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Previous Approach: One-hot Encoding

« SQL structure information: Input SQL: Schema:
_ . , SELECT t.id titlo
Encoding simply concatenates the encoding FROM title t, movie_companies me
of all clauses in the query. WHERE t.id = mc.movie id™ > id primary key
. . AND t.product_year. >2010 product_year
« Database schema information: AND mc.company_id =5 . .
. One-hot encoding: movie_comparnies
All tables and columns use an independent Column set {[0 0000 1]} id primary key
one-hot encoding. Table set {[0 1], [1 0]} \>» movie id | foreign key
Joinset {{00000101010000]} ”
 Database column value distribution Predicate set {[000100100.72], e
: N _[100000010.14]}
information: Drawbacks:
_ . Ignoring query structure, database schema, distribution variance.
All values in SQL are normalized to [0, 1].
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Previous Approach: Pretrained Language Model

* The language representation has been well
studied by work on the NLP d1 | SELECT name FROM user WHERE rank IN (‘adm’,'sup")

SELECT SUM(balance) FROM accounts

- However, SQL incurs new challenges: 12

« Semantically equivalent: q SELECT name FROM user WHERE rank = 'adm'
3 | UNION SELECT name FROM user WHERE rank = 'sup'

« query gz and g4, which can be
easily identified by their query g SELECT SUM(balance) FROM accounts WHERE user id
structures: 4 lin (SELECT user_id FROM user WHERE rank = 'adm")

* query gs and g4, Which can be
discovered via involved schema

SELECT SUM(accounts.balance) FROM accounts, user
WHERE accounts.user id = user.id AND user.rank = 'adm'

information. —>» Logically Same ----> Query Dependent
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Introducing PreQR

* PreQR: Pretraining Query Representation.

« By pretraining query representation, PreQR:

integrates the database schema, query
structure and content knowledge.

only needs to be trained once for a database
and can be used in various learning tasks.

performances on various database tasks
obtain a significant improvement.
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Query Representations

« The input embedding represents the query structure via matching automaton states.

« The query-aware schema use a graph-structured model to encode SQL-related schema

information.

« The SQL BERT encoder leverages the attention mechanism to identify the query-aware

structural and schema information in an ad-hoc way.




SQL2Automaton

Input Queries g; 1n Section 1 Queries g3 in Section 1

Automaton

Matching

SQL State _

Embeddin a = (ay, a1, ay, as, ay, as, ag, az, ag, g, A1) a = (ao, a1, az, as, as, as, as, as, s, a1,
g ao, ai, az, as, ay, as, ag, as, 4y, d11)

« PreQR transforms the query structure into a finite-state automaton (FA), which is a
machine with a finite number of states.

« Automata can recognize syntactically well-formed strings to represent the semantic
structure of SQL.




PreQR Input Representation
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Schema2Graph

Schema

Tables: T = (Title, Movie keyword, Cast info, Movie info,

Movie companies, ... )

Columns: Ctitle = {id, title, kind_id, production_year, ... }

Cmovie_companies = {movie id, company id,

company type id, ... }

Foreign: F = {(title.id, movie companies.movie id), (title.id,

movie_info.movie id), ... }
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Query-Aware Schema
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Trm g Module in PreQR

Trm_g architecture is a variant of the
Transformer from BERT.

The Trm_g model includes the original
Transformer Trm (black rectangle) and
our query-aware sub-graph Transformer
Trm' (red rectangle).

PreQR augments each word with the
graph structure of the schema items that it
s linked to.
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Extensibility

Case 1: The distribution of data changes significantly.
Case 2: If the database schema is updated, we need to update the schema graph model Gs.
Case 3: When query patterns change, we may need to update the FA to handle new queries.

Case 4: Training a new embedding model for a database from scratch.

Case Description Time
Case 1 | Incremental learning for the last layer of SOLBERT | 15min
Case 2 Incremental Learning for the Schema2Graph part 3.5h

Case 3 | Incremental learning for the Input Embedding module | 6.7h
Case 4 Train from scratch 18.3h




Experiment Highlight

PreQR handles various downstream tasks:

* Query Clustering:

Comparing with five approaches to measure
pairwise similarity between queries.

o SQL-to-Text Generation:

Comparing the encoding of PreQR model
against the Seq2Seq, Tree25eq and
Graph2Seq.
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SELECT opponent WHERE points < 18 AND November

o > 11;

Seq2Se What is the opponent when the points are less than 18
9%¥9 | With the November is more than 11 ?
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November more than 11 ?




Experiment Highlight

—A— NS-MSCNCard A —A— NS-MSCNCost
140 A MSCNCard MSCNCost
120 NS-LSTMCard 3.0 ¥- NS-LSTMCost
H ' . . T -3¢~ LSTMCard = LSTMCost
* Query Cardinality and Cost Estimation: "o Ns-perQRCard X o N&-perORCost

1005 —B- PerQRCard 251 —B- PerQRCost

Comparing with a conventional method ® o 2]
(PostgreSQL), the query-based learning
models (MSCN and LSTM), and a data-
based learning model (NeuroCard). N
(a) Card validation error (b) Cost validation error
* The experimental results showed that by 53 .
replacing the encoders of existing models : : 6 3
with PreQR encoding, performances on . % g : 0l ? o
various database tasks obtain a significant T : . g 8
improvement. 4 ] g |4 = T g
1 i 8
T B . T =
MSCl\'lCard LSTIViCard PreOIiCard MSCI{JCOSt LSTNIICost Prtel’\Cost

Methods Methods

(C) Cardinality (d) Cost



PreQR

* PreQR: towards pre-training SQL embedding.
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