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High latency in data analysis pipelines
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Query

Query execution
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hours ~ daysTypical latency: Tens of seconds for single-table queries
Hours or longer for many-to-many join queries

Latency varies; may 
need to down-sample*
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Alternatives to cut down latency

3

Data source 1

Data source 2

Data source 3

Data warehouseOnline loading 
and indexing

Pre-defined queries/views

Online sampling 
and update

Typical latency: milliseconds ~ secondsmilliseconds ~ seconds

Down-sampled
query result 

(aka synopsis)

Latency lowered; no 
need to post-process to 
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Background and challenges

 Existing systems work well for single-table/key-join queries
– E.g., Apache Storm, Apache Flink, …
– Sampling is easy to implement on the fly

 Difficulties with multi-table join queries, especially many-to-many joins
– Even streaming join can be expensive (when join size is large)
– Limited sampling/indexing support in existing systems
– Existing random sampling algorithms for joins

• have restrictions on the types of join/aggregations (e.g., [1, 2]);
• depends on assumptions on data distribution (e.g., [3]); 
• or require offline scans (e.g., [4]).
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Problem Formulation
Given a pre-specified SPJ query in the following form, 

SELECT *

FROM R1, R2, …, Rn

WHERE <join-preds>

AND <filter-preds>;

maintain a readily available join synopsis (random sample) in a database with any 
insertions or deletions of tuples, for a user-specified synopsis type (fixed-size w/ 
replacement, fixed-size w/o replacement or Bernoulli).
 Baseline: SJ (Symmetric index/hash Join)

– builds conventional tree or hash indexes on all the join columns
• storage cost is 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table.

– incrementally maintains samples over a scan of the full join results upon insertion
• insertion cost is at least linear to the join size (costly!)

– rescans join upon deletion to replenish missing samples upon deletion (very costly!)
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where a <join-pred> is in the form of,
 Ri.A op Rj.B
 |Ri.A – Rj.B| < d

(op is one of <, <=, =, >, >=; d is a constant)



Overview of SJoin
 Our solution: SJoin (Synopsis Join)

– features a specialized per-query index based on a weighted join graph, which
• consists of aggregate indexes on all the join columns
• provides random access and random sampling to join results 

– runs reservoir sampling style algorithms for the specified synopsis type, which
• only retrieves the selected join results upon insertion or
• replenishes missing samples using the weighted join graph index upon deletion

– has a similar storage cost to SJ
• 𝑂𝑂(𝑛𝑛𝑛𝑛) in theory, and within ±25% in experiments

– has asymptotically lower insertion cost in many-to-many joins
• 𝑂𝑂 2𝑛𝑛𝑑𝑑 for a chain band-join with a half-width 𝑑𝑑, compared to 𝑂𝑂 2𝑛𝑛𝑑𝑑𝑛𝑛 in SJ

– does not rescan join results upon deletion for missing samples
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A running example
 Suppose we have a pre-specified SPJ query where there are 𝑛𝑛 = 5 tables.

Query:
SELECT *

FROM R1, R2, R3, R4, R5

WHERE R1.A = R2.A

AND R2.B = R3.B

AND R3.C = R4.C

AND R3.D = R5.D;

Synopsis type:
Fixed size synopsis of size 4 w/o replacement
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Weighted join graph
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Weighted join graph
𝑤𝑤𝑖𝑖 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗} , 𝑤𝑤𝑖𝑖 𝑣𝑣𝑗𝑗 = �

𝑡𝑡𝑗𝑗∈𝕋𝕋 𝑣𝑣𝑗𝑗

𝑤𝑤 𝑡𝑡𝑗𝑗

where ℝ 𝑗𝑗 is the set of tables in the subtree at 𝑅𝑅𝑗𝑗 and 
𝕋𝕋 𝑣𝑣𝑗𝑗 is the set of tuples that 𝑣𝑣𝑗𝑗 represent. 
e.g., 𝑤𝑤1 𝑡𝑡1 = {𝑡𝑡1} ⋈ 𝑅𝑅2 ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5
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Drawing a single random join sample
 How to draw random sample from a join with just one random number?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• For simplicity, omit the subscript 𝑖𝑖 in the weight functions for now
• Sort the tuples in 𝑅𝑅𝑗𝑗 based on its join attribute with its parent

 𝑅𝑅1 is arbitrarily ordered, but we order it by its 1st attribute anyway
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Drawing a single random join sample
 How to draw random sample from a join with just one random number?

– Generate a random number 𝑙𝑙 ∈ 0,𝑊𝑊 , where 𝑊𝑊 is the join size
– Starting from the root 𝑗𝑗 = 1

• Step 1: select 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 s.t. L = ∑𝑡𝑡𝑗𝑗′<𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗′ ≤ 𝑙𝑙 < ∑𝑡𝑡𝑗𝑗′≤𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗 ; then, let 𝑙𝑙 ← 𝑙𝑙 − 𝐿𝐿
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Drawing a single random join sample (cont’d)
• Step 2: for each immediate child 𝑅𝑅𝑘𝑘, recursively apply step 1 and 2, except that

 Substitute 𝑅𝑅𝑗𝑗 with 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 , where 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 includes all tuples of 𝑅𝑅𝑘𝑘 that join 𝑡𝑡𝑗𝑗
 Use 𝑙𝑙 mod 𝑊𝑊𝑘𝑘 instead of 𝑙𝑙 in the search, where 𝑊𝑊𝑘𝑘 = ∑𝑡𝑡𝑘𝑘∈𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗

𝑤𝑤 𝑡𝑡𝑘𝑘
 Let 𝑙𝑙 ← 𝑙𝑙/𝑊𝑊𝑘𝑘 after each selection
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Drawing a single random join sample (cont’d)
 How to draw random sample from a join with just one random number?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• Let ℝ 𝑗𝑗 be the subtree at 𝑅𝑅𝑗𝑗
• Sort the tuples in 𝑅𝑅𝑗𝑗 based on its join attribute with its parent

 𝑅𝑅1 is arbitrarily ordered, but we order it by its 1st attribute anyway
– Generate a random number 𝑙𝑙 ∈ 0,𝑊𝑊 , where 𝑊𝑊 is the join size
– Starting from the root 𝑗𝑗 = 1

• Step 1: select 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 s.t. L = ∑𝑡𝑡𝑗𝑗′<𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗′ ≤ 𝑙𝑙 < ∑𝑡𝑡𝑗𝑗′≤𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗 ; then, let 𝑙𝑙 ← 𝑙𝑙 − 𝐿𝐿

• Step 2: for each immediate child 𝑅𝑅𝑘𝑘, recursively apply step 1 and 2, except that
 Substitute 𝑅𝑅𝑗𝑗 with 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 , where 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 includes all tuples of 𝑅𝑅𝑘𝑘 that join 𝑡𝑡𝑗𝑗
 Use 𝑙𝑙 mod 𝑊𝑊𝑘𝑘 instead of 𝑙𝑙 in the search, where 𝑊𝑊𝑘𝑘 = ∑𝑡𝑡𝑘𝑘∈𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗

𝑤𝑤 𝑡𝑡𝑘𝑘
 Let 𝑙𝑙 ← 𝑙𝑙/𝑊𝑊𝑘𝑘 after each selection
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𝐴𝐴• Suppose there are 𝑛𝑛 tables in the join and the largest table has 𝑁𝑁 tuples.
• All ops can be implemented in 𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 time using 𝑛𝑛 aggregate balanced trees, including

• Calculation of 𝑊𝑊 and 𝑊𝑊𝑘𝑘
• Calculation of 𝐿𝐿 and 𝑈𝑈
• Selection of “𝑙𝑙𝑡𝑡𝑡” items (similar to std::lower_bound() but w.r.t. weights rather than sorting keys)



From random sampling to reservoir sampling

 Reservoir sampling requires a unidirectional iterator over a stream
– Need to support GetCurrent() or Skip(k)

 The algorithm for drawing a random sample
– defines a one-to-one mapping from an index number to a join result.
– For an inserted tuple 𝑡𝑡𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖, let 𝑅𝑅𝑖𝑖 be the query tree root.

• The batch of the new join results map from a consecutive range of

�
𝑡𝑡𝑖𝑖
′<𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′ ≤ 𝑙𝑙 < �
𝑡𝑡𝑖𝑖
′≤𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′

 Construct a stream of inserted join result by concatenating the batches
– Maintain a 𝑙𝑙 number in the current batch
– Skip(k) is simply increasing 𝑙𝑙
– GetCurrent() uses the one-to-one mapping process for random access
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Optimizations

 Consolidating the tuples 𝑡𝑡𝑖𝑖 with the same join attribute values into one vertex 𝑣𝑣𝑖𝑖
– Reduces the index update cost to �𝑂𝑂 ℎ 𝑣𝑣𝑖𝑖

• where ℎ(𝑣𝑣𝑖𝑖) is the number of reachable vertices from 𝑣𝑣𝑖𝑖 in the weighted join graph
• ℎ 𝑣𝑣𝑖𝑖 = 𝑂𝑂 𝑑𝑑 when the graph has a fixed degree 𝑑𝑑
• In contrast, symmetric join involves up to 𝑂𝑂 𝑑𝑑𝑛𝑛 index accesses

 Foreign-key subjoin optimization
– Combining adjacent vertices that are connected by foreign-key join predicates
– Save space for storing duplicate weight functions
– See paper for details

15



Experiments
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10GB of TPC-DS data. A 5-table many-to-many join query. Fixed-size synopsis of size 10,000 w/o replacement.
All experiments use AVL trees for indexes. The synopsis is requested after every 50,000 updates.

SJoin-opt: w/ foreign-key subjoin optimization. SJoin: w/o foreign-key subjoin optimization. SJ: baseline symmetric index join

Fig 1. Insertion only. Fig 2. Insertion + deletion.



Experiments

17 SJoin-opt: w/ foreign-key subjoin optimization. SJoin: w/o foreign-key subjoin optimization. SJ: baseline symmetric index join

Table 3: Peak memory usage (base table + index).

QX, QY, QZ are run on 10GB of TPC-DS data. QX, QY, QZ involve 5, 5, 7 tables respectively.
QB is run on a streaming dataset generated by Linear Road benchmark. It self-joins on 3 copies of the same table.



Conclusion

 We proposed SJoin, an efficient algorithm for maintaining join synopsis in a 
dynamically updated data warehouse.

 Theoretical analysis and experiments all show great performance improvements 
over the best-available baseline.

 We have in-memory implementation of SJoin and SJ in an experimental system.
– will be open-sourced at https://github.com/InitialDLab
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Our solution
 Baseline: SJ (Symmetric index/hash Join)

– Build conventional tree or hash indexes on all join columns
– Incrementally maintain samples over a scan of the full join results
– Up to 2𝑛𝑛 − 2 unique indexes.

• Storage cost is 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table.
– Maintenance cost is linear to the join size

 Our solution: SJoin (Synopsis Join)
– Build a specialized per-query index based on a weighted join graph
– Support sampling w/ or w/o replacement, or Bernoulli sampling with a reservoir
– Similar storage cost (𝑂𝑂(𝑛𝑛𝑛𝑛) in theory, and within ±25% in experiments)
– Asymptotically lower maintenance overhead in many-to-many joins

 In-memory implementation of both in an experimental system
– Will be open-sourced at https://github.com/InitialDLab
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Weighted join graph
 A join graph consists of

– vertices that represent unique join attribute values
– edges as a binary predicate indicating whether two join in the query
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Weighted join graph
 A join graph consists of

– vertices that represent unique join attribute values
– edges as a binary predicate indicating whether two join in the query
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Weighted join graph
 A weighted join graph stores the unique weights that are the cardinalities of certain sub-join queries

– Let 𝑅𝑅𝑖𝑖 be the query tree root, we define the weights of a tuple 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 and a vertex 𝑣𝑣𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 w.r.t. 𝑅𝑅𝑖𝑖 as

𝑤𝑤𝑖𝑖 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗} , 𝑤𝑤𝑖𝑖 𝑣𝑣𝑗𝑗 = �
𝑡𝑡𝑗𝑗∈𝕋𝕋 𝑣𝑣𝑗𝑗

𝑤𝑤 𝑡𝑡𝑗𝑗

where ℝ 𝑗𝑗 is the set of tables in the subtree at 𝑅𝑅𝑗𝑗 and 𝕋𝕋 𝑣𝑣𝑗𝑗 is the set of tuples that 𝑣𝑣𝑗𝑗 represent. 

– Intuitively, it is the cardinality of the sub-join of the sub-tree at 𝑅𝑅𝑗𝑗 that involves 𝑡𝑡𝑗𝑗 or 𝑣𝑣𝑗𝑗.
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Weighted join graph
 For example, the weights w.r.t. 𝑅𝑅1 are

• 𝑤𝑤1 𝑡𝑡1 = {𝑡𝑡1} ⋈ 𝑅𝑅2 ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5
• 𝑤𝑤1 𝑡𝑡2 = {𝑡𝑡2} ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5 , 𝑤𝑤1 𝑡𝑡3 = {𝑡𝑡3} ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5 , 𝑤𝑤1 𝑡𝑡4 = 𝑤𝑤1 𝑡𝑡5 = 1
• 𝑤𝑤2 𝑡𝑡2 = 𝑅𝑅1 ⋈ 𝑡𝑡2 ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5
• 𝑤𝑤3 𝑡𝑡2 = 𝑤𝑤4 𝑡𝑡2 = 𝑤𝑤5 𝑡𝑡2 = 𝑅𝑅1 ⋈ {𝑡𝑡2}
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1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

[    , 2, 2, 2, 2] [    , 2, 2, 2, 2]

[    , 36, 2, 2, 2][  , 4, 2, 2, 2]

[   , 2, 4, 2, 4]

[ , 2, 2, 52, 2 ]

𝑤𝑤 =  40 𝑤𝑤 =  36

𝑤𝑤 =  2 𝑤𝑤 =  18

𝑤𝑤 =   2

𝑤𝑤 =  2

[    , 36, 2, 2, 2]𝑤𝑤 =  18

[     , 12, 48, 24, 16]𝑤𝑤 =   12 [   , 6, 24, 12, 8]𝑤𝑤 =   6

[ , 2, 2, 24, 2 ]𝑤𝑤 =  2 [ , 1, 1, 1, 4]𝑤𝑤 =  1 [ , 3, 3, 3, 72]𝑤𝑤 =  3



Drawing a single random join sample
 How to draw random sample from a join?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• For simplicity, omit the subscript 𝑖𝑖 in the weight functions for now

– Start from the root j = 1, 
• Step 1: randomly draw 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 with 𝑝𝑝 ∝ 𝑤𝑤 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗}
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Drawing a single random join sample
 How to draw random sample from a join?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• For simplicity, omit the subscript 𝑖𝑖 in the weight functions for now

– Start from the root j = 1, 
• Step 1: randomly draw 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 with 𝑝𝑝 ∝ 𝑤𝑤 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗}

• Step 2: for each immediate child 𝑅𝑅𝑘𝑘, recursively apply step 1 and 2, except that
 Substitute 𝑅𝑅𝑗𝑗 with 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 , where 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 includes all tuples of 𝑅𝑅𝑘𝑘 that join 𝑡𝑡𝑗𝑗

– Or, can it be implemented with just one random number?
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Problem Formulation
Given a pre-specified SPJ query in the following form, 

SELECT *

FROM R1, R2, …, Rn

WHERE <join-preds>

AND <filter-preds>;

maintain a readily available join synopsis (random sample) in a database with any 
insertions or deletions of tuples, for a user-specified synopsis type (fixed-size w/ 
replacement, fixed-size w/o replacement or Bernoulli).
 Baseline: SJ (Symmetric index/hash Join)

– builds conventional tree or hash indexes on all the join columns
• storage cost is 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table.

– incrementally maintains samples over a scan of the full join results upon insertion
• insertion cost is at least linear to the join size (costly!)

– rescans join upon deletion to replenish missing samples upon deletion (very costly!)
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where a <join-pred> is in the form of,
 Ri.A op Rj.B
 |Ri.A – Rj.B| < d

(op is one of <, <=, =, >, >=; d is a constant)



From random sampling to reservoir sampling (cont’d)
 Issue 1:

Two batches of join results involving 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑗𝑗 in different tables have to be 
enumerated with different query tree roots 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗.

 Solution: maintain all the weights w.r.t. all the possible query tree roots
– For a query with 𝑛𝑛 tables, there are up to 2𝑛𝑛 − 2 distinct weight functions and 2𝑛𝑛 − 2

indexes.
– Total storage overhead is linear:

• Also bounded by 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table
• An additional 1 / 2 of indexing overhead for trees in practice
• Further reduced by consolidating tuples with the same join attributes into vertices
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From random sampling to reservoir sampling (cont’d)
 Issue 2:

– Still need to draw a random number for each join result
– Though unselected ones are never retrieved

 Solution:
– Generate skip numbers

• The classic Vitter’s algorithm for fixed-size synopsis w/ replacement
• Maintain 𝑚𝑚 independent reservoirs for fixed-size synopsis w/o replacement
• Use the Walker’s alias algorithm to draw skip numbers for Bernoulli synopsis
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From random sampling to reservoir sampling (cont’d)
 Issue 3:

– Deletion in fixed-size sampling w/ or w/o replacement can result in insufficient number 
of samples

 Solution:
– Redraw the samples using the weighted graph index using any query tree root
– Need to deduplicate re-drawn samples for the case w/o replacement
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From random sampling to reservoir sampling
 Recall that reservoir sampling

– can maintain a fixed-size sample w/o replacement over a stream of items
– deletion can lead to insufficient sample size  - we’ll deal with that later

 Here, the items are the join results.
 The 2nd algorithm for drawing a random sample

– defines a one-to-one mapping from an index number to a join result.
– For an inserted tuple 𝑡𝑡𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖, let 𝑅𝑅𝑖𝑖 be the query tree root.

• The batch of the new join results map from a consecutive range of

�
𝑡𝑡𝑖𝑖
′<𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′ ≤ 𝑙𝑙 < �
𝑡𝑡𝑖𝑖
′≤𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′

• We can enumerate the stream by looping over the index numbers.
• Apply RS on a view of data stream by concatenating these batches.
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