PreQR: Pre-training Representation
for SQL Understanding

Xiu Tang, Sai Wu*, Mingli Song,

Shanshan Ying, Feifel Li, Gang Chen

Zhejiang University & Alibaba Group

AZFT (Alibaba-Zhejiang University)

Learning-based Database Optimization

[Query] [Dataset] [Query]
¢SQLS ¢SQLS

i Query Parser] [Query Feature Extractor]
¢predicates v ¢ predicates

\ Data Sampling] Query Encoder J

values/tuples ¢encoding ¢query encoding
' Query Model } Query Model |
Cardinality Cost Cardinality Cost

(a) Data Model (b) Query Model

Learning-based Database Optimization

[Query J [Dataset] [Query]

Jsats ¢SQLS
[Query Parser] [Query Feature Extractor]

¢predicates v ¢ predicates <£>
[Data Sampling] \ Query Encoder J 1

values/tuples¢encoding ¢query encoding
Query Model J Query Model \
Cardinality Cost Cardinality Cost

(a) Data Model (b) Query Model

Previous Approach: One-hot Encoding

« SQL structure information: Input SQL: Schema:
_ . , SELECT t.id titlo
Encoding simply concatenates the encoding FROM title t, movie_companies me
of all clauses in the query. WHERE t.id = mc.movie id™ > id primary key
. . AND t.product_year. >2010 product_year
« Database schema information: AND mc.company_id =5 . .
. One-hot encoding: movie_comparnies
All tables and columns use an independent Column set {[0 0000 1]} id primary key
one-hot encoding. Table set {[0 1], [1 0]} \>» movie id | foreign key
Joinset {{00000101010000]} ”
 Database column value distribution Predicate set {[000100100.72], e
: N _[100000010.14]}
information: Drawbacks:
_ . Ignoring query structure, database schema, distribution variance.
All values in SQL are normalized to [0, 1].

Previous Approach: One-hot Encoding

« SQL structure information:

Encoding simply concatenates the encoding
of all clauses in the query.

« Database schema information:

All tables and columns use an independent
one-hot encoding.

 Database column value distribution
information:

All values in SQL are normalized to [0, 1].

Input SQL: Schema:

SELECT t.id title

FROM title t, movie companies mc

WHERE t.id = mc.movie_id ~ > id primary key
AND t.product year > 2010 product_year

AND mec.company id =5

. movie companies
One-hot encoding: . p

Column set {{0000 0 1]} id primary key

Table set {[0 1], [1 0]} \>» movie id | foreign key

Joinset {{00000101010000]} —

Predicate set {000 10010 0.72], company_id
Drawbacks: 1000000 10.14]}

Ignoring query structure, database schema, distribution variance.

Previous Approach: One-hot Encoding

« SQL structure information:

Encoding simply concatenates the encoding
of all clauses in the query.

 Database schema information:

All tables and columns use an independent
one-hot encoding.

« Database column value distribution
information:

All values in SQL are normalized to [0, 1].

Input SQL: Schema:

SELECT t.d title

FROM title t, movie companies mc _

WHERE t.id = mc.movie id ——~ > id primary key
AND t.product year > 2010 product_year

AND mc.company _id =5

. movie companies
One-hot encoding: _tomp

Column set {{00000 1]} id primary key
Table set {[0 1], [1 0]} \»| movie id | foreign key
Joinset {{00000101010000]} »
Predicate set {{000100100.72], company 1

Drawbacks: [100000010.14]}

Ignoring query structure, database schema, distribution variance.

Previous Approach: One-hot Encoding

« SQL structure information: Input SOL: Schema:
| | , SELECT t.id title
Encoding simply concatenates the encoding FROM title t, movie companies mc
of all clauses in the query. WHERE t.id = me.movie_id ~—> id primary key
. . AND t.product_year_ >2010 product year
- Database schema information: AND SO = 5 : :
, One-hot encoding: movie_companies
All tables and columns use an independent Column set {[00000 1]} A primary key
one-hot encoding. Table set {[0 1], [1 0]} movie_id | foreign key
Join set {{00000101010000]} :
« Database column value distribution | Predicateset {{000100100.72], SOy LC|
.] [100000010.14]}
information: Drawbacks:

Ignoring query structure, database schema, distribution variance.

All values in SQL are normalized to [0, 1].

Previous Approach: Pretrained Language Model

* The language representation has been well
studied by work on the NLP d1 | SELECT name FROM user WHERE rank IN (‘adm’,'sup")

SELECT SUM(balance) FROM accounts

- However, SQL incurs new challenges: 12

« Semantically equivalent: q SELECT name FROM user WHERE rank = 'adm'
3 | UNION SELECT name FROM user WHERE rank = 'sup'

« query gz and g4, which can be
easily identified by their query g SELECT SUM(balance) FROM accounts WHERE user id
structures: 4 lin (SELECT user_id FROM user WHERE rank = 'adm")

* query gs and g4, Which can be
discovered via involved schema

SELECT SUM(accounts.balance) FROM accounts, user
WHERE accounts.user id = user.id AND user.rank = 'adm'

information. —>» Logically Same ----> Query Dependent

Previous Approach: Pretrained Language Model

* The language representation has been well

studied by work on the NLP.
+ However, SQL incurs new challenges:
« Semantically equivalent:

« query gz and g4, which can be
easily identified by their query
structures;

* query gs and g4, Which can be
discovered via involved schema
information.

91

q2

q3

44

SELECT name FROM user WHERE rank IN (‘adm','sup’)

SELECT SUM(balance) FROM accounts

SELECT name FROM user WHERE rank = 'adm'
UNION SELECT name FROM user WHERE rank = "sup'

SELECT SUM(balance) FROM accounts WHERE user id
in (SELECT user id FROM user WHERE rank = 'adm')

SELECT SUM(accounts.balance) FROM accounts, user
WHERE accounts.user id = user.id AND user.rank = 'adm'

—>» Logically Same ----> Query Dependent

Template
Related

Previous Approach: Pretrained Language Model

* The language representation has been well

studied by work on the NLP. d1 | SELECT name FROM user WHERE rank IN (‘adm’,'sup")
- However, SQL incurs new challenges: 92 [SELECT SUM(balance) FROM accounts <. | Template
' |Related

« Semantically equivalent: SELECT name FROM user WHERE rank = 'adm' —
73 UNION SELECT name FROM user WHERE rank = 'sup' <~:
e query g3 and g4, which can be :
easily identified by their query g SELECT SUM(balance) FROM accounts WHERE user id [~

structures: 4 lin (SELECT user 1d FROM user WHERE rank = 'adm")

* query gs and g4, Which can be
discovered via involved schema

information. —>» Logically Same ----> Query Dependent

SELECT SUM(accounts.balance) FROM accounts, user
WHERE accounts.user 1d = user.id AND user.rank = 'adm'’

Previous Approach: Pretrained Language Model

* The language representation has been well

studied by work on the NLP.
+ However, SQL incurs new challenges:
« Semantically equivalent:

« query gz and g4, which can be
easily identified by their query
structures;

* query gs and g4, Which can be
discovered via involved schema
information.

91
92

q3

q4

qs

SELECT name FROM user WHERE rank IN (‘adm','sup')

SELECT SUM(balance) FROM accounts

SELECT name FROM user WHERE rank = 'adm'
UNION SELECT name FROM user WHERE rank = 'sup'

SELECT SUM(balance) FROM accounts WHERE user 1d
in (SELECT user_1id FROM user WHERE rank = 'adm")

... A[... A

SELECT SUM(accounts.balance) FROM accounts, user
WHERE accounts.user_id = user.id AND user.rank = 'adm'

—>» Logically Same ----> Query Dependent

Template
Related

Share
Schema

Introducing PreQR

* PreQR: Pretraining Query Representation.

« By pretraining query representation, PreQR:

integrates the database schema, query
structure and content knowledge.

only needs to be trained once for a database
and can be used in various learning tasks.

performances on various database tasks
obtain a significant improvement.

[Query Feature Extractor]
ipredicates

PreQR
¢query encoding
Query Model \

PN

Cardinality Cost

Introducing PreQR

* PreQR: Pretraining Query Representation.

« By pretraining query representation, PreQR:

integrates the database schema, query
structure and content knowledge.

only needs to be trained once for a database
and can be used in various learning tasks.

performances on various database tasks
obtain a significant improvement.

[Query Feature Extractor)

: | extract query structure an
ipredlcates schema information!
PreQR
iquery encoding
Query Model]

& sy

Cardinality

Cost

PreQR

/Input QuerieS/L

(Database Schema O—

Input Embedding
SQL2Automata Initial Embeddings
(3 | Token Embeddings | Embeddings of Input
i M A :) Sql State Embeddings | E E, En
—- - o «’ ‘ Position Embeddings |
Query-Aware Schema SQL BERT I
Schema2Graph Query-Aware Subgraph
A/'Tab -9 Tab @Tab “ o Trm_g @ e o o @ N
Gl /J % col L A
. Col Y Col
Col >4 ol Col >4 ol

Query Representations

« The input embedding represents the query structure via matching automaton states.

« The query-aware schema use a graph-structured model to encode SQL-related schema

information.

« The SQL BERT encoder leverages the attention mechanism to identify the query-aware

structural and schema information in an ad-hoc way.

SQL2Automaton

Input Queries g; 1n Section 1 Queries g3 in Section 1

Automaton

Matching

SQL State _

Embeddin a = (ay, a1, ay, as, ay, as, ag, az, ag, g, A1) a = (ao, a1, az, as, as, as, as, as, s, a1,
g ao, ai, az, as, ay, as, ag, as, 4y, d11)

« PreQR transforms the query structure into a finite-state automaton (FA), which is a
machine with a finite number of states.

« Automata can recognize syntactically well-formed strings to represent the semantic
structure of SQL.

PreQR Input Representation

Input [CLS] | SELECT (CO[JN l(*ﬂ‘ FROM ’ title ‘ t , Knovie_companieﬁ‘ mc | WHERE ' .. ‘ AND ’(t.production _yeaﬁ’ > ’ 2010 ’ .. .| [END]
&
Token . ! _ . , - bIvALUE
Erdbediings brcrs) || bseLect || bcount(y) || bpask) | btite || bt [| b, || Dmovie companies | | bme || bpvasky banp bprask] b> e biexp]
+ o+ + + + + + + + + + + + + +
SQL State
Embed(‘ings ao ai az as as as as as as as as as ai as 1o
: + + + + + + + O+ + + + + + + +
Position
Enlbeddings POSe pos: pos: poss PoOss | POSs [POSs Pos7 POss POSe POS:s POsis Posis || pOsis Ppos2
g v v v v v v ¥ v v v v v v v v
SQL]}ERT | Trm_g modules |
Masked Language L v v
Modeling (MLM) brrom bwrEre bt production_year

Schema2Graph

Schema

Tables: T = (Title, Movie keyword, Cast info, Movie info,

Movie companies, ...)

Columns: Ctitle = {id, title, kind_id, production_year, ... }

Cmovie_companies = {movie id, company id,

company type id, ... }

Foreign: F = {(title.id, movie companies.movie id), (title.id,

movie_info.movie id), ... }

Graph
» kind 1d et
t1t e ‘ pro uction_year
person 1 Cast info Movie_info
Title info type id
role 1d

P il 3 U
movie 1d‘ ,' ’
' /

‘mowe 1d

Movie_companies _ *. Movie_keyword

company_type ﬂ }\
® ©

company_ld mov1e_1d movie 1d

keyword 1d

Query-Aware Schema

' /
company_type id .

company id movie id movie id keyword id

|
Input ! Sub-Graph o
! ' kind 1id .
| title production_year
|
5 o
71 | erson 1d ~_ Cast_inf() Movie info
Query: q = “SELECT COUNT(*) FROM titlet, | Pemon @ Q—
movie companies mc WHERE t.id = mc.movie id AND le id 7 . Title) type
t.production year > 2010 AND mc.company id =5~ i roet / / \
: movie_id / 7‘.id movie_1id
I .
i Movie_companies 7 Movie keyword
|
|
|
|
|
|
!

Trm g Module in PreQR

Trm_g architecture is a variant of the
Transformer from BERT.

The Trm_g model includes the original
Transformer Trm (black rectangle) and
our query-aware sub-graph Transformer
Trm' (red rectangle).

PreQR augments each word with the
graph structure of the schema items that it
s linked to.

Output
Probabilities

Softmax

N

/[Add & Norm](—\\

Feed Feed
Forward Forward

F)[Add&NormJ [Add&NormJ(—\

Multi-Head Multi-Head
Attention Attention
A A
— U * Y

Input Relation
Embedding GCN

Queries Schema

Trm g Module in PreQR

Trm_g architecture is a variant of the
Transformer from BERT.

The Trm_g model includes the original
Transformer Trm (black rectangle) and
our query-aware sub-graph Transformer
Trm' (red rectangle).

PreQR augments each word with the
graph structure of the schema items that it
s linked to.

Output
Probabilities

Softmax
A
Linear

VA
M2

Concat O
Ae

((—>[Add & Norm? \
Feed
Forward

,—)[Add & Norm]

Multi-Head
Attention

Input
Embedding

DT

Queries

~

K[Add & Norm](—\\

Feed
Forward

[Add & Norm](—\

Multi-Head
Attention

) \

=

Relation
GCN

Schema

Trm g Module in PreQR

Trm_g architecture is a variant of the
Transformer from BERT.

The Trm_g model includes the original
Transformer Trm (black rectangle) and
our query-aware sub-graph Transformer
Trm' (red rectangle).

PreQR augments each word with the
graph structure of the schema items that it
s linked to.

Output
Probabilities

[Softmax]
A
Linear
VA

e
Concat 69(s

Ae

Feed
Forward

f_)[Add & Norm]

Multi-Head
Attention

ff—ﬂ Add & Norm\ ‘

A
\——

Input
Embedding

Queries

N m—

~N

Add & Norm

Feed
Forward

[Add & Norm |~

Multi-Head
Attention

Relation
GCN

Schema

Extensibility

Case 1: The distribution of data changes significantly.
Case 2: If the database schema is updated, we need to update the schema graph model Gs.
Case 3: When query patterns change, we may need to update the FA to handle new queries.

Case 4: Training a new embedding model for a database from scratch.

Case Description Time
Case 1 | Incremental learning for the last layer of SOLBERT | 15min
Case 2 Incremental Learning for the Schema2Graph part 3.5h

Case 3 | Incremental learning for the Input Embedding module | 6.7h
Case 4 Train from scratch 18.3h

Experiment Highlight

PreQR handles various downstream tasks:

* Query Clustering:

Comparing with five approaches to measure
pairwise similarity between queries.

o SQL-to-Text Generation:

Comparing the encoding of PreQR model
against the Seq2Seq, Tree25eq and
Graph2Seq.

1.0

0.7+ EEA Aligon Bl Aligon
=3 Aouiche E Aouiche
0.6 1 B2 Makiyama 0.8 1 E=H Makiyama | H
= One-hot \ I One-hot il
0.5 4 B0 Seq2seq 3 Seq2seq 1]
B PreQR 0.6 1 EEE PreQR i
© 0.4] i
2 8 i
= = L]
0.3 0.4 1 N
L]
0.2 -4 Il
1]
0.2 1 1]
0.1 1 b o o 1]
cee \ i
0.0 - b o o 0.0 L]
CH-benchmark Logically Equivalent Same Tamplate Irrelevant
Dataset Query Group
(a) Similarity ranking validation (b) Query group distance

SELECT opponent WHERE points < 18 AND November

o > 11;

Seq2Se What is the opponent when the points are less than 18
9%¥9 | With the November is more than 11 ?

PreOR Which opponent has the points less than 18, and the

November more than 11 ?

Experiment Highlight

—A— NS-MSCNCard A —A— NS-MSCNCost
140 A MSCNCard MSCNCost
120 NS-LSTMCard 3.0 ¥- NS-LSTMCost
H ' . . T -3¢~ LSTMCard = LSTMCost
* Query Cardinality and Cost Estimation: "o Ns-perQRCard X o N&-perORCost

1005 —B- PerQRCard 251 —B- PerQRCost

Comparing with a conventional method ® o 2]
(PostgreSQL), the query-based learning
models (MSCN and LSTM), and a data-
based learning model (NeuroCard). N
(a) Card validation error (b) Cost validation error
* The experimental results showed that by 53 .
replacing the encoders of existing models : : 6 3
with PreQR encoding, performances on . % g : 0l ? o
various database tasks obtain a significant T : . g 8
improvement. 4] g |4 = T g
1 i 8
T B . T =
MSCl\'lCard LSTIViCard PreOIiCard MSCI{JCOSt LSTNIICost Prtel’\Cost

Methods Methods

(C) Cardinality (d) Cost

PreQR

* PreQR: towards pre-training SQL embedding.

Xiu Tang
« Email: tangxiu@zju.edu.cn

