Spatial Independent Range Sampling

Dong Xie?, Jeff M. Phillips!, Michael Matheny3, Feifei Li*

University of Utah!, Penn State University?, Amazon3, Alibaba Inc*

Big Spatial Data

Location-based Services loT Projects & Sensor Networks Social Media

A

THE WORWD

Site Recommendations
Traffic Analysis
Transportation Optimization

Interactive Spatial Data Analysis

US electricity sources

h @
All states O i A a o . - -4
v Grayscal v [7] d
e o
o 5
. . .E
~ All types ~* 1 Grayscale ~
L]
1 L
* ® - °
o A
; ® .3 _
- _ . " e
e s . &
6.495 MWV . ' ®e- ouw y
.
@
9
Sl .. q

Source: https://www.carbonbrief.org/mapped-how-the-us-generates-electricity

https://www.carbonbrief.org/mapped-how-the-us-generates-electricity

How to Achieve “Interactive”?

What needs to be done?
* Interactive exploration/analysis on a map app.
* Large scale data visualization.
* Randomized site recommendation.

Low latency analysis w/ exact results = Slow/Resource intensive.

Another Approach?
Don’t need exact results -> approximation with guarantees
Trade-off between accuracy and performance.

Approximate Query Processing

Need to sampling on the fly.

Spatial Independent Range Sampling (SIRS)

 Sample Independence is important!
e Convenience for analysis.
* Easy continuation.

* Numerous statistics tools requires sample independence.

e Other requirements:

* Arbitrary range (MBR) to explore. o Oulahed o
* Fast sample retrieval for each query. Previous Method - Siow [24]
* Low cost on preprocessing and storage.

21
T
1

===+ Acrual Average

3000 4

5
;
|

Estimated Average

» Spatial Independent Range Sampling (SIRS).

Wi
2000 1 J

0 0000 20000 30000 40000 50000
Time (pus)

GO000

SIRS Problem Formalized

Uniform SIRS
Given a spatial data set P € R?¢, an MBR R, and an integer k,

a uniform SIRS query will return k independent random samples
from R N P with each data pointp € RN P

: . 1
having a probability ofw to be sampled.

Weighted SIRS

Given a spatial data set P € R%, weight function w: P - R™*, an MBR R, and an integer k,
a weighted SIRS query will return k independent random samples

from R N P with each data pointp € RN P
w(p)

2qernp W(Q)

having a probability of to be sampled.

Baseline Solutions

* [VLDB’89] Olken’s Method
* Key idea: traverse tree randomly with rejection.

* Pros: straightforward, very easy to implement and generalized.
* Requires a lot of RNG, cause a lot of rejections -> slow.

e [VLDB’15] Spatial Online Sampling.
* Key idea: sampling buffer on each tree node to accelerate Olken’s Method.
* Pros: fast for low sample numbers.
* Cons: NO inter-query independence!!

* Query then sample:
e Get the full result and retrieve samples directly.
* Need toissue a exact range query -> slow.

Sampling Framework

* Observation: uniform IRS on 1D sequence over index range [s, t] is trivial
* Generate random numbers in [s, t] then report correspondent data.

e Reduction from SIRS to 1D sampling

Space

Decomposition
S
Sub-ranges
Range 5

Space ‘

Decomposition

Spatial
Dataset

>

Linear Data Layout

Mapping ‘

Continuous

Walker’s Alias t

RNG

Method

A Random Random

—

Index Ranges Index Range Index

/-Value Sampling Method

* Natural data layout based on space-filling curves.
e Z-value decomposition -> linear quad tree
* Space Cost: 0(n); Query Cost: O(c(R) + k);

X
0 1 2 3 4 5 6 7

0 /_ Ps
1 Query Region:
I — = = —————— I
1 (22) > (4,5) |
2| = 2 =t P . _
Decompose into Z-value ranges:
3 p, —4,4 — | 22-@33) = [1316
Y J T [P (42~ (42) = [2525]
Do } (4,3) > (4,3) = [27,27]
5 4 — - — (21 4) = (31 5) = [37140]
» (449 - (44 = [4949]
— = 13
6 (4,5 > (45 = [5151]
7 __/ 7>
P12
P1 b2 P3 bs Pe Ps P10 P12 P13

KD-Tree Sampling Method

* Another way decomposing the space with more precision and guarantees.

» Space Cost: O(n); Query Cost: O(y/n + k), for higher dimension: O(n1~%/4 + k)

10

(9}

12

a
[1,12]
/\
b c
[1,7] [8,12]
d e f g
(1,5] (6,7 [8,10] [11,12]
\ /
h k
[2,5] (8,9]
/\
[J
[2,3] [4,5]
VANIFAN
2 4 | 5/6|7 8|9 10|11 |12

Generalized for Other Spatial Indexes

 Accommodate data layout with spatial indexes.

Principles for the reduction:

* Each tree node u is corresponded to a continuous interval [s,, t,,] on data storage.
* If node u is descendant of node v, the interval of node u is covered by that of node v.

DFS on the tree

Concatenate leaf node data to the layout once it is reached.

Generalized into R-Trees, Dyadic Trees, etc.
KD-Tree has the best bounds for MBRs.

Weighted SIRS — Dual Tree Solution

* Reduction: Space Decomposition + Weighted 1D IRS.

* Theoretical best result: O(n) space cost, O(1) sample cost. NOT practical.

* Practical weighted 1D IRS solution: avoiding rejections
* Build a dyadic tree: query range -> a set of intervals
* Pick a random interval -> traverse corresponding subtree.

Query Region

l Space Decomposition
Structure

priee (@ o
Alias Structure Index Ranges

ray
.- .

P
L
.
ur
st

.
-

Hirnea,,
Taatre
e,
.....
s a

...........
..........

1 5 16 | Data Storage

&)
N
w
N
(6]
~
(0]
(o]
=
o
|—\
N

< ==
———————

-
"""""""""
~~~~~~~~~~

Sample Point EJ E]

~~~~~~~~ % Random N e

uoIld9|ss
wopuey
h,,
P
D
(G
(N
D

D Traversal D 1D Weighted IRS
1D Weighted .ot Supporting Dyadic Tree
IRS Query "~~~~. ________
Candidate — D
Range

12

Weighted SIRS — Combined Tree Solution

* Each index range generated by space decomposition map to a subtree.

* Direct traverse the subtree randomly.

Query Region

Combined
Space Decomposition / Sample
Top-Level Decomposel to v ™ P P / P
0. _Q indexRangls Structure
Alias Structure 2

o Random S;el'é';:tion

T T
Ll
. 'l..
. ..
) *e.
. L3
. G
< .
.. *
“au, .
v, .
G .
* -
* .
. -
.
. -
() .
[y -
-
.
-
-
-

112 |3 4‘5‘6‘7 819 |10 11‘12‘13 14 | 15| 16 | DataStorage

!

Sample Point

13

Trade-off between Methods

* Olken’s Method: non-selective queries (> 10%), few number of samples (<100)

* Our solution: work for most cases, need a boost time.

* Can eliminate rejections to achieve higher throughput by scanning boundary leaf nodes.

Query Range

lry
Random Traversal Space
. w/ Rejection Decomposition
Hybrid Method
Shutdown Initiate
Scan
B Toplevel [%
; x Boundary Nodes
Alias Structure

Shutdown

_ Reconstruct

Initiate

/

Alias Structure

E—

Olken Sampling o
Sample w/ Rejection

Sample w/o Rejection

14

Supporting Updates

* Incorporate the idea of LSM tree.

* Huge design space to explore.

Insertion

‘ Range Results
level o [N () @) ronce query SIRS Query

lAsync Merge

\ndex Ran%

Level 1 o
Async Merge

Sample Point

Async Merge

Level 3

-o Top-Level
Alias Structure
e Level Candidate

Level 2

Lazy Deletions

15

Evaluation

* Intel Xeon E5-2609 2.4GHz
* 256GB RAM, Rust 1.39.0, Pcg64Mcg RNG.

e USA: road network nodes, 24 million pts.
e Twitter: three-month tweets with geotag, 240 million pts.
* OSM: OpenStreetMap POls, 2.68 billion pts.

e Sample size = 1000
* 0.1% selectivity square region

* 1000 query average

Query Performance

108 109
H KDS KD-Olken Bl /V-Tree Combined M KD-Tree Dual
5 Il /VS H QTS Hl KD-Tree Combined KD-Olken
1071 B KD-Buffer W 7V-Tree Dual mm QTS
105_

—_
S
S

—
)
[\

Query Latency (us)
—_
<

Query Latency (us)
=

10°-
101 |
1074 _ 102 |
USA Twitter OSM USA Twitter OSM
Uniform Weighted
__ :
| KDS KD-Tree Sampling Method ZVS = Z-Value Sampling Method !
' KD-Buffer = Buffer Sampling on KD-Tree KD-Olken = Olken Method on KD-Tree i
1
1

. QTS = Query Then Sampling

: KDS = KD-Tree Sampling Method

| ZVS = Z-Value Sampling Method
QU e ry C P U B rea kd Own | KD-Buffer = Buffer Sampling on KD-Tree
! KD-Olken = Olken Method on KD-Tree

I QTS = Query Then Sampling

Tot Latency CPU Breakdown (us / %)
(us) Effective RNGs Wasted RNGs Other Major Components

QTS 1892.64 11.20 (0.60%) 0.00 (0.00%) Query Time: 1881.44 (99.41%)
N KD-Olken w/o LCA 62078.03 642.03 (1.03%) 61435.55 (98.97%) =
Un IfO rm KD-Olken w/ LCA 4981.30 477.31(9.58%) 4411.35 (88.56%) LCA Optimization: 2.64 (0.05%);
KD-Buffer 798.56 8.69 (1.09%) 2.97 (0.37%) Buffer Replenish: 270.53 (57.95%);
KDS w/ Rejection 140.26 99.45 (70.90%) 6.73 (4.80%) Alias Construction: 23.80 (16.96%);
KDS w/o Rejection 396.30 98.24 (24.79%) 0.00 (0.00%) Alias Construction: 289.79 (73.12%);

Tot Latency

(us)

CPU Breakdown (us / %)
Effective RNGs Wasted RNGs Other Major Components

QrTs 11128.86 112.41 (1.10%) 0.00 (0.00%) Query Time: 11006.45 (98.90%)
KD-Olken w/o LCA 70328.76 483.38 (0.69%) 69844.77 (99.32%) -
Wei ghted KD-Olken w/ LCA 5770.88 355.40 (6.16%) 5412.44 (93.79%) LCA Optimization: 3.04 (0.05%)
KD-Tree Dual w/ Rej 2491.19 2293.56 (92.07%) 115.31 (4.62%) Alias Construction: 79.80 (3.20%)
KD-Tree Dual w/o Rej 3143.37 2242.30 (71.33%) 0.00 (0.00%) Alias Construction: 896.03 (28.51%)
KD-Tree Combined w/ Rej 1245.58 1137.30 (91.31%) 36.29 (2.91%) Alias Construction: 70.56 (5.66%)
KD-Tree Combined w/o Rej 1356.54 491.69 (36.24%) 0.00 (0.00%) Alias Construction: 863.08 (63.62%)

18

Update Support with LSM

Insertion Latency (jus)

1.2

Bl KD-Tree LSM I 7V-Tree LSM

100:0

80:20
Insertion/Query Ratio

50:50

Insertion Latency

20:80

Query Latency (pus)

450

400 A
3

Lo

= Ut
= =
o o

Bl KD-Tree LISM I 7V-Tree LSM

80:20

50:50 20:80
Insertion /Query Ratio

0:100

Query Latency

19

Summary

Approximation approach to achieve interactive spatial data analysis
Independent sampling is foundation operation.

Sampling framework: multi-dimension problem to 1D reduction.
Different space decomposition: Z-Value, KD-Tree, general spatial index
Extension to weighted SIRS: dual-tree / combined-tree solution.

Key principles: minimize RNG calls, avoid rejection.

Trade-offs -> hybrid method.

LSM-tree based update support.

1-3 orders of magnitude performance improvement!

20

Backup

Cost of Rejection Sampling

* In Olken, ~90% of CPU time is wasted due to rejection sampling
In Uniform KDS and ZVS, <7% CPU time is wasted in rejection

Fast pseudo RNG Pcgb64Mcg: ~13 billion RNG calls/s
Crypto-safe RNG: ~61 million RNG calls/s (213x slower!!!)

Our method can get rid of rejection totally

Scanning boundary leaf nodes -> put data points inside query range

Separate candidate pool

Index Building Time

104_

w1074

Index Time s

—_

-
—
I

—

)
[N]
1

Bl /V Tree HEM KD-Buffer Tree Bl /\V-Tree Combined WM ZV-Tree Dual
B KD Tree 104 - B KD-Tree Combined M KD-Tree Dual

@ 107

—_

)
[N
1

Index Time s

[S—

S
—
1

100_
USA Twitter OSM USA Twitter OSM
Uniform Weighted

__ :

| KDS KD-Tree Sampling Method ZVS = Z-Value Sampling Method !
' KD-Buffer = Buffer Sampling on KD-Tree KD-Olken = Olken Method on KD-Tree i
1

1

. QTS = Query Then Sampling

Index Size

109
Raw Bl KD Tree
Bl /V Tree HE KD-Buffer Tree

105 i
o)
=
)

4 J

.UE) 10
X
()
o
£

103]

10%- _

USA Twitter OSM
Uniform

| KDS KD-Tree Sampling Method
' KD-Buffer = Buffer Sampling on KD-Tree

. QTS = Query Then Sampling

Raw s ZV-Tree Dual
100 - B /V-Tree Combined M KD-Tree Dual
Hl KD-Tree Combined
a 105 i
=

Index Size
—_
(@)
T~

—_

-
w
L

10°-

USA Twitter OSM

Weighted

1
ZVS = Z-Value Sampling Method !
KD-Olken = Olken Method on KD-Tree i
1
1

Scalability —

Index Time (s)

1400
t KD Tree * KD-Buffer Tree

12001 ZV Tree

1000 -

800 1

600

400 A

200 A

0- T T T T T
0 500 1000 1500 2000 2500

Data Size (x10°)
Uniform

| KDS KD-Tree Sampling Method
' KD-Buffer = Buffer Sampling on KD-Tree
. QTS = Query Then Sampling

Index Building Time

1600
::: ZV-Tree Combined -.- KD-Tree Combined
1400 1 ZV-Tree Dual KD-Tree Dual
1200 1
1000
O
=
— 800
)
T 600
400 A
200 A
0+ ; T T T T
0 500 1000 1500 2000 2500
Data Size (x10°)
Weighted

1
ZVS = Z-Value Sampling Method !
KD-Olken = Olken Method on KD-Tree i
1
1

Scalability — Index Size

t KD Tree ¥ KD-Buffer Tree 1064 ::: ;x'?ee Combined Ak KD-Tree Dual
7V Tree Raw -Tree Dual Raw
-.- KD-Tree Combined
10°1
o) o
= = 107
g N
wn n
X
8 10%4 1
£ — 10*-
1034 - - - - - 1034 - - - - -
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Data Size (x10%) Data Size (x10%)
Uniform Weighted
__ :
| KDS KD-Tree Sampling Method ZVS = Z-Value Sampling Method !
' KD-Buffer = Buffer Sampling on KD-Tree KD-Olken = Olken Method on KD-Tree i
|
|

. QTS = Query Then Sampling

Effectof k

106 107
QTS -¥¢- KD-Buffer QTS —f\— ZV-Tree Dual
) KDS KD-Olken 106 - ZV-Tree Combined ~ KD-Tree Dual
107 1 ZVS KD-Tree Combined KD-Olken
o = 107
= 10* =
9 g 10" @
8 10
= B
> >
8 1024 o
€ €
1
10 101
100 1— : - - ~ 100 4= : . - .
10° 10! 102 10° 10* 10° 10! 102 10° 10*
k k
Uniform Weighted
__ :
| KDS KD-Tree Sampling Method ZVS = Z-Value Sampling Method !
' KD-Buffer = Buffer Sampling on KD-Tree KD-Olken = Olken Method on KD-Tree i
1
1

. QTS = Query Then Sampling

Effect of selectivity

Query Latency (u5)

QTS ¢ «D-Buffer
10°4 KDS KD-Olken
ZVs
104 i
1071

10~ 102
Selectivity

Uniform

| KDS KD-Tree Sampling Method
' KD-Buffer = Buffer Sampling on KD-Tree
. QTS = Query Then Sampling

KD-Tree Combined KD-Olken

Query Latency (ps)

—_

-
w
1

102-

. QTS —\— ZV-Tree Dual
10”1 ZV/-Tree Combined —*— KD-Tree Dual

10~ 1073
Selectivity

Weighted

ZVS = Z-Value Sampling Method
KD-Olken = Olken Method on KD-Tree

102

Effect of range fatness

107 107

QTS ¥¢- KD-Buffer QTS 4\ ZV-Tree Dual
KDS KD-Olken ZV-Tree Combined —*— KD-Tree Dual
ZVS KD-Tree Combined KD-Olken
2101 2
<) >
e——1
e o o—o e
2 10* >
T |e—% % |
| ‘ A4 '/‘ o ‘/ﬁ
10 : - - : : - - :
1 4 16 64 1 4 16 64
Lenngth-Width Ratio Lenngth-Width Ratio
Uniform Weighted
__ :
| KDS KD-Tree Sampling Method ZVS = Z-Value Sampling Method !
' KD-Buffer = Buffer Sampling on KD-Tree KD-Olken = Olken Method on KD-Tree i
|
|

. QTS = Query Then Sampling

I

H b ri d M eth Od ' KDS = KD-Tree Sampling Method]
y . Comp = Combined Tree Method on KD-Tree !

| Olken = Olken Method on KD-Tree !

Samples Retrieved by Timeline (us)

--m-mm

. Olken 1166 3498 5830
Uniform _
KDS w/ Rej 0 287 6237 6541 15651 49454 83257
KDS w/o Rej 0 0 0 364 11263 51706 92149
Hybrid 82 101 882 922 11877 52524 93172
Samples Retrieved by Timeline (us)
m--mm
Olken 2542 3045 4477 7962 14923
Weighted Comp w/ Rej 0 72 5855 7474 11585 19600 39636
Comp w/o Rej 0 0 0 1774 6279 15060 37014

Hybrid 216 252 3622 4566 9078 17875 39866

	Spatial Independent Range Sampling
	Big Spatial Data
	Interactive Spatial Data Analysis
	How to Achieve “Interactive”?
	Spatial Independent Range Sampling (SIRS)
	SIRS Problem Formalized
	Baseline Solutions
	Sampling Framework
	Z-Value Sampling Method
	KD-Tree Sampling Method
	Generalized for Other Spatial Indexes
	Weighted SIRS – Dual Tree Solution
	Weighted SIRS – Combined Tree Solution
	Trade-off between Methods
	Supporting Updates
	Evaluation
	Query Performance
	Query CPU Breakdown
	Update Support with LSM
	Summary
	Backup
	Cost of Rejection Sampling
	Index Building Time
	Index Size
	Scalability – Index Building Time
	Scalability – Index Size
	Effect of 𝑘
	Effect of selectivity
	Effect of range fatness
	Hybrid Method

