
Efficient Join Synopsis Maintenance for
Data Warehouse

Zhuoyue Zhao Feifei Li Yuxi Liu
University of Utah

1

High latency in data analysis pipelines

2

Data source 1

Data source 2

Data source 3

Data warehouseETL

Query

Query execution
Query result

hours ~ daysTypical latency: Tens of seconds for single-table queries
Hours or longer for many-to-many join queries

Latency varies; may
need to down-sample*

* This picture by oksmith is licensed under CC0

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Alternatives to cut down latency

3

Data source 1

Data source 2

Data source 3

Data warehouseOnline loading
and indexing

Pre-defined queries/views

Online sampling
and update

Typical latency: milliseconds ~ secondsmilliseconds ~ seconds

Down-sampled
query result

(aka synopsis)

Latency lowered; no
need to post-process to
get down-samples

*

* This picture by oksmith is licensed under CC0

https://openclipart.org/detail/312062/female-computer-user-16c
https://openclipart.org/artist/oksmith
https://creativecommons.org/publicdomain/zero/1.0/

Background and challenges

 Existing systems work well for single-table/key-join queries
– E.g., Apache Storm, Apache Flink, …
– Sampling is easy to implement on the fly

 Difficulties with multi-table join queries, especially many-to-many joins
– Even streaming join can be expensive (when join size is large)
– Limited sampling/indexing support in existing systems
– Existing random sampling algorithms for joins

• have restrictions on the types of join/aggregations (e.g., [1, 2]);
• depends on assumptions on data distribution (e.g., [3]);
• or require offline scans (e.g., [4]).

4

[1] Tao et al. Random Sampling for Continuous Streams with Arbitrary Updates. In TKDE ‘06.
[2] Kandula et al. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters. In SIGMOD ‘16.
[3] Srivastava et al. Memory-limited Execution of Windowed Stream Joins. In VLDB ’04.
[4] Zhao et al. Random Sampling over Joins Revisited. In SIGMOD ’18.

Problem Formulation
Given a pre-specified SPJ query in the following form,

SELECT *

FROM R1, R2, …, Rn

WHERE <join-preds>

AND <filter-preds>;

maintain a readily available join synopsis (random sample) in a database with any
insertions or deletions of tuples, for a user-specified synopsis type (fixed-size w/
replacement, fixed-size w/o replacement or Bernoulli).
 Baseline: SJ (Symmetric index/hash Join)

– builds conventional tree or hash indexes on all the join columns
• storage cost is 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table.

– incrementally maintains samples over a scan of the full join results upon insertion
• insertion cost is at least linear to the join size (costly!)

– rescans join upon deletion to replenish missing samples upon deletion (very costly!)

5

where a <join-pred> is in the form of,
 Ri.A op Rj.B
 |Ri.A – Rj.B| < d

(op is one of <, <=, =, >, >=; d is a constant)

Overview of SJoin
 Our solution: SJoin (Synopsis Join)

– features a specialized per-query index based on a weighted join graph, which
• consists of aggregate indexes on all the join columns
• provides random access and random sampling to join results

– runs reservoir sampling style algorithms for the specified synopsis type, which
• only retrieves the selected join results upon insertion or
• replenishes missing samples using the weighted join graph index upon deletion

– has a similar storage cost to SJ
• 𝑂𝑂(𝑛𝑛𝑛𝑛) in theory, and within ±25% in experiments

– has asymptotically lower insertion cost in many-to-many joins
• 𝑂𝑂 2𝑛𝑛𝑑𝑑 for a chain band-join with a half-width 𝑑𝑑, compared to 𝑂𝑂 2𝑛𝑛𝑑𝑑𝑛𝑛 in SJ

– does not rescan join results upon deletion for missing samples

6

A running example
 Suppose we have a pre-specified SPJ query where there are 𝑛𝑛 = 5 tables.

Query:
SELECT *

FROM R1, R2, R3, R4, R5

WHERE R1.A = R2.A

AND R2.B = R3.B

AND R3.C = R4.C

AND R3.D = R5.D;

Synopsis type:
Fixed size synopsis of size 4 w/o replacement

7

𝑅𝑅4 𝑅𝑅3 𝑅𝑅5𝐶𝐶 𝐷𝐷

𝑅𝑅2

𝑅𝑅1

𝐵𝐵

𝐴𝐴

Weighted join graph

8

Row
ID

A

0 1
1 2
2 2
3 1

𝑅𝑅1
Row
ID

A B

0 1 1
1 1 2
2 2 2

𝑅𝑅2
Row
ID

B C D

0 1 1 1
1 2 1 2
2 2 2 2
3 2 1 2

𝑅𝑅3
Row
ID

C

0 1
1 2
2 1
3 2

𝑅𝑅4
Row
ID

D

0 1
1 2
2 2
3 2

𝑅𝑅5

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

Weighted join graph
𝑤𝑤𝑖𝑖 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗} , 𝑤𝑤𝑖𝑖 𝑣𝑣𝑗𝑗 = �

𝑡𝑡𝑗𝑗∈𝕋𝕋 𝑣𝑣𝑗𝑗

𝑤𝑤 𝑡𝑡𝑗𝑗

where ℝ 𝑗𝑗 is the set of tables in the subtree at 𝑅𝑅𝑗𝑗 and
𝕋𝕋 𝑣𝑣𝑗𝑗 is the set of tuples that 𝑣𝑣𝑗𝑗 represent.
e.g., 𝑤𝑤1 𝑡𝑡1 = {𝑡𝑡1} ⋈ 𝑅𝑅2 ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5

9

𝑅𝑅4 𝑅𝑅3 𝑅𝑅5𝐶𝐶 𝐷𝐷

𝑅𝑅2

𝑅𝑅1

𝐵𝐵

𝐴𝐴

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

[, 2, 2, 2, 2] [, 2, 2, 2, 2]

[, 36, 2, 2, 2][, 4, 2, 2, 2]

[, 2, 4, 2, 4]

[, 2, 2, 52, 2]

𝑤𝑤 = 40 𝑤𝑤 = 36

𝑤𝑤 = 2 𝑤𝑤 = 18

𝑤𝑤 = 2

𝑤𝑤 = 2

[, 36, 2, 2, 2]𝑤𝑤 = 18

[, 12, 48, 24, 16]𝑤𝑤 = 12 [, 6, 24, 12, 8]𝑤𝑤 = 6

[, 2, 2, 24, 2]𝑤𝑤 = 2 [, 1, 1, 1, 4]𝑤𝑤 = 1 [, 3, 3, 3, 72]𝑤𝑤 = 3

Drawing a single random join sample
 How to draw random sample from a join with just one random number?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• For simplicity, omit the subscript 𝑖𝑖 in the weight functions for now
• Sort the tuples in 𝑅𝑅𝑗𝑗 based on its join attribute with its parent

 𝑅𝑅1 is arbitrarily ordered, but we order it by its 1st attribute anyway

10

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

𝑤𝑤 = 40 𝑤𝑤 = 36

𝑤𝑤 = 2 𝑤𝑤 = 18

𝑤𝑤 = 2

𝑤𝑤 = 2

𝑤𝑤 = 18

𝑤𝑤 = 12 𝑤𝑤 = 6

𝑤𝑤 = 2 𝑤𝑤 = 1 𝑤𝑤 = 3

Drawing a single random join sample
 How to draw random sample from a join with just one random number?

– Generate a random number 𝑙𝑙 ∈ 0,𝑊𝑊 , where 𝑊𝑊 is the join size
– Starting from the root 𝑗𝑗 = 1

• Step 1: select 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 s.t. L = ∑𝑡𝑡𝑗𝑗′<𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗′ ≤ 𝑙𝑙 < ∑𝑡𝑡𝑗𝑗′≤𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗 ; then, let 𝑙𝑙 ← 𝑙𝑙 − 𝐿𝐿

11

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

𝑤𝑤 = 40 𝑤𝑤 = 36

𝑤𝑤 = 2 𝑤𝑤 = 18

𝑤𝑤 = 2

𝑤𝑤 = 2

𝑤𝑤 = 18

𝑤𝑤 = 12 𝑤𝑤 = 6

𝑤𝑤 = 2 𝑤𝑤 = 1 𝑤𝑤 = 3

1

𝑙𝑙 = 30𝑙𝑙 = 10

Drawing a single random join sample (cont’d)
• Step 2: for each immediate child 𝑅𝑅𝑘𝑘, recursively apply step 1 and 2, except that

 Substitute 𝑅𝑅𝑗𝑗 with 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 , where 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 includes all tuples of 𝑅𝑅𝑘𝑘 that join 𝑡𝑡𝑗𝑗
 Use 𝑙𝑙 mod 𝑊𝑊𝑘𝑘 instead of 𝑙𝑙 in the search, where 𝑊𝑊𝑘𝑘 = ∑𝑡𝑡𝑘𝑘∈𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗

𝑤𝑤 𝑡𝑡𝑘𝑘
 Let 𝑙𝑙 ← 𝑙𝑙/𝑊𝑊𝑘𝑘 after each selection

12

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

𝑤𝑤 = 40 𝑤𝑤 = 36

𝑤𝑤 = 2 𝑤𝑤 = 18

𝑤𝑤 = 2

𝑤𝑤 = 2

𝑤𝑤 = 18

𝑤𝑤 = 12 𝑤𝑤 = 6

𝑤𝑤 = 2 𝑤𝑤 = 1 𝑤𝑤 = 3

1

1,2

2,1,2

1 2

Drawing a single random join sample (cont’d)
 How to draw random sample from a join with just one random number?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• Let ℝ 𝑗𝑗 be the subtree at 𝑅𝑅𝑗𝑗
• Sort the tuples in 𝑅𝑅𝑗𝑗 based on its join attribute with its parent

 𝑅𝑅1 is arbitrarily ordered, but we order it by its 1st attribute anyway
– Generate a random number 𝑙𝑙 ∈ 0,𝑊𝑊 , where 𝑊𝑊 is the join size
– Starting from the root 𝑗𝑗 = 1

• Step 1: select 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 s.t. L = ∑𝑡𝑡𝑗𝑗′<𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗′ ≤ 𝑙𝑙 < ∑𝑡𝑡𝑗𝑗′≤𝑡𝑡𝑗𝑗 𝑤𝑤 𝑡𝑡𝑗𝑗 ; then, let 𝑙𝑙 ← 𝑙𝑙 − 𝐿𝐿

• Step 2: for each immediate child 𝑅𝑅𝑘𝑘, recursively apply step 1 and 2, except that
 Substitute 𝑅𝑅𝑗𝑗 with 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 , where 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 includes all tuples of 𝑅𝑅𝑘𝑘 that join 𝑡𝑡𝑗𝑗
 Use 𝑙𝑙 mod 𝑊𝑊𝑘𝑘 instead of 𝑙𝑙 in the search, where 𝑊𝑊𝑘𝑘 = ∑𝑡𝑡𝑘𝑘∈𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗

𝑤𝑤 𝑡𝑡𝑘𝑘
 Let 𝑙𝑙 ← 𝑙𝑙/𝑊𝑊𝑘𝑘 after each selection

13

𝑅𝑅4 𝑅𝑅3 𝑅𝑅5𝐶𝐶 𝐷𝐷

𝑅𝑅2

𝑅𝑅1

𝐵𝐵

𝐴𝐴• Suppose there are 𝑛𝑛 tables in the join and the largest table has 𝑁𝑁 tuples.
• All ops can be implemented in 𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 time using 𝑛𝑛 aggregate balanced trees, including

• Calculation of 𝑊𝑊 and 𝑊𝑊𝑘𝑘
• Calculation of 𝐿𝐿 and 𝑈𝑈
• Selection of “𝑙𝑙𝑡𝑡𝑡” items (similar to std::lower_bound() but w.r.t. weights rather than sorting keys)

From random sampling to reservoir sampling

 Reservoir sampling requires a unidirectional iterator over a stream
– Need to support GetCurrent() or Skip(k)

 The algorithm for drawing a random sample
– defines a one-to-one mapping from an index number to a join result.
– For an inserted tuple 𝑡𝑡𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖, let 𝑅𝑅𝑖𝑖 be the query tree root.

• The batch of the new join results map from a consecutive range of

�
𝑡𝑡𝑖𝑖
′<𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′ ≤ 𝑙𝑙 < �
𝑡𝑡𝑖𝑖
′≤𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′

 Construct a stream of inserted join result by concatenating the batches
– Maintain a 𝑙𝑙 number in the current batch
– Skip(k) is simply increasing 𝑙𝑙
– GetCurrent() uses the one-to-one mapping process for random access

14

Optimizations

 Consolidating the tuples 𝑡𝑡𝑖𝑖 with the same join attribute values into one vertex 𝑣𝑣𝑖𝑖
– Reduces the index update cost to �𝑂𝑂 ℎ 𝑣𝑣𝑖𝑖

• where ℎ(𝑣𝑣𝑖𝑖) is the number of reachable vertices from 𝑣𝑣𝑖𝑖 in the weighted join graph
• ℎ 𝑣𝑣𝑖𝑖 = 𝑂𝑂 𝑑𝑑 when the graph has a fixed degree 𝑑𝑑
• In contrast, symmetric join involves up to 𝑂𝑂 𝑑𝑑𝑛𝑛 index accesses

 Foreign-key subjoin optimization
– Combining adjacent vertices that are connected by foreign-key join predicates
– Save space for storing duplicate weight functions
– See paper for details

15

Experiments

16

10GB of TPC-DS data. A 5-table many-to-many join query. Fixed-size synopsis of size 10,000 w/o replacement.
All experiments use AVL trees for indexes. The synopsis is requested after every 50,000 updates.

SJoin-opt: w/ foreign-key subjoin optimization. SJoin: w/o foreign-key subjoin optimization. SJ: baseline symmetric index join

Fig 1. Insertion only. Fig 2. Insertion + deletion.

Experiments

17 SJoin-opt: w/ foreign-key subjoin optimization. SJoin: w/o foreign-key subjoin optimization. SJ: baseline symmetric index join

Table 3: Peak memory usage (base table + index).

QX, QY, QZ are run on 10GB of TPC-DS data. QX, QY, QZ involve 5, 5, 7 tables respectively.
QB is run on a streaming dataset generated by Linear Road benchmark. It self-joins on 3 copies of the same table.

Conclusion

 We proposed SJoin, an efficient algorithm for maintaining join synopsis in a
dynamically updated data warehouse.

 Theoretical analysis and experiments all show great performance improvements
over the best-available baseline.

 We have in-memory implementation of SJoin and SJ in an experimental system.
– will be open-sourced at https://github.com/InitialDLab

18

Thank you!
Q&A

https://github.com/InitialDLab

Our solution
 Baseline: SJ (Symmetric index/hash Join)

– Build conventional tree or hash indexes on all join columns
– Incrementally maintain samples over a scan of the full join results
– Up to 2𝑛𝑛 − 2 unique indexes.

• Storage cost is 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table.
– Maintenance cost is linear to the join size

 Our solution: SJoin (Synopsis Join)
– Build a specialized per-query index based on a weighted join graph
– Support sampling w/ or w/o replacement, or Bernoulli sampling with a reservoir
– Similar storage cost (𝑂𝑂(𝑛𝑛𝑛𝑛) in theory, and within ±25% in experiments)
– Asymptotically lower maintenance overhead in many-to-many joins

 In-memory implementation of both in an experimental system
– Will be open-sourced at https://github.com/InitialDLab

19

https://github.com/InitialDLab

Weighted join graph
 A join graph consists of

– vertices that represent unique join attribute values
– edges as a binary predicate indicating whether two join in the query

20

Row
ID

A

0 1
1 2
2 2
3 1

𝑅𝑅1
Row
ID

A B

0 1 1
1 1 2
2 2 2

𝑅𝑅2
Row
ID

B C D

0 1 1 1
1 2 1 2
2 2 2 2
3 2 1 2

𝑅𝑅3
Row
ID

C

0 1
1 2
2 1
3 2

𝑅𝑅4
Row
ID

D

0 1
1 2
2 2
3 2

𝑅𝑅5

Weighted join graph
 A join graph consists of

– vertices that represent unique join attribute values
– edges as a binary predicate indicating whether two join in the query

21

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

Weighted join graph
 A weighted join graph stores the unique weights that are the cardinalities of certain sub-join queries

– Let 𝑅𝑅𝑖𝑖 be the query tree root, we define the weights of a tuple 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 and a vertex 𝑣𝑣𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 w.r.t. 𝑅𝑅𝑖𝑖 as

𝑤𝑤𝑖𝑖 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗} , 𝑤𝑤𝑖𝑖 𝑣𝑣𝑗𝑗 = �
𝑡𝑡𝑗𝑗∈𝕋𝕋 𝑣𝑣𝑗𝑗

𝑤𝑤 𝑡𝑡𝑗𝑗

where ℝ 𝑗𝑗 is the set of tables in the subtree at 𝑅𝑅𝑗𝑗 and 𝕋𝕋 𝑣𝑣𝑗𝑗 is the set of tuples that 𝑣𝑣𝑗𝑗 represent.

– Intuitively, it is the cardinality of the sub-join of the sub-tree at 𝑅𝑅𝑗𝑗 that involves 𝑡𝑡𝑗𝑗 or 𝑣𝑣𝑗𝑗.

22

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

Weighted join graph
 For example, the weights w.r.t. 𝑅𝑅1 are

• 𝑤𝑤1 𝑡𝑡1 = {𝑡𝑡1} ⋈ 𝑅𝑅2 ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5
• 𝑤𝑤1 𝑡𝑡2 = {𝑡𝑡2} ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5 , 𝑤𝑤1 𝑡𝑡3 = {𝑡𝑡3} ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5 , 𝑤𝑤1 𝑡𝑡4 = 𝑤𝑤1 𝑡𝑡5 = 1
• 𝑤𝑤2 𝑡𝑡2 = 𝑅𝑅1 ⋈ 𝑡𝑡2 ⋈ 𝑅𝑅3 ⋈ 𝑅𝑅4 ⋈ 𝑅𝑅5
• 𝑤𝑤3 𝑡𝑡2 = 𝑤𝑤4 𝑡𝑡2 = 𝑤𝑤5 𝑡𝑡2 = 𝑅𝑅1 ⋈ {𝑡𝑡2}

23

1 2

1,1 1,2 2,2

1,1,1 2,1,2 2,2,2

1 2 1 2𝑅𝑅4 𝑅𝑅5

𝑅𝑅3

𝑅𝑅2

𝑅𝑅1
ID = [0,3] ID = [1,2]

ID = [1,3]

ID = [2]ID = [1]ID = [0]

ID = [2]ID = [1,3]ID = [0]

ID = [0,2] ID = [0] ID = [1,2,3]

[, 2, 2, 2, 2] [, 2, 2, 2, 2]

[, 36, 2, 2, 2][, 4, 2, 2, 2]

[, 2, 4, 2, 4]

[, 2, 2, 52, 2]

𝑤𝑤 = 40 𝑤𝑤 = 36

𝑤𝑤 = 2 𝑤𝑤 = 18

𝑤𝑤 = 2

𝑤𝑤 = 2

[, 36, 2, 2, 2]𝑤𝑤 = 18

[, 12, 48, 24, 16]𝑤𝑤 = 12 [, 6, 24, 12, 8]𝑤𝑤 = 6

[, 2, 2, 24, 2]𝑤𝑤 = 2 [, 1, 1, 1, 4]𝑤𝑤 = 1 [, 3, 3, 3, 72]𝑤𝑤 = 3

Drawing a single random join sample
 How to draw random sample from a join?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• For simplicity, omit the subscript 𝑖𝑖 in the weight functions for now

– Start from the root j = 1,
• Step 1: randomly draw 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 with 𝑝𝑝 ∝ 𝑤𝑤 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗}

24

𝑅𝑅4 𝑅𝑅3 𝑅𝑅5𝐶𝐶 𝐷𝐷

𝑅𝑅2

𝑅𝑅1

𝐵𝐵

𝐴𝐴

Drawing a single random join sample
 How to draw random sample from a join?

– Fix a join order by choosing any relation 𝑅𝑅𝑖𝑖 as the query tree root
• Let’s say we choose 𝑅𝑅1
• For simplicity, omit the subscript 𝑖𝑖 in the weight functions for now

– Start from the root j = 1,
• Step 1: randomly draw 𝑡𝑡𝑗𝑗 ∈ 𝑅𝑅𝑗𝑗 with 𝑝𝑝 ∝ 𝑤𝑤 𝑡𝑡𝑗𝑗 = ⋈ ℝ 𝑗𝑗 \R𝑗𝑗 ⋈ {𝑡𝑡𝑗𝑗}

• Step 2: for each immediate child 𝑅𝑅𝑘𝑘, recursively apply step 1 and 2, except that
 Substitute 𝑅𝑅𝑗𝑗 with 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 , where 𝑅𝑅𝑘𝑘 𝑡𝑡𝑗𝑗 includes all tuples of 𝑅𝑅𝑘𝑘 that join 𝑡𝑡𝑗𝑗

– Or, can it be implemented with just one random number?
25

𝑅𝑅4 𝑅𝑅3 𝑅𝑅5𝐶𝐶 𝐷𝐷

𝑅𝑅2

𝑅𝑅1

𝐵𝐵

𝐴𝐴

Problem Formulation
Given a pre-specified SPJ query in the following form,

SELECT *

FROM R1, R2, …, Rn

WHERE <join-preds>

AND <filter-preds>;

maintain a readily available join synopsis (random sample) in a database with any
insertions or deletions of tuples, for a user-specified synopsis type (fixed-size w/
replacement, fixed-size w/o replacement or Bernoulli).
 Baseline: SJ (Symmetric index/hash Join)

– builds conventional tree or hash indexes on all the join columns
• storage cost is 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table.

– incrementally maintains samples over a scan of the full join results upon insertion
• insertion cost is at least linear to the join size (costly!)

– rescans join upon deletion to replenish missing samples upon deletion (very costly!)

26

where a <join-pred> is in the form of,
 Ri.A op Rj.B
 |Ri.A – Rj.B| < d

(op is one of <, <=, =, >, >=; d is a constant)

From random sampling to reservoir sampling (cont’d)
 Issue 1:

Two batches of join results involving 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑗𝑗 in different tables have to be
enumerated with different query tree roots 𝑅𝑅𝑖𝑖 and 𝑅𝑅𝑗𝑗.

 Solution: maintain all the weights w.r.t. all the possible query tree roots
– For a query with 𝑛𝑛 tables, there are up to 2𝑛𝑛 − 2 distinct weight functions and 2𝑛𝑛 − 2

indexes.
– Total storage overhead is linear:

• Also bounded by 𝑂𝑂 𝑛𝑛𝑛𝑛 , where 𝑁𝑁 is the size of the largest table
• An additional 1 / 2 of indexing overhead for trees in practice
• Further reduced by consolidating tuples with the same join attributes into vertices

27

From random sampling to reservoir sampling (cont’d)
 Issue 2:

– Still need to draw a random number for each join result
– Though unselected ones are never retrieved

 Solution:
– Generate skip numbers

• The classic Vitter’s algorithm for fixed-size synopsis w/ replacement
• Maintain 𝑚𝑚 independent reservoirs for fixed-size synopsis w/o replacement
• Use the Walker’s alias algorithm to draw skip numbers for Bernoulli synopsis

28

From random sampling to reservoir sampling (cont’d)
 Issue 3:

– Deletion in fixed-size sampling w/ or w/o replacement can result in insufficient number
of samples

 Solution:
– Redraw the samples using the weighted graph index using any query tree root
– Need to deduplicate re-drawn samples for the case w/o replacement

29

From random sampling to reservoir sampling
 Recall that reservoir sampling

– can maintain a fixed-size sample w/o replacement over a stream of items
– deletion can lead to insufficient sample size - we’ll deal with that later

 Here, the items are the join results.
 The 2nd algorithm for drawing a random sample

– defines a one-to-one mapping from an index number to a join result.
– For an inserted tuple 𝑡𝑡𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖, let 𝑅𝑅𝑖𝑖 be the query tree root.

• The batch of the new join results map from a consecutive range of

�
𝑡𝑡𝑖𝑖
′<𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′ ≤ 𝑙𝑙 < �
𝑡𝑡𝑖𝑖
′≤𝑡𝑡𝑖𝑖

𝑤𝑤 𝑡𝑡𝑖𝑖′

• We can enumerate the stream by looping over the index numbers.
• Apply RS on a view of data stream by concatenating these batches.

30

	Efficient Join Synopsis Maintenance for Data Warehouse
	High latency in data analysis pipelines
	Alternatives to cut down latency
	Background and challenges
	Problem Formulation
	Overview of SJoin
	A running example
	Weighted join graph
	Weighted join graph
	Drawing a single random join sample
	Drawing a single random join sample
	Drawing a single random join sample (cont’d)
	Drawing a single random join sample (cont’d)
	From random sampling to reservoir sampling
	Optimizations
	Experiments
	Experiments
	Conclusion
	Our solution
	Weighted join graph
	Weighted join graph
	Weighted join graph
	Weighted join graph
	Drawing a single random join sample
	Drawing a single random join sample
	Problem Formulation
	From random sampling to reservoir sampling (cont’d)
	From random sampling to reservoir sampling (cont’d)
	From random sampling to reservoir sampling (cont’d)
	From random sampling to reservoir sampling

