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Interactive Spatial Data Analysis

US electricity sources
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How to Achieve “Interactive”?

What needs to be done?
* Interactive exploration/analysis on a map app.
* Large scale data visualization.
* Randomized site recommendation.

Low latency analysis w/ exact results = Slow/Resource intensive.

Another Approach?
Don’t need exact results -> approximation with guarantees
Trade-off between accuracy and performance.

Approximate Query Processing

Need to sampling on the fly.




Spatial Independent Range Sampling (SIRS)

 Sample Independence is important!
e Convenience for analysis.
* Easy continuation.

* Numerous statistics tools requires sample independence.

e Other requirements:

* Arbitrary range (MBR) to explore. o Oulahed o
* Fast sample retrieval for each query. Previous Method - Siow [24]
* Low cost on preprocessing and storage.
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SIRS Problem Formalized

Uniform SIRS
Given a spatial data set P € R?¢, an MBR R, and an integer k,

a uniform SIRS query will return k independent random samples
from R N P with each data pointp € RN P

: . 1
having a probability ofw to be sampled.

Weighted SIRS

Given a spatial data set P € R%, weight function w: P - R™*, an MBR R, and an integer k,
a weighted SIRS query will return k independent random samples

from R N P with each data pointp € RN P
w(p)

2qernp W(Q)

having a probability of to be sampled.



Baseline Solutions

* [VLDB’89] Olken’s Method
* Key idea: traverse tree randomly with rejection.

* Pros: straightforward, very easy to implement and generalized.
* Requires a lot of RNG, cause a lot of rejections -> slow.

e [VLDB’15] Spatial Online Sampling.
* Key idea: sampling buffer on each tree node to accelerate Olken’s Method.
* Pros: fast for low sample numbers.
* Cons: NO inter-query independence!!

* Query then sample:
e Get the full result and retrieve samples directly.
* Need toissue a exact range query -> slow.



Sampling Framework

* Observation: uniform IRS on 1D sequence over index range [s, t] is trivial
* Generate random numbers in [s, t] then report correspondent data.

e Reduction from SIRS to 1D sampling
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/-Value Sampling Method

* Natural data layout based on space-filling curves.
e Z-value decomposition -> linear quad tree
* Space Cost: 0(n); Query Cost: O(c(R) + k);
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KD-Tree Sampling Method

* Another way decomposing the space with more precision and guarantees.

» Space Cost: O(n); Query Cost: O(y/n + k), for higher dimension: O(n1~%/4 + k)
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Generalized for Other Spatial Indexes

 Accommodate data layout with spatial indexes.

Principles for the reduction:

* Each tree node u is corresponded to a continuous interval [s,, t,,] on data storage.
* If node u is descendant of node v, the interval of node u is covered by that of node v.

DFS on the tree

Concatenate leaf node data to the layout once it is reached.

Generalized into R-Trees, Dyadic Trees, etc.
KD-Tree has the best bounds for MBRs.



Weighted SIRS — Dual Tree Solution

* Reduction: Space Decomposition + Weighted 1D IRS.

* Theoretical best result: O(n) space cost, O(1) sample cost. NOT practical.

* Practical weighted 1D IRS solution: avoiding rejections
* Build a dyadic tree: query range -> a set of intervals
* Pick a random interval -> traverse corresponding subtree.
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Weighted SIRS — Combined Tree Solution

* Each index range generated by space decomposition map to a subtree.

* Direct traverse the subtree randomly.
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Trade-off between Methods

* Olken’s Method: non-selective queries (> 10%), few number of samples (<100)

* Our solution: work for most cases, need a boost time.

* Can eliminate rejections to achieve higher throughput by scanning boundary leaf nodes.
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Supporting Updates

* Incorporate the idea of LSM tree.

* Huge design space to explore.
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Evaluation

* Intel Xeon E5-2609 2.4GHz
* 256GB RAM, Rust 1.39.0, Pcg64Mcg RNG.

e USA: road network nodes, 24 million pts.
e Twitter: three-month tweets with geotag, 240 million pts.
* OSM: OpenStreetMap POls, 2.68 billion pts.

e Sample size = 1000
* 0.1% selectivity square region

* 1000 query average



Query Performance
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: KDS = KD-Tree Sampling Method

| ZVS = Z-Value Sampling Method
QU e ry C P U B rea kd Own | KD-Buffer = Buffer Sampling on KD-Tree
! KD-Olken = Olken Method on KD-Tree

I QTS = Query Then Sampling

Tot Latency CPU Breakdown (us / %)
(us) Effective RNGs Wasted RNGs Other Major Components

QTS 1892.64 11.20 (0.60%) 0.00 (0.00%) Query Time: 1881.44 (99.41%)
N KD-Olken w/o LCA 62078.03 642.03 (1.03%) 61435.55 (98.97%) =
Un IfO rm KD-Olken w/ LCA 4981.30 477.31(9.58%)  4411.35 (88.56%) LCA Optimization: 2.64 (0.05%);
KD-Buffer 798.56 8.69 (1.09%) 2.97 (0.37%) Buffer Replenish: 270.53 (57.95%);
KDS w/ Rejection 140.26 99.45 (70.90%) 6.73 (4.80%) Alias Construction: 23.80 (16.96%);
KDS w/o Rejection 396.30 98.24 (24.79%) 0.00 (0.00%) Alias Construction: 289.79 (73.12%);

Tot Latency

(us)

CPU Breakdown (us / %)
Effective RNGs Wasted RNGs Other Major Components

QrTs 11128.86 112.41 (1.10%) 0.00 (0.00%) Query Time: 11006.45 (98.90%)
KD-Olken w/o LCA 70328.76 483.38 (0.69%) 69844.77 (99.32%) -
Wei ghted KD-Olken w/ LCA 5770.88 355.40 (6.16%)  5412.44 (93.79%) LCA Optimization: 3.04 (0.05%)
KD-Tree Dual w/ Rej 2491.19 2293.56 (92.07%) 115.31 (4.62%) Alias Construction: 79.80 (3.20%)
KD-Tree Dual w/o Rej 3143.37 2242.30 (71.33%) 0.00 (0.00%) Alias Construction: 896.03 (28.51%)
KD-Tree Combined w/ Rej 1245.58 1137.30 (91.31%) 36.29 (2.91%) Alias Construction: 70.56 (5.66%)
KD-Tree Combined w/o Rej 1356.54 491.69 (36.24%) 0.00 (0.00%) Alias Construction: 863.08 (63.62%)
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Update Support with LSM

Insertion Latency (jus)
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Summary

Approximation approach to achieve interactive spatial data analysis
Independent sampling is foundation operation.

Sampling framework: multi-dimension problem to 1D reduction.
Different space decomposition: Z-Value, KD-Tree, general spatial index
Extension to weighted SIRS: dual-tree / combined-tree solution.

Key principles: minimize RNG calls, avoid rejection.

Trade-offs -> hybrid method.

LSM-tree based update support.

1-3 orders of magnitude performance improvement!
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Backup



Cost of Rejection Sampling

* In Olken, ~90% of CPU time is wasted due to rejection sampling
In Uniform KDS and ZVS, <7% CPU time is wasted in rejection

Fast pseudo RNG Pcgb64Mcg: ~13 billion RNG calls/s
Crypto-safe RNG: ~61 million RNG calls/s (213x slower!!!)

Our method can get rid of rejection totally

Scanning boundary leaf nodes -> put data points inside query range

Separate candidate pool



Index Building Time
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Index Size
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Scalability —

Index Time (s)

1400
t KD Tree * KD-Buffer Tree

12001 ZV Tree

1000 -

800 1

600

400 A

200 A

0- T T T T T
0 500 1000 1500 2000 2500

Data Size (x10°)
Uniform

| KDS KD-Tree Sampling Method
' KD-Buffer = Buffer Sampling on KD-Tree
. QTS = Query Then Sampling

Index Building Time

1600
::: ZV-Tree Combined -.- KD-Tree Combined
1400 1 ZV-Tree Dual KD-Tree Dual
1200 1
1000
O
=
— 800
)
T 600
400 A
200 A
0+ ; T T T T
0 500 1000 1500 2000 2500
Data Size (x10°)
Weighted

1
ZVS = Z-Value Sampling Method !
KD-Olken = Olken Method on KD-Tree i
1
1




Scalability — Index Size
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Effectof k
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Effect of selectivity
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Effect of range fatness
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I

H b ri d M eth Od ' KDS = KD-Tree Sampling Method ]
y . Comp = Combined Tree Method on KD-Tree !

| Olken = Olken Method on KD-Tree !

# Samples Retrieved by Timeline (us)

--m-mm

. Olken 1166 3498 5830
Uniform _
KDS w/ Rej 0 287 6237 6541 15651 49454 83257
KDS w/o Rej 0 0 0 364 11263 51706 92149
Hybrid 82 101 882 922 11877 52524 93172
# Samples Retrieved by Timeline (us)
m--mm
Olken 2542 3045 4477 7962 14923
Weighted Comp w/ Rej 0 72 5855 7474 11585 19600 39636
Comp w/o Rej 0 0 0 1774 6279 15060 37014

Hybrid 216 252 3622 4566 9078 17875 39866
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