join. For example, the time to reach ±1% confidence
interval for Q7 merely increases from 3 seconds to 4 seconds,
when the data size increases from 5GB to 20GB in Figure
8(b). By our analysis and the internal memory experimen-
tal results, the total number of random walk steps should
be independent of the data size. However, because we use
B-tree indexes, whose access cost grows logarithmically as
data gets larger, the cost per random walk step might grow
slightly. Nevertheless, PostgreSQL with wander join reach-
ing 1% CI has outperformed the PostgreSQL with full join
by more than one order of magnitude when data size grows.
We have also run Turbo DBO in this case. However, it

turned out that Turbo DBO spends even more time than
PostgreSQL’s full join, so we do not show its results. This

SIGMOD Record, March 2017 (Vol. 46, No. 1) 39

10GB 20GB 30GB 40GB
0

100

200

300

400

500

600

tim
e

 (
s)

Full join in PG
Turbo DBO
Wander join in PG

(a) Q3
10GB 20GB 30GB 40GB

0

100

200

300

400

500

600

tim
e

 (
s)

Full join in PG
Turbo DBO
Wander join in PG

(b) Q7
10GB 20GB 30GB 40GB

0

100

200

300

400

500

600

700

tim
e

 (
s)

Full join in PG
Turbo DBO
Wander join in PG

(c) Q10

Figure 9: XDB: system implementation experimental results with limited memory – 4GB memory.

seems to contradict with the results in [10]. In fact, this
is because DBO is intentionally designed for large data and
small memory. In the experiments of [10], the machine used
had only 2GB of memory. With such a small memory, Post-
greSQL had to resort to sort-merge join or nested-loop join
for each join operator, which is much less e�cient than in-
dex join (for in-memory data). Meanwhile, DBO follows the
framework of sort-merge join, so it is actually not surprising
that it is not as good as index joins for in-memory data. In
our next set of experiments where we limit the memory size,
we do see that DBO performs better than the full join.

When memory is limited. In our last set of experiments,
we used a machine with only 4GB memory, and ran the same
set of experiments as above on data sets of sizes starting from
10GB and increasing to 40GB. The time for wander join
inside PostgreSQL and Turbo DBO to reach ±5% confidence
interval with 95% confidence level, as well as the time of the
full join in PostgreSQL, are shown in Figure 9.

From the results, we see that a small memory has a sig-
nificant impact on the performance of wander join. The
running time increases from a few seconds in Figure 8 to
more than 100 seconds in Figure 9, and that’s after we have
relaxed the target confidence interval from ±1% to ±5%.
The reason is obviously due to the random access nature of
the random walks, which now has a high cost due to exces-
sive page swapping. Nevertheless, this is a “one-time” cost,
in the sense that each random walk step is now much more
expensive, but the number of steps is still not a↵ected. After
the one-time, sudden increase when data size exceeds main
memory, the total cost remains almost flat afterward. In
other words, the cost of wander join in this case is still in-
dependent of the data size, albeit to a small increase in the
index accessing cost (which grows logarithmically with the
data size if B-tree is used). Hence, wander join still enjoys
excellent scalability as data size continues to grow.

On the other hand, both the full join and DBO clearly
have a linear dependency on the data size, though at di↵er-
ent rates. On the 10GB and 20GB data sets, wander join
and DBO have similar performance, but eventually wander
join would stand out on very large data sets.

Anyway, spending 100 seconds just to get a ±5% estimate
does not really meet the requirement of interactive data an-
alytics, so strictly speaking both wander join and DBO have
failed in this case (when data has significantly exceeded the
memory size). Fundamentally, online aggregation requires
some form of randomness so as to have a statistically mean-
ingful estimation, which is at odds with the sequential access
nature of hard disks. This appears to be an inherent barrier
for this line of work. However, as memory sizes grow larger
and memory clouds get more popular (for example, using
systems like RAMCloud [15] and FaRM [3]), with the SSDs
as an additional storage layer, in the end we may not have
to deal with this barrier at all.

7. CONCLUSION
We have open sourced the XDB engine at https://github.

com/InitialDLab/XDB. In addition to the integration with
the PostgreSQL kernel, we have also designed and imple-
mented a front-end interface using Apache Zeppelin, which
is able to show the query results in the form of table, line
plot and other visualization representation in a continuous
online fashion. For future work, an important open problem
is to extend online aggregations to nested queries.

8. ACKNOWLEDGMENTS
Feifei Li and Zhuoyue Zhao are supported in part by

NSF grants 1251019, 1302663, 1443046 and NSFC grant
61428204. Bin Wu and Ke Yi are supported by HKRGC un-
der grants GRF-621413, GRF-16211614, and GRF-16200415.
The authors greatly appreciate the valuable feedback pro-
vided by the anonymous SIGMOD reviewers and Professor
Je↵rey Naughton in preparing this manuscript.

9. REFERENCES
[1] G. Casella and R. L. Berger. Statistical Inference. Duxbury

Press, 2001.
[2] A. Dobra, C. Jermaine, F. Rusu, and F. Xu. Turbo

charging estimate convergence in dbo. In VLDB, 2009.
[3] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson.

FaRM: Fast remote memory. In NSDI, pages 401–414, 2014.
[4] P. J. Haas. Large-sample and deterministic confidence

intervals for online aggregation. In SSDBM, 1997.
[5] P. J. Haas and J. M. Hellerstein. Ripple joins for online

aggregation. In SIGMOD, pages 287–298, 1999.
[6] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami.

Selectivity and cost estimation for joins based on random
sampling. JCSS, 52:550–569, 1996.

[7] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In SIGMOD, 1997.

[8] D. G. Horvitz and D. J. Thompson. A generalization of
sampling without replacement from a finite universe.
JASA, 47:663–685, 1952.

[9] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the DBO engine. In
SIGMOD, 2007.

[10] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable
approximate query processing with the DBO engine. ACM
TODS, 33(4), Article 23, 2008.

[11] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online
aggregation via random walks. In SIGMOD, 2016.

[12] R. J. Lipton and J. F. Naughton. Query size estimation by
adaptive sampling. In PODS, 1990.

[13] R. J. Lipton, J. F. Naughton, and D. A. Schneider.
Practical selectivity estimation through adaptive sampling.
In SIGMOD, 1990.

[14] F. Olken. Random Sampling from Databases. PhD thesis,
University of California at Berkeley, 1993.

[15] J. K. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
D. Ongaro, G. M. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for RAMCloud.
Commun. ACM, 54(7):121–130, 2011.

40 SIGMOD Record, March 2017 (Vol. 46, No. 1)

