
Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, Feifei Li



I trust you!

2

For cloud storage and cloud computing
The integrity of storage and computation relies on the “trust” from 
users to the cloud service provider. 



For sensitive data
The cloud service provider needs to give some proof of the 
correctness.
Or detect unexpected behaviors

I trust you!evidence

3



Month Salary
Jan 5000
Feb 6000
Mar 7000

What is my 
salary in March?

Month Salary
Jan 5000
Feb 6000
Mar 7000 4000

It’s $4000 😈😈

The cloud may tamper with data.

4

Table “Salary”



The cloud may even return falsified results without tampering 
with data

Tell me what kinds 
of fruits are worth 
more than $1.60!

Item Price
Apple 2.00
Banana 1.50
Peach 1.80

Only apples 😈😈

5

Table “Inventory”



Scenario
Cloud-client
 Existence of TEE (SGX)
Untrusted Cloud Service Provider: 

Byzantine Behavior

6

Goals
 For integrity
 Endorsement of correct results
Detection of incorrect results

 For applicability
 Support for general SQL queries
 Low overhead



Use Merkle Hash Tree (MHT) to 
verify the integrity of data
 The root hash would be a concurrency 

bottleneck

Store all data in trusted memory
 EPC (enclave page cache) is a scarce 

resource
 Expensive swapping if EPC not enough

 Introduce significant overhead

7



Verifiable storage and execution

Support verifiable general SQL queries

Reasonable performance overhead

8



 Introduction
Motivation
 Scenario and goals
Contributions

VeriDB
 Architecture
 Verifiable storage and data access
Optimizations

Evaluations

9



Data stored in untrusted memory
Read/Write primitives are stored in trusted memory 
 Ensures the integrity of storage.

10

SGX

Verifier

Verifier

…

Key nKey

−∞ k2

k2 k3

… …

kn +∞

Data

d1

d2

…

dn

Addr

addr1

addr2

…

addrn

indices

Untrusted Memory

Verifiable Storage

Read/Write 
Primitives



 Interface between storage and execution
Reduce verifying results into verifying storage and trusted execution

 The client communicates with the query portal via a secure channel

11

SGX

Verifier

Verifier

…

Access Methods Key nKey

−∞ k2

k2 k3

… …

kn +∞

Data

d1

d2

…

dn

Addr

addr1

addr2

…

addrn

indices

Untrusted Memory

Query Execution

Verifiable Storage

Query 
Compiler

Read/Write 
Primitives

1 3

4

5

67

Query 
Portal

2



 Basic idea: read-write consistent memory[1]

 The contents got from “read” must be the contents of the latest “write”
 Maintain a read set and a write set 
 Update two sets on memory operations
 Check if the two sets are consistent 

12[1] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. 1991. Checking the Correctness of Memories. In 32nd Annual 
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE Computer Society, 90–99.

WriteSet

ReadSet



Construct a hash of tuple h(addr, data, timestamp) on each operation.
Update the sets by xor the hashes[2]

 Periodically, 
 The verifier reads each datum and adds to the read set.
 Verify that ReadSet == WriteSet, otherwise throw an alarm.

h(addr, data1,t1)

h(addr, data1,t1)

h(addr, data2,t2)

h(addr, data2,t2)

h(addr, data2,t3)

h(addr, data2,t3)

Insert (addr, data1) Update(addr, data2) Read(addr) Verification

WriteSet

ReadSet

13[2] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey, and R. Ramamurthy. 2017. Concerto: A High Concurrency Key-Value Store 
with Integrity. In  SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 251–266



Key-chain of records in the table
Store (key, nextKey) tuples
Prove the existence / absence of a queried record
Absence of id2 < qid < id3 is proved by (id2, id3, data)

14

id count price
id1 100 $100

id2 100 $200

id3 500 $100

id4 600 $100

key nextKey data

⏊ id1 ( ⎯, ⎯ )

id1 id2 (100, $100)

id2 id3 (100, $200)

id3 id4 (500, $100)

id4 ⏉ (600, $100)



 Three principles to ensure the integrity for range queries [startKey, endKey]
We don’t miss anything in the beginning 
 Find the first row where row.nextKey >= startKey, and start from the next row

We reach the expected last row
 lastRow.nextKey > endKey

 All rows are chained
 thisRow.key = prevRow.nextKey

 Example: SELECT * FROM data WHERE key >= id1 AND key <= id3

 Verifiable storage + verifiable data access = correct results

key nextKey data

⏊ id1 ( ⎯, ⎯ )

id1 id2 (100, $100)

id2 id3 (100, $200)

id3 id4 (500, $100)

id4 ⏉ (600, $100)

15



id count price nextid

id1 200 $100 id2

id2 100 $200 +inf

-inf - - id1

id count desc nextid

id1 300 desc1 id3

id3 800 desc3 +inf

-inf - - id1

orders

inventory

select

join

project project

scan index scan

orders inventory

o.id = i.id

check VO
(-inf, id1)
( id1, id2)

check VO
( id1, id3)

(id1, 200) (id1, 300)

SELECT o.id, o.count

FROM orders as o, inventory as i

WHERE o.id = i.id, o.count <= i.count

(id1, 200)

16



select

join

project project

scan index scan

orders inventory

o.id = i.id

check VO
(-inf, id1)
( id1, id2)

check VO
( id1, id3)

( id2, +inf)

17

SELECT o.id, o.count

FROM orders as o, inventory as i

WHERE o.id = i.id, o.count <= i.count

id count price nextid

id1 200 $100 id2

id2 100 $200 +inf

-inf - - id1

id count desc nextid

id1 300 desc1 id3

id3 800 desc3 +inf

-inf - - id1

orders

inventory

null



Use multiple RSWSs to avoid lock 
contention
 Operations on addr1, addr2, and 
addr3
 Separate the sets during update
Combine the sets and compare 

during verification

Other optimizations
 Avoid scanning unvisited pages
 Excludes page metadata from 

verification
Compaction during verification

18

(addr1, data1, t1)
(addr3, data3, t3)

(addr1, data1, t1)
(addr3, data3, t3)

Read Subset 1

Write Subset 1

(addr2, data2, t2)

(addr2, data2, t2)

Read Subset 2

Write Subset 2

(addr1, data1, t1)
(addr2, data2, t2)
(addr3, data3, t3)

(addr1, data1, t1)
(addr2, data2, t2)
(addr3, data3, t3)

Read Set

Write Set



 Introduction
Motivation
 Scenario and goals
Contributions

VeriDB
 Architecture
 Verifiable storage and data access
Optimizations

Evaluations

19



 Each update of read set (RS) and write 
set (WS) introduces 1.5 – 2.2 μs overhead
 Hash operations make up most of the extra 

overhead

 “Insert” and “delete” need updates to the 
“nextKey” field, thus take longer time
 The verification process only introduces 

slight overhead

20



 VeriDB significantly outperforms 
MB-Tree[3], an MHT-based 
approach
MB-Tree involves more hash 

calculations
 The root hash of MB-Tree 

becomes the bottleneck of 
concurrency

21[3] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. 2006. Dynamic authenticated index structures for outsourced databases. In 
Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006. ACM, 121–132



Queries (TPC-H)
 Q1 and Q6, scan, filter, and aggregate; 
 Q19, scan, filter, and join

 The performance overhead mainly 
comes from the scan operators.
Overall, VeriDB introduces 9%~39% 

overhead.

Other macro-benchmark results: 
TPC-C

22



System Support Trust Model Overhead Techniques

Concerto Key-value Cloud-user Relatively Low SGX + 
Verifiable memory

EnclaveDB Relational Cloud-user High (All in SGX) SGX
VeritasDB Key-value Cloud-user High (MHT) MHT + ADS
FalconDB Relational Multi-users High (Blockchain) Blockchain + ADS

VeriDB Relational Cloud-user Relatively Low SGX + 
Verifiable memory

23



VeriDB: an SGX-based verifiable database that supports 
relational tables and general SQL queries.

Methods: reduce the problem of providing verified results 
to ensuring verifiable storage and verifiable access.

Performance: ≤ 2.2 μs overhead for read/write operators 
and 9%-39% for analytical workloads

24


	VeriDB: An SGX-based Verifiable Database
	Motivation
	Motivation
	Motivation
	Motivation
	Scenarios and Goals
	Strawman Solutions
	Contribution
	Outline
	Architecture
	Architecture
	Verifiable Storage
	Verifiable Storage
	Verifiable Data Access
	Verifiable Data Access
	Query execution
	Query execution
	Optimizations
	Outline
	Evaluations – RSWS Updates
	Evaluations – v.s. MB-Tree
	Evaluations – Macro-benchmark
	Related Work
	Conclusion

