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ABSTRACT
With the rapid growth of cloud computing, efficient management

of multi-tenant databases has become a vital challenge for cloud

service providers. It is particularly important for Alibaba, which

hosts a distributed multi-tenant database supporting one of the

world’s largest e-commerce platforms. It serves tens of millions

of sellers as tenants, and supports transactions from hundreds of

millions of buyers. The inherent imbalance of shopping preferences

from the buyers essentially generates a drastically skewed work-

load on the database, which could create unpredictable hotspots

and consequently large throughput decline and latency increase.

In this paper, we present the architecture and implementation of

ESDB (ElasticSearch Database), a cloud-native document-oriented

database which has been running on Alibaba Cloud for 5 years as

the main transaction database behind Alibaba’s e-commerce plat-

form. ESDB provides strong full-text search and retrieval capability,

and proposes dynamic secondary hashing as the solution for pro-

cessing extremely skewed workloads. We evaluate ESDB with both

simulated workloads and real-world workloads, and demonstrate

that ESDB significantly enhances write throughput and reduces the

completion time of writes without sacrificing query throughput.

CCS CONCEPTS
• Information systems→ Data management systems.

KEYWORDS
multi-tenant; cloud-native; load balancing; document-oriented data-
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1 INTRODUCTION
With the prevalence of cloud computing, enterprises are migrat-

ing their applications as well as databases to the cloud. Nowadays,
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Figure 1: Normalized throughput of top 1000 sellers in the
first 10 sec of Single’s Day Global Shopping Festival, 2021.

cloud vendors are supposed to provide database products for mil-

lions of customers, including applications and online services that

host millions of users. This drives cloud service providers to adopt

distributed multi-tenant databases where data from multiple ten-

ants are allocated to share a same set of computation and storage

resources. Such multi-tenant architecture allows for high resource

utilization, and, consequently, high elasticity and low cost for data-

base products. On the other hand, however, due to the inherent im-

balance among the workloads from different tenants, multi-tenant

databases can suffer from severe throughput decline when facing

extremely skewed workloads.

Alibaba is running the world’s largest e-commerce platforms,

which include Taobao, TMall and others. As the backbone of Al-

ibaba’s e-commerce platforms, the transaction database is expected

to provide stable read/write throughput and low response time (RT)

during both ordinary times and under heavy workloads (such as

during major promotion events). In Alibaba’s transaction database,

transaction logs consist of both structured data (e.g., transaction

ID, seller ID, created time and transaction status) and full-text data

(e.g., auction title, sellers’ and buyers’ nickname). Produced from e-

commerce platforms, transaction logs record shopping transactions

initiated by the buyers, and are then sequentially written into the

sellers’ database through a coordination platform. As a targeting

goal, the sellers’ database is dedicated to processing high workloads

and providing highly efficient seller-oriented query and analysis

service. Deployed on Alibaba Cloud [33], the sellers’ database was

initially maintained in a shared-nothing MySQL cluster [52, 53]

where transaction logs were organized by their seller IDs. As the

throughput of Alibaba’s transaction logs has grown rapidly in re-

cent years, we observed that the sellers’ database started to face

the following two challenges:

Diverse data schema and full-text search. As the transaction
logs contain information of various commodities, users are allowed
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to add customized attributes (e.g., sizes, materials of clothes, weights

of food) to the commodities, which leads to a diverse data schemas

(i.e., different transaction logs have different attributes). Since it is

unrealistic to add columns for all customized attributes to the table,

we build an "attributes" column where all customized attributes

are concatenated together as a string. In practice, over 1500 sub-

attributes have been added to the transaction database. Before the

adoption of ESDB, querying about "attributes" column was highly

inefficient, since it is non-trivial to build a suitable index of such a

non-standard string column.

In practice, sellers often find themselves in need to perform full-

text search queries that contain non-standard strings or keywords.

For example, bookstore sellers search transaction status of book

transactions by keywords in the auction titles. Although MySQL

provides fuzzy search (e.g., LIKE, REGEXP) as well as full-text search
using full-text indexing, the support for these functions are limited

and the performance is unstable especially with the rapid growth of

the transaction logs over years. Consequently, it drives us to shift

our backbone from MySQL to document-oriented databases.

Skewed and unpredictable workloads. Another challenge is

that the workload distribution in the sellers’ database is extremely

skewed because of the tremendous variation of the numbers of

transactions conducted by different sellers. The variation is further

magnified at the kickoff of major sale and promotion events during

which the overall throughput increases dramatically. For example,

Figure 1 shows the normalized throughput of the top 1000 sellers

in the first 10 seconds of the Single’s Day Global Shopping Festival,

2021. In the figure, the normalized throughput roughly follows a

power law curve where the aggregated throughput of the top 10

sellers comprises 14.14% of the total throughput. The unpredictabil-

ity of the throughput distribution adds another layers of complexity:

the throughput of different sellers fluctuates substantially over time,

depending on multiple factors such as the availability of merchan-

dise promotions, the readiness of stock preparation, etc. In practice,

the popularity of sellers can change significantly in a short time

period, and the peaks of top sellers are difficult to forecast.

Before the adoption of ESDB, transaction logs of each seller are

uniquely assigned to a MySQL instance based on their seller IDs.

In practice, when a top seller’s promotion starts and brings in volu-

minous transactions, the write throughput can easily overwhelm

the instance’s write capability. On the other hand, most instances

(for ordinary sellers) are deeply under-utilized. The consequence

of such skewed workload is waste of resources on idle instances,

failed real-time queries on hotspot instances, and an overall perfor-

mance degradation. For example, the write delays (i.e., a metric that

evaluates how long ESDB takes to complete a write of a transaction

log into the seller’s database) of large tenants could rise as high as

over 100 minutes in early years, in which case, the sellers would

lose the capability of adjusting their sale strategy based on the mar-

ket’s response. A straightforward multi-tenant solution is to allow

multiple sellers to share a database instance, e.g., by routing sellers’

transaction logs to instances through consistent hashing [42, 49].

However, the distribution of transaction logs is still skewed due

to the inherent imbalance of transactions performed by different

sellers. Therefore, we need a workload-adaptive load balancing

mechanism, especially with the high fluctuation and unpredictabil-

ity in the workloads.

Contributions. In this paper, we introduce ESDB, a cloud-native
multi-tenant database which features processing extremely skewed

workloads. ESDB is built upon Elasticsearch [17] and inherits its

core characteristics, such as full-text search, distributed indexing

and querying, and using double hashing [5] as its request routing

policy. The novelties of ESDB lie in a new load balancing technology

that enables workload-adaptive routing of multi-tenant workloads,

and optimizations that overcome the shortcomings of Elasticsearch

as a database, such as high RT for multi-column queries and high

cost of index computation. More concretely, we make the following

contributions of this paper:

• We present the architecture of ESDB, a cloud-native document-

oriented database which has been running on Alibaba Cloud

for 5 years as the main transaction database behind Alibaba’s e-

commerce platform. ESDB provides support for elastic writing for

extremely skewed workloads, as well as highly efficient ad-hoc

queries and real-time analysis.

• We introduce dynamic secondary hashing as the solution to the

performance degradation caused by the high skewness of the

workloads. This mechanism enables real-time workload balanc-

ing to allow balanced write throughput on different instances. At

the same time, unlike double hashing which requires expensive

distributed read to fetch results from virtually all instances, it

avoids the heavy burden induced by distributed queries.

• We further introduce several optimizations, such as the adop-

tion of a query optimizer, physical replication, frequency-based

indexing. These optimizations enable ESDB to incorporate fea-

tures of a document-oriented database (e.g., high scalability and

strong support for full-text retrieval), while providing low RTs

for ad-hoc queries.

• Finally, we evaluate ESDB both in laboratory environment with

simulated workloads and in production environment with real-

world workloads. The experimental results show that ESDB is

able to balance write workloads in different skewness scales and

achieves high query throughput and latencies. Our results show

that the deployment of ESDB succeeds reducing write delays

even at the spike of Single’s Day Global Shopping Festival.

The remainder of this paper is organized as follows. In Section 2,

we introduce as background document-oriented databases, and the

general concept of load balancing. Section 3 presents the architec-

tural overview of ESDB. We then introduce the design of dynamic

second hashing in Section 4, and the optimizations in Section 5. Sec-

tion 6 presents the evaluation of ESDB. Finally, we discuss related

work in Section 7 and conclude in Section 8.

2 BACKGROUND AND MOTIVATION
In this section, we introduce as background document-oriented

databases, and a particular example, Elasticsearch, which is used

as the basis of ESDB. We then discuss the general concept of load

balancing, as well as the motivation of dynamic second hashing.

2.1 Document-oriented Database
Document-oriented database is a subclass of NoSQL database where

the data is stored in form of documents. Unlike relational data-

base, document-oriented database does not have predefined data

format thus supports flexible schema. Compared to other NoSQL



Write Coordinators

1

Query Clients

1

2

2

3

3

Write Coordinators

1

Query Clients

1

2

2

3

3

Write Coordinators

1

Query Clients

1

2

2

3

3

(a) (b) (c)

write workloads read workloads

Figure 2: Workflows where the workloads originate from
the write coordinators (yellow boxes) to shards (blue boxes)
through double hashing and finally reach query clients
(green boxes). Black arrows represent workloads of small
tenants. Thick red arrows represent workloads of large ten-
ants; they are separated into thinner arrows as the workloads
are routed to multiple shards by double hashing. Figure (a),
(b) and (c) depicts hashing, double hashing and dynamic sec-
ondary hashing respectively.

databases, the advantages of document-oriented databases are han-

dling complex queries and managing composite data structures,

such as nested documents. Generally, the documents are encoded in

file formats, such as JSON, BSON, XML, YAML. These file formats

expose their internal structures which the database engine takes

advantage of in order to optimize indices and query.

Although the mainstream document-oriented databases (e.g.,

MongoDB [40], CouchDB [16] and Couchbase [39]) gain popularity

from the industry, their performance of full-text search is unstable

and cannot meet our expectation of real-time query in a large scale.

Elasticsearch [17] and Solr [20] are search engines which are based

on the search library Lucene [19]. As they provide operations on

documents (e.g., data is stored in JSON), they are also considered as

document-oriented databases. As of February 2022, Elasticsearch

is arguably the most powerful and popular open-source full-text

search tool [1]. In addition to the strong support for full-text search,

Elasticsearch provides high horizontal scalability and availability

as it is a naturally distributed system which supports low-cost

cluster extension, multiple replicas, and distributed queries. This

feature is also essential for load balancing because the transaction

logs and workloads of large tenants are supposed to be distributed

instead of uniquely allocated. Moreover, Elasticsearch implements

double hashing [5] which is the basis of our load balancing method.

Therefore, we choose Elasticsearch as the backbone of ESDB.

Unfortunately, we find Elasticsearch has two main drawbacks

after deploying it as the sellers’ database: (1) High RT for multi-

column queries. When a query involves with multiple columns

and complex conditions, RTs of Elasticsearch are usually higher

than the original MySQL cluster. (2) High cost of index computing.

On the one hand, as every shard has a replica which is distributed

on a different machine, operations on Elasticsearch’s index file

(segment file) double the computation cost. On the other hand, in

order to improve query efficiency, we are supposed to build indices

for the sub-attributes of the "attributes" column of transaction logs.

It will cause unacceptable computation and storage considering

the number of sub-attributes is around 1500. In Section 3 and 5, we

introduce our solutions to these two problems.

2.2 Load Balancing
Typical load balancing methods include sharding and double hash-

ing. Sharding is a horizontal partitioning method which distributes

large tables across multiple machines by a shard key (e.g., time, re-

gion, seller ID). Through distributing storage as well as workloads,

sharding alleviates heavy burden on single machine. In addition,

some well-adopted databases (e.g., Spanner [28], MongoDB [40],

ONDB [54], Couchbase [39]) implement automatic reshardingwhich

automatically reshards and migrates data across machines in order

to balance workloads. HBase [18] uses an auto-augmentation re-

shard method which splits one shard into two shards once the shard

grows too large. Yak [44] uses a rule-based reshard method which

uses manually defined split rules for workload schedule and data

migration based on metrics detected by a global monitor. Although

optimal sharding strategies are likely to guarantee load balancing,

high cost and risk caused by data migration cannot satisfy the

requirement of real-time processing and volatile workloads.

Double hashing [35, 48] is a classic algorithm proposed to resolve

hash collision in a hash table, in which a pair-wise independent

secondary hash function is introduced to produce an offset in case

the first hash function causes collision. In some applications [30,

43, 56], two independent hash functions are applied to one key.

Particularly, the double hashing result of a key 𝑘 is 𝑝 = (ℎ1 (𝑘) +
𝑖ℎ2 (𝑘)) mod 𝑁 where 𝑖 increases as the sequence of collision grows

and 𝑁 is the size of hash table.

When databases (e.g., Elasticsearch [17], HBase [18], Ocean-

Base [34] , OpenTSDB [60]) take advantage of double hashing for

more balanced routing, it commonly includes two independent

hash functions separately applied on two attributes. For example,

Elasticsearch implements a double hashing module which allows

users to choose two attributes 𝑘1 and 𝑘2 and a global static variable

𝑠 . The corresponding routing destination is

𝑝 = (ℎ1 (𝑘1) + ℎ2 (𝑘2) mod 𝑠) mod 𝑁 (1)

where 𝑘1 is the main attribute for load balancing (e.g., tenant ID), 𝑘2
is a key uniquely generated for each transaction (e.g., transaction

ID), 1 ≤ 𝑠 ≤ 𝑁 and 𝑠 ∈ Z.
In Equation 1, the maximum offset 𝑠 plays an important role in

the trade-off between load balancing and query efficiency. When

𝑠 = 1, double hashing degrades to hashing which fails in workload

balancing but enables queries on single shard (Figure 2 (a)). On

the contrary, when 𝑠 = 𝑁 , double hashing routes records to all

distributed shards regardless of whether they are hotspots or not.

It enables complete balanced workloads of all tenants but requires

query executions to search and aggregate query results from all

distributed shards thus causes low query throughput (Figure 2

(b)). Some operations, such as sort and top-𝑘 , are much more time-

consuming once the data is stored in a distributed manner. In this

paper, we fulfill the goal of supporting both load balancing and

high query throughput by replacing the static 𝑠 with a function

which dynamically changes with respect to the real-time workload

of a tenant. We present the detailed design in Section 4.

3 SYSTEM OVERVIEW
ESDB is a distributed database system deployed on Alibaba Cloud.

It adopts a shared-nothing architecture where each database node

(i.e., physical or virtual machines) stores the allocated shards and
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processes workloads independently. In an ESDB cluster, shards

and replicas (each shard has one replica) are randomly allocated

to different nodes. Nodes play different roles: each node works as

both a coordinator (on control layer) and a worker (on execution

layer); each cluster further elects one node as the master node.

Figure 3 shows an architectural overview of ESDB. In addition

to the three layers of workload processing, this figure also includes

ESDB’s key features that enable real-time workload balancing and

read/write optimizations. The rest of this section, we introduce

these components in more details.

3.1 Application layer
The Application layer consists of ESDB’s write clients and query

clients. We briefly introduce these two kinds of clients:

Write clients.Accompanied by ESDB’s load balancer, ESDB’s write

clients use the following techniques to accelerate writing and al-

leviate hotspots. (1) One-hop routing. The original write clients

of Elasticsearch are transport clients which are unaware of work-

loads’ destinations [12]. These transport clients route workloads

to coordinators in a round-robin fashion which leads to two-hop

routing (write client→ coordinator→ worker). In ESDB, we allow

the transport clients to be aware of the routing policies. In this way,

we achieve one-hop routing (write client→ worker) and thus accel-

erate writing. (2) Hotspot isolation. In write clients, all workloads

are temporally buffered in a queue before they are routed to their

corresponding workers batch by batch. Once a worker is overloaded

(probably caused by both skewed write workloads and slow read

queries), the queue will be blocked and the write delay will rise.

In order to solve this problem, ESDB implements hotspot isolation

which isolates workloads of hotspots to another queue, such that

they will not negatively affect other workloads. (3) Workload batch-

ing. When a write client detects that a row (identified by its row ID)

will be frequently modified in a short period of time, it will batch-

execute the workloads by aggregating together these modifications

and only materializing the eventual state of this row. By adopting

the workload batching, the write clients avoid the repeated writes

to the same row and thus improve write throughput.

Query clients. ESDB inherits the RESTful API and the query lan-

guage ES-DSL from Elasticsearch. However, ES-DSL is less user-

friendly compared to SQL, and it does not support all expressions

and data types of SQL (e.g., type conversion expression date_format).
We therefore need a tool to rewrite SQL queries into ES-DSL queries.

In order to solve this problem, we develop a plugin Xdriver4ES as a

bridge between SQL and ES-DSL.

Xdriver4ES adopts a smart translatorwhich generates cost-effective

ES-DSL queries from SQL queries. Unlike SQL, ES-DSL encodes

query ASTs directly which are then parsed to generate execu-

tion plans. Therefore, instead of building ASTs from SQL queries,

Xdriver4ES adopts the following two optimization techniques: (1)

CNF/DNF conversion. Considering queries as boolean formulas,

Xdriver4ES converts them into CNF/DNFs in order to reduce the

depth of ASTs. (2) Predicate merge. Xdriver4ES merges predicates

that involve the same column in order to reduce the width of

ASTs (e.g., merge tenant_id=1 OR tenant_id=2 to tenant_id IN
(1,2)). Xdriver4ES further utilizes a mapping module which con-

verts the query results into a format that a SQL engine understands.

For example, we implement in this module built-in functions of SQL,

such as data type conversion and IFNULL. In this way, Xdriver4ES

allows the execution of SQL queries on ESDB.

3.2 Control layer
The control layer consists of a master node, coordinator nodes and a

monitor which collects metrics for workload balancing. In an ESDB

cluster, master node works as the manager of the whole cluster.

It is responsible for cluster management tasks such as managing

metadata, shard allocation and rebalance, and tracking and mon-

itoring nodes. The coordinator nodes are mainly responsible to

route read/write workloads to the corresponding worker nodes [8].

Specifically, during the query execution phrase, coordinators first

collect row IDs of the selected rows from all involved shards, and

then fetch the corresponding raw data (indicated by the retrieved

row ID list). Therefore, coordinators contain a query result aggrega-

tor that is in charge of row ID collection and perform aggregation

operations (e.g. global sort, sum, avg).

Load balancer. ESDB’s load balancer is developed to generate

and commit routing rules which instruct the reader/write routers.

Since it is enabled by dynamic secondary hashing, the routing

rules are also called secondary hashing rules. Once the monitor

detects hotspots, the coordinators will generate new routing rules

that essentially split and extend the shards that are hosting the

current hotspots. Through exploiting new routing rules, ESDB

distributes workloads of large tenants to more shards thus alleviates

the over-burdened nodes. Once it receives new routing rules from

coordinators, the master node is then responsible to commit these

rules. In this way, the load balancer ensures the consistency of

workload routing in the whole cluster. We present more design

details of the load balancer in Section 4.

Frequency-based indexing. In order to mitigate the cost of main-

taining indices of the sub-attributes of the “attribute” column (see

Section 2.1), we adopt frequency-based indexing (i.e., build indices

only for the most frequently queried sub-attributes). This idea is

derived from the observation that sub-attributes’ read/write fre-

quencies are skewed. For example, some generic sub-attributes,

such as “activity” that indicates what e-commerce activity the seller



is participating in, are frequently used and likely to be queried. In

practice, frequency-based indexing provides significant improve-

ment in query latency with the cost of a slightly increased storage

overhead. We demonstrate the effectiveness of frequent-based in-

dexing in Section 6.3.3.

3.3 Execution layer
The execution layer consists of worker nodeswhichmaintain shards

and replicas in their local SSD, and execute read/write workloads.

The worker nodes have a shared-nothing architecture where each

worker maintains its own storage, independent to other workers.

Write execution and data replication. When executing write

workloads, ESDB inherents the feature of near real-time search [7]

from Elasticsearch. Raw data and indices are temporally written

into an in-memory buffer before they are periodically refreshed

to segment files and become available to search. In order to ad-

dress persistence and durability, ESDB adopts Translog [11] which

pertains to the disk. Every write workload will be added to the

Translog once it is successfully submitted. In this way, the data that

has not been flushed [3] to the disk can be safely recovered from

Translogs, if ESDB encounters process crash or hardware failures.

Moreover, segment merge [9] is another important mechanism that

merges smaller segments to a large segment. It costs computation

resources but effectively improves query efficiency.

Elasticsearch adopts a logical replication scheme [4]: a primary

shard will forward a write workload to all its replicas once this

workload has been locally executed. In other word, same write

workload is executed respectively by the replicas, which causes

𝑛-fold computation overhead to the cluster (𝑛 is the number of

replicas). In ESDB, write workloads are still forwarded and added

to Translogs on replicas in real-time, but are never executed by

replicas. Instead, it implements physical replication of segment files.

We describe the details of physical replication in Section 5.2.

Query optimizer. For query workloads, ESDB builds optimized

query plans using a rule-based optimizer. Instead of using index

scan for all columns, ESDB provides more operations such as com-

posite index scan and sequential scan. Through exploiting combi-

nations of different operations, ESDB significantly reduces query

latencies. Details of optimizations are presented in Section 5.

4 LOAD BALANCING
The load balancer of ESDB is designed to meet the following two

requirements: (1) Query efficiency. Data of multiple tenants should

be placed on as few shards as possible in order to avoid query

executions across too many shards. (2) Load balancing. Distribution

ofworkloads acrossmultiple shards should be as uniform as possible

in order to avoid overload on a single shard. In practice, we make a

trade-off between these two contradictory requirements by limiting

data of small tenants on single shard and distributing data of large

tenants across multiple shards (see Figure 2 (c)).

4.1 Dynamic Secondary Hashing
The key intuition of dynamic secondary hashing is to adopt a

workload-adaptive offset function 𝐿(𝑘1) in the secondary hash-

ing period of double hashing. Compared to Equation 1, the fixed

maximum offset 𝑠 is replaced with 𝐿(𝑘1):

𝑝 = (ℎ1 (𝑘1) + ℎ2 (𝑘2) mod 𝐿(𝑘1)) mod 𝑁 (2)
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where 1 ≤ 𝐿(𝑘1) ≤ 𝑁 , 𝐿(𝑘1) ∈ Z and 𝐿(𝑘1) depends on the real-

time workloads of tenant 𝑘1.

Figure 4 depicts three different routing policies: hashing, double

hashing and dynamic secondary hashing. Apparently, hashing can

only route a workload based on the 1-level hash of the partition

key (e.g., tenant ID) thus falls short when it needs to balance multi-

tenant workloads. The ordinary double hashing is able to route

workloads of a tenant to a fixed set of consecutive shards based on

2-level hashing of two keys (i.e., tenant ID and record ID) but fails

to manage dynamic workloads. The dynamic secondary hashing is

inspired by double hashing, which also route workloads to consec-

utive shards. However, it is capable of extending to the successive

shards when the workloads increase (e.g., 𝐿(𝑘1) increases from 8

to 16 in Figure 4).

Algorithm 1 ESDB load balancer

1: 𝐾 ← collect the set of tenants

2: 𝑃 ← collect the set of shards

3: 𝑅 ← ∅ ⊲ initialize secondary hashing rule list

4: 𝑡𝑖𝑛𝑖𝑡 ← select effective time

5: 𝑆 (𝐾) ← collect current storage of each 𝑘

6: for each 𝑘 in 𝐾 do
7: 𝑟 ← 𝑆 (𝑘 )∑

𝑘∈𝐾 𝑆 (𝑘 )
8: 𝑠 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑓 𝑓 𝑠𝑒𝑡𝑆𝑖𝑧𝑒 (𝑟 )
9: 𝑅 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝐿𝑖𝑠𝑡 (𝑅, 𝑡𝑖𝑛𝑖𝑡 , 𝑠, 𝑘)
10: end for
11: while Service on do
12: 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 ← select effective time

13: 𝑇 (𝐾) ← collect periodic write throughput of each 𝑘

14: for each 𝑘 in 𝐾 do
15: 𝑟 ← 𝑇 (𝑘 )∑

𝑘∈𝐾 𝑇 (𝑘 )
16: if 𝐶ℎ𝑒𝑐𝑘𝐻𝑜𝑡𝑆𝑝𝑜𝑡 (𝑟 ) then
17: 𝑠 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑓 𝑓 𝑠𝑒𝑡𝑆𝑖𝑧𝑒 (𝑟 )
18: 𝑅 ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝐿𝑖𝑠𝑡 (𝑅, 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 , 𝑠, 𝑘)
19: end if
20: end for
21: end while

In practice, the maximum offset in the secondary hashing 𝑠 =

𝐿(𝑘1) relies on two metrics: (1) Current storage. We assume that

tenants with larger storage proportion are more likely to have large

forthcoming workloads. Therefore, we select larger 𝑠 for tenants



Algorithm 2 Secondary Hashing Rule List Update

1: function UpdateRuleList(𝑅, 𝑡, 𝑠, 𝑘)

2: if (𝑡, 𝑠) in 𝑅 then
3: 𝑘_𝑙𝑖𝑠𝑡 ← 𝑅.𝐺𝑒𝑡𝐾𝐿𝑖𝑠𝑡 (𝑡, 𝑠)
4: 𝑘_𝑙𝑖𝑠𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑘)
5: 𝑅.𝑈𝑝𝑑𝑎𝑡𝑒𝐾𝐿𝑖𝑠𝑡 (𝑡, 𝑠, 𝑘_𝑙𝑖𝑠𝑡 )
6: else
7: 𝑅.𝑖𝑛𝑠𝑒𝑟𝑡 ( (𝑡, 𝑠, [𝑘 ]))
8: end if
9: return R

10: end function

with larger storage proportion during the initialization phase. No-

tably, in order to satisfy the requirement of query efficiency, we set

𝑠 = 1 for most of the tenants who have a small storage proportion.

(2) Real-time workload. Based on the real-time write throughput

proportion, which is periodically reported from the workload mon-

itor, the load balancer will enlarge the maximum offset 𝑠 for the

tenants who are considered as hotspots. This adjustment of 𝑠 hap-

pens during the runtime of ESDB.

4.2 Read-your-writes Consistency
Although the dynamic secondary hashing enables a flexible rout-

ing policy, the change of secondary hashing offset brings risks to

read-your-writes consistency, because it breaks the static mapping

between records and shards. For example, for a tenant 𝑘1, if its maxi-

mum offset 𝑠 changes to 𝑠 ′ during runtime, it becomes very difficult

to find all the shards that have hosted 𝑘1’s historical records: the sec-

ondary hashing result changes fromℎ2 (𝑘2) mod 𝑠 toℎ2 (𝑘2) mod 𝑠 ′.
This inconsistency can cause severe problems such as duplicate

indices across different shards, deletion failure, and incorrect query

results. In order to solve this problem, we maintain a secondary
hashing rule list 𝑅 during the runtime of ESDB load balancer. Each

second hashing rule is maintained as a tuple (𝑡, 𝑠, 𝑘_𝑙𝑖𝑠𝑡), where 𝑡
represents the time when the rule takes effect, 𝑠 is the maximum

offset of secondary hashing and 𝑘_𝑙𝑖𝑠𝑡 records the tenant IDs that

adopt 𝑠 in its secondary hashing. The secondary hashing rule list

consists of secondary hashing rules built during the initialization

and runtime phases of ESDB’s load balancing process.

Load balancing with hashing rules. Algorithm 1 demonstrates

how ESDB performs load balancing through updates to the hashing

rule lists. At the initialization phase (Line 5-10), the load balancer

builds secondary hashing rules from the current storage for each

tenant. During the runtime phase (Line 11-21), the load balancer

updates secondary hashing rule list 𝑅 according to the fluctuation of

the real-time workloads. Specifically, we manually design new sec-

ondary hashing rules for "hot" tenants according to the storage pro-

portion or real-time workload proportion (𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂 𝑓 𝑓 𝑠𝑒𝑡𝑆𝑖𝑧𝑒).

In practice, we choose 𝑠 among exponents of 2 (e.g., 1, 2, 4) in or-

der to limit the number of secondary hashing rules and accelerate

the search in the rule list. The load balancer uses𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑢𝑙𝑒𝐿𝑖𝑠𝑡 ,

which is presented in Algorithm 2, to update 𝑅 (Line 9 and 18).

Once a write operation (e.g., INSERT, UPDATE, DELETE), which
can be identified by tenant ID 𝑘1, record ID 𝑘2 and record created

time 𝑡𝑐 , arrives at a coordinator node, the coordinator is responsi-

ble to select a matching secondary hashing rule from 𝑅. The rule

(𝑡, 𝑠, 𝑘_𝑙𝑖𝑠𝑡) must satisfy the following three conditions: (1) 𝑡 must
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Figure 5: ESDB’s secondary hashing rule consensus protocol

be earlier than the creation time of record 𝑡𝑐 . (2) 𝑘1 is in 𝑘_𝑙𝑖𝑠𝑡 . (3) 𝑠

is the largest among all the rules that satisfy the first two conditions.

In this way, both the workloads to create new records (i.e., INSERT)
and the workloads to modify existing records (i.e., UPDATE, DELETE)
are routed to the correct shards.

Once a read operation (i.e., SELECT), which is associated with

tenant ID 𝑘1, arrives, the ESDB query client will use 𝑘1’s matching

secondary hashing rule (𝑡, 𝑠, 𝑘_𝑙𝑖𝑠𝑡) to decide the correct consecu-

tive shards where the query should be executed on, that is, from

shard ℎ1 (𝑘1) mod 𝑁 to shard (ℎ1 (𝑘1) + 𝑠 − 1) mod 𝑁 .

4.3 Consensus
In ESDB, each node works as a coordinator which is responsible

to route workloads to matching shards. Therefore, it is essential

for the whole system to reach consensus on the secondary hashing

rule list 𝑅 once a new rule is generated on any node, in order to

ensure strict consistency [37]. That is, all coordinators always use

the same secondary hashing rule for the same write workload.

Over the past decades, classic consensus protocols were pro-

posed for distributed transactions. 2PC and 3PC [22, 23, 59] are

commitment protocols which aim for atomicity of transactions

(binary consensus on commit or abort). They cannot ensure strict

consistency of 𝑅 in the occurrence of network partition or node

failure. Paxos [45, 46], Raft [51] and ZAB [41] solve problems, such

as fault tolerance, leader election, crash recovery [26, 32, 36], to

reach consensus across replicas. However, they are not necessarily

needed in the scenario of deciding the secondary hashing rules.

This is because 𝑅 is an append-only list where each rule is associ-

ated with an effective time. Therefore, we do not need to decide

the ordering of rules (as they are sorted by their effective time), in-

stead, it reduces to deciding, for each rule, whether it is committed

or aborted. We can therefore use the more efficient commitment

protocols (e.g., 2PC) to reach consensus on the secondary hashing

rules. In ESDB, we propose a 2PC variant protocol which is inspired

from Spanner’s commit wait mechanism [28] to solve the problem

of workload blocking. Figure 5 shows an overview of this protocol.

Prepare Phase. Whenever a coordinator node builds a secondary

hashing rule, it sends the new rule to the master node of ESDB

cluster. The master node decides the effective time 𝑡 that the rule

takes effect using its local timer with a manually designed time

interval 𝑇 , 𝑡 = 𝑡𝑖𝑚𝑒𝑟 .𝑛𝑜𝑤 () +𝑇 . Next, the master node broadcasts

the effective time as a proposal to all participant nodes. When a

participant receives the proposal, it checks whether all its records

has been created earlier than the effective time (i.e., ensure 𝑡𝑐 < 𝑡 for



SELECT logs FROM transaction_logs
WHERE tenant_id = 10086
AND created_time >= ‘2021-09-16 00:00:00’
AND created_time <= ‘2021-09-17 00:00:00’
AND status = 1 OR group = 666

Figure 6: Query example

all executed records). If this condition is satisfied, participant blocks

all workloads whose creation times are later than the effective time

and replies the master node an acceptance message. Otherwise,

participant reports error to the master node. If the master node

receives any error message or detects any timeout (a participant

does not respond within
𝑇
2
), this secondary hashing rule is aborted.

Otherwise, the commit phase begins.

Commit Phase. The master node broadcasts commit message as

well as the secondary hashing rule to all participating coordinators.

Since all nodes have reached consensus in the last phase, they will

accept the commit message and add the rule to their local secondary

hashing rule lists. Once the commit phase is complete, the nodeswill

remove the block of workload execution (i.e., continue to process

workloads with creation time greater than the effective time).

Choose of time interval. The time interval𝑇 provides a buffering

period for the system to reach consensus on the secondary hashing

rules. 𝑇 should be much larger than the roundtrip latency of broad-

casting (e.g., 100ms) and the maximum of local clock deviations

across the cluster (no more than 1s in ESDB) to ensure strict consis-

tency. At the same time,𝑇 should be shorter than our expected time

of load balancing (e.g., 60s) for effectiveness. As long as 𝑇 is larger

than the time for the cluster to reach consensus, ESDB’s consensus

protocol achieves non-blocking of workload processing.

Fault tolerance. Although ESDB’s consensus protocol ensures

strict consistency of 𝑅, it still suffers from network partition and

node failures during the commit phase. ESDB adopts an automatic

solution of fault tolerance. However, it relies on the detection of

network partition and node failure, that is, it needs to differenti-

ate temporarily unresponsive nodes from failed nodes. A typical

solution uses a pre-defined timeout; in ESDB, we manually verify a

raised alarm (a node becoming unresponsive), to definitively decide

whether a node failure or a network partition has occurred.

5 OPTIMIZATION
ESDB focuses mainly on multi-column SFW (SELECT-FROM-WHERE)
queries on a single table, where multiple predicates are connected

by AND and OR operators. Before the deployment of optimizations,

ESDB’s query performance is decent when queries only involve

few columns. However, we observed more than 10x overhead from

ESDB’s multi-column queries compared to that of a MySQL cluster.

(Queries from sellers usually involves with more than 10 columns).

After a performance analysis, we identify that the suboptimal per-

formancemainly results from Lucene’s rigid query plans. To address

this problem, we introduce a query optimizer (see Section 5.1).

5.1 Query Optimizer
As an example, consider a query involving four columns (shown

in Figure 6). The execution plan generated by Lucene is shown in

Figure 7. First, Lucene generates posting lists, which record the

row IDs of the selected rows, for each column by searching the

Index Search tenant_id
predicate
tenant_id = 10086

Index Search created_time
predicate created_time
between ‘2021-09-16 00:00:00’
and ‘2021-09-17 00:00:00’

Index Search status
predicate
status= 1

Index Search group
predicate
group= 666

A: {1, 2, 3, 4}

B: {2, 3, 4, 5}
C: {3, 4, 5}

D: {3, 4} E: {6}

F: {3, 4, 6}

Union

Intersect

Figure 7: Example query plan of Elasticsearch. A, B, C, D,
E and F represent posting lists generated by corresponding
operations.
corresponding indices. Then it aggregates the posting lists through

intersections and unions. This query plan introduces large overhead

since the posting lists are generated sequentially. It will become

more time-consuming when the selectivity of a column is high and

the posting list grows prohibitively large. In order to solve this prob-

lem, we let ESDB incorporate features from relational databases:

composite indices, sequential scan and a rule-based optimizer (RBO)

which produces cost-effective query plans.

Composite index. In relational databases, composite index is built

on multiple columns which are concatenated in a specific order. Tak-

ing advantage of composite indices usually avoids time-consuming

operation, such as table scan, thus accelerates queries that involve

multiple columns [24]. Meanwhile, composite indices have limited

applicability, as the columns must comply with the leftmost se-

quence (i.e. the leftmost principle). For example, if the composite

index is built on two columns column1_column2, we can either

query about (column1) or (column1, column2); on the other hand,

queries about (column2) cannot leverage this composite index. In or-

der to increase availability of composite indices, DBAs are expected

to manually build composite indices among a massive amount of

column combinations [27].

Elasticsearch uses Bkd-tree [55] to index numeric data and multi-

dimensional (e.g., geo-information) data. Bkd-tree is an index struc-

ture which combines kd-tree [57] and B+ tree. Unlike B+ Tree,

Bkd-tree enables division of search space along different dimen-

sions. Therefore, it is not necessary to follow the leftmost principle

and this makes the composite index more flexible. Furthermore, it

optimizes disk I/O and significantly reduces overheads of insertion

and deletion by dynamically maintaining a forest of kd-trees [55].

However, Bkd-tree suffers from the curse of dimensionality where

the search performance degrades as the number of dimensions

grows high [15]. In ESDB, we build concatenated columns and one-

dimension Bkd-trees on these columns as the composite indices.

Although such design has less flexibility, ESDB’s composite indices

search performs fast and is able to cover most query workloads in

practical application scenarios.

Another challenge of composite index is the growing key size

when we concatenate columns, which makes operations like key

comparisons expensive. In order to solve this problem, we take

the advantage of common prefixes: since the concatenated keys

are sorted in the composite index, the leaf nodes in the Bkd-tree

usually contain keys that share a common prefix. By leveraging the

common prefixes, we manage to increase the storage efficiency and

reduce the cost of key comparisons.



Composite Index Search tenant_id_created_time
predicate tenant_id = 10086 and
created_time between ‘2021-09-16 00:00:00’
and ‘2021-09-17 00:00:00’

Scan Doc value of status
to filter posting list A
predicate status = 1

Index Search group
predicate
group= 666

A: {2, 3, 4}

Union

B: {3, 4} C: {6}

D: {3, 4, 6}

Figure 8: Example query plan of ESDB. A, B, C and D repre-
sent posting lists generated by corresponding operations.
Sequential scan. Another important operation supported in tradi-

tional databases is sequential scan. Although it is considered less

efficient, this operation requires less I/Os and performs better when

the selectivity or cardinality of a column is low (e.g., gender col-

umn). However, sequential scan is not implemented in Elasticsearch

because it is against core idea of search engines, which are typically

designed for full-text search and ranking without fetching the raw

documents. In ESDB, we implement sequential scan as an auxil-

iary of composite index. Based on the posting list generated from

a composite index search, ESDB sequentially scans through the

corresponding Doc values [2] to generate a filtered posting list. In

this way, sequential scan becomes an effective search operation and

is capable of accelerating query in certain cases (e.g., for queries

that include columns without indices). In practice, we maintain a

scan list which includes the names of columns that can benefit from

sequential scans.

Rule-based optimizer. Finally, we introduce ESDB’s rule-based
optimizer (RBO) for multi-column SFW queries. RBO chooses exe-

cution plans for different columns based on the availabilities and

rankings of the following access paths:

• Composite index is available when the predicates connected

by AND use columns that are in some composite indices. In this

case, we use longest-match to select the composite index which

includes as many columns as possible.

• Sequential scan is available when the predicates connected by

AND use columns that are not included in any composite index,

but are included in the scan list.

• Single column index is available when the predicates connected
by AND use columns that are not included in any composite index

nor in the scan list, or the predicates are connected by OR.
Figure 8 depicts the optimized query plan of the example query

(shown in Figure 6). Posting list A is generated from composite index

tenant_id_created_time. After scanning the Doc value of status, the
final result is the union of filtered posting list B and posting list C

which is generated from a single index search.

5.2 Physical Replication
Instead of asking replicas to execute same write workloads (i.e. log-

ical replication), a physical replication framework, such as Lucene

Replicator [6] and Solr 7’s TLOG [10], replicates segment files di-

rectly. When the primary shard refreshes a new segment file, it

initializes a replication process, during which the replicas compute

segment diff (i.e., the difference between segment files located on

two shards) and request the missing segments from remote shards.
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Figure 9: Framework of ESDB’s physical replication.
ESDB adopts physical replication with the goal of reducing the

CPU overhead incurred in the replication process. Specifically, we

design it to overcome two drawbacks seen in previous works: 1) a

long monolithic replication process that can be easily interrupted

by a new round of replication process; 2) a long visibility delay

(i.e., the interval between the timestamps when a segment becomes

visible on the primary shard and on a replica) caused by replicating

a large merged segment. ESDB’s physical replication framework

(shown in Figure 9) consists of three replication mechanisms:

Real-time synchronization of Translog. Since Translog is the
durability guarantee of ESDB, we require that it should be synchro-

nized in real-time between the primary shard and the replicas. The

primary shard forwards a write workload to the replicas once it

is executed successfully. The replica then adds the received write

workload to its local Translog. In this way, ESDB ensures that all

replicas are able to recover the data locally in case of replica failures

or primary/replica switch.

Quick incremental replication of refreshed segments. ESDB
further adopts a quick incremental replication mechanism to avoid

long replication processes which can be easily interrupted. Figure 9

depicts the six steps of the quick incremental replication:

1. The primary shard builds a snapshot of the current local segments

and adds it to a snapshot list (shown as yellow boxes) every time

a refresh operation finishes.

2. The latest snapshot (i.e., Snapshot 3 in this example) is selected

as the current primary state.

3. The primary shard locks the segments in the current snapshot

(i.e., Segment A and B) and sends them to the replica.

4. The replica computes the segment diff according to its local

snapshot and the snapshot received from the primary shard.

Based on the segment diff, the replica either requests segments

(i.e., Segment B) or deletes the segments that are already deleted

by the primary shard.

5. The primary shard sends the segments requested by the replica.

6. After the replication finishes, the replica informs the primary

shard to unlock the segments in current snapshot.

Above mechanism stabilizes the physical replication process when

the refresh interval is short and guarantees the replication of the

latest segments.

Pre-replication of merged segments. Since the merged seg-

ments are usually large, replicating merged segments with quick

incremental replication can cause delays in replicating refreshed

segments. For example, if snapshot 3 in Figure 9 contains Segment

C, the replicas will request Segment B and C together. This causes
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Figure 10: Comparisons of three routing policies when 𝜃 = 1.
Figure (a) and (b) respectively present write throughput and
average delay with different generating rate.

larger visibility delay of Segment B. In order to solve this problem,

we further introduce pre-replication of merged segments. When

a merged segment is generated, the primary shard immediately

starts to replicate it to replicas. This pre-replication is indepen-

dently running along with the quick incremental replications. In

this way, merged segments never appear in segment diff and thus

have limited influence on the replication of refreshed segments.

6 EVALUATION
In this section, we present the evaluation results of ESDB to demon-

strate its capability of processing skewed write workloads while

retaining high throughput and low latency of distributed queries.

6.1 Experimental Setup
All experiments are performed on a cluster consisting of 11 ECS

virtual machines (ecs.c7.2xlarge) on Alibaba Cloud. Each virtual

machine contains 8 vCPUs, 16GB memory and 1TB SSD disk. We

use three machines to simulate ESDB’s write and query clients and

the rest eight machines as the worker nodes of a ESDB cluster.

In order to simulate real-time processing of Alibaba’s e-commerce

transaction logs, we build a benchmark which generates random

workloads based on the template of our transaction logs and col-

lects metrics of ESDB cluster in real-time. During the evaluation,

the simulated workloads are routed to 512 shards located on the

eight worker nodes. The simulated workloads contain columns

of transaction ID (an auto-increment unique key), tenant ID and

creation time which are essential for ESDB’s workload balancer.

In order to simulate different level of skewness situations, we let

the workload generators sample tenant IDs from Zipf distribution

tunable by a skewness factor 𝜃 . The sampling size of tenant 𝑘 is

set to be proportional to ( 1
𝑘
)𝜃 . We select 5 different 𝜃s: 0, 0.5, 1,

1.5 and 2. When 𝜃 = 0, Zipf distribution is effectively reduced to

a uniform distribution. When 𝜃 = 1, simulated workloads are the

closest to real workloads. Simulations with 𝜃 = 1.5 and 𝜃 = 2 rarely

happen in our production environment, but serve to evaluate the

performance of ESDB in the case of extreme skewness.

(a)
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Figure 11: Write throughput and average delay of three rout-
ing policies with different skewness factor 𝜃s.

6.2 Balanced Write
6.2.1 Write Throughput and Delay. In the first set of our experi-

ments, we measure the cluster throughput and the write delay to

evaluate the performance of three different routing policies:

• Hashing, the baseline policy without any workload balancing;

• Double hashing, another baseline policy that distributes data of

each tenant to 8 shards;

• Dynamic secondary hashing, the routing policy used by ESDB’s

load balancer.

Figure 10 presents the cluster throughput and write delays when

𝜃 = 1 with different data generating rate. In Figure 10 (a), we ob-

serve that the throughput of hashing reaches its limit at around

90K TPS while the other two does not stop until they reach 140K.

This is mainly because hashing fails to balance the skewed work-

loads, and thus waste the resource that could have been used to

handle workflows targeted at hotspots. On the contrary, dynamic

secondary hashing manages to balance the skewed workloads, and

therefore has close performance to double hashing, which is the

optimal option since the data is uniformly distributed on the nodes.

Figure 10 (b) shows how the average delay changes as the data

generating rate grows. Delays of three routing policies all rise

when the generating rate surpasses their throughput upper bounds.

However, we observe that the delay of hashing increases rapidly

after it reaches its throughput upper boundwhile the other two have

smoother trends. This figure further demonstrates that dynamic

second hashing significantly outperforms hashing and has close-

to-optimal write performance.

We use Figure 11 to show that dynamic secondary hashing is

capable of balancing workloads with different skewness factors. In

this set of experiments, we collect the average write throughput

during a period of more than 15 minutes for more stable results.

Figure 11 (a) shows the write throughput with the three routing

policies when the data generating rate is 160K TPS. When the skew-

ness factor 𝜃 = 0, the workload is naturally balanced and all three

policies exhibits similar write throughput and practically reach the
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Figure 12: Standard deviation of write throughput of 8 nodes
(a) and 512 shards (b) with different skewness factor 𝜃s.

performance upper bound of this cluster. When 𝜃 increases, the

throughput of hashing drops while the other two remain stable.

Compared to hashing, dynamic secondary hashing significantly

enhances cluster throughput regardless of the level of skewness.

Figure 11 (b) reports the average write delay as we use different

𝜃s. In this figure, we observe that the average delay of hashing

grows rapidly as 𝜃 increases. In the worst case, the average delay

is more than 100 times higher than the delays without skewness.

On the contrary, the average write delay for double hashing and

dynamic secondary hashing remain stable and satisfactory (around

0.2 seconds) even when the skewness factor is extremely high.

Notably, the average delays of double hashing are always lower

than dynamic secondary hashing even when 𝜃 = 0. It is the case

because it is nearly impossible for dynamic secondary hashing to

reach complete uniform distribution. Nevertheless, the write delays

of dynamic secondary hashing retains low and closely track those

of double hashing, which is valuable in production environments.

6.2.2 Distribution of Throughput on Nodes and Shards. In addition

to the cluster throughput and delays, we also collect throughput of

individual worker nodes and shards to show ESDB’s load balancing

capability more directly. Figure 12 (a) shows the standard deviations

of throughput on nodes with different 𝜃s. When 𝜃 = 0 and 𝜃 = 0.5,

standard deviations of these three routing policies only have slight

differences. When 𝜃 grows larger, the imbalance between different

nodes become more obvious as the standard deviation of hashing

becomes larger. On the contrary, dynamic secondary hashing dra-

matically reduces standard deviations of the throughput on nodes.

Although they are still higher than those of double hashing, the

throughput reduction (shown in Figure 11 (a)) caused by higher

standard deviation is acceptable.

Figure 12 (b) shows the standard deviations of the throughput

on shards with different 𝜃s. We observe that dynamic secondary

hashing is still able to reduce skewness across shards. Although the

skewness across shards only has indirect impact on write through-

put, it is an important factor for ESDB’s query performance. Queries

running on large shards incurs higher overhead compared to queries

running on small shards. Therefore, wewant the distribution among

shards to be as uniform as possible in order to reduce query latency

variance of multiple tenants.

Next, we study the distribution of individuals worker nodes and

shards when 𝜃 = 1. Figure 13 shows the throughput and CPU usage

of the eight worker nodes with hashing (a), double hashing (b)

and dynamic secondary hashing (c). In the figure, we observe that

neighboring nodes have similar throughput and CPU usage; this

is because each shard has a replica. For example, the shard of the

largest hotspot resides in node 1, and it has a replica that resides in

on a different node (node 2 in the figure). With hashing, node 1 and

node 2 are the only two nodes that work at full capacity and the

rest worker nodes’ resources are wasted. With dynamic secondary

hashing, the throughput and CPU usage of the rest nodes are sig-

nificantly enhanced because they now participate in processing

the excessive workloads, which were previously allocated only to

node 1 and 2. We observe in Figure 13 (c) that, with dynamic sec-

ond hashing, the throughput of individual nodes is close to evenly

distributed, and the average CPU usage is around 85%.

Figure 13 (d) shows normalized shard sizes when 𝜃 = 1. With

hashing, shard size approximately has a Zipf distribution. The

largest shard is more than 100 times larger than the smallest shard.

On the contrary, with dynamic secondary hashing, the shard sizes

are more balanced and the largest shard is only 16 times larger

than the smallest shard. Double hashing has the most uniform

distribution; the largest shard is 13 times of the smallest.

6.2.3 Write adaptivity. Figure 14 shows how dynamic secondary

hashing adaptively alleviates hotspots in real-time. In this experi-

ment, we introduced two groups of hotspots by changing the map-

ping between the tenant IDs and Zipf sampling results during a

period of six minutes. We observe that when the first group of

hotspots comes, the write throughputs of hashing and dynamic

secondary hashing drop sharply. However, after the commitment

of new secondary hashing rules, the write throughput of dynamic

secondary hashing increases back to 120K while the write through-

put of hashing never rises again. Similarly, write throughput of

dynamic secondary hashing drops and recovers on the arrival of

the second group of hotspots. Write throughput of double hash-

ing is not affected by random hotspots because double hashing

distributes workloads to all 8 worker nodes.

6.2.4 Physical replication. Figure 15 compares write throughput

and average CPU usage with logical replication and with physical

replication. In Figure 15 (a), write throughput with logical replica-

tion stops rising when the generating rate surpasses 140K while

write throughput with physical replication rises to more than 180K.

In Figure 15 (b), the average CPU usages with physical replication

are always lower than logical replication. The experimental results

prove that physical replication is able to reduce CPU consumption

and increase write throughput of the cluster.

6.3 Query Performance
In this section, we evaluate the query throughput of skewed multi-

tenant data when using different routing policies, as well as the

effectiveness of the query optimizer and the frequency-based in-

dices. We still use the simulated workload in Section 6.2. When

building the top-k query, we select the most commonly used query

template in practice: retrieving transaction logs of a tenant in a

time period. For example, consider the following query template.

SELECT * FROM transaction_logs
WHERE tenant_id=1 AND created_time BETWEEN
‘2021-09-16 00:00:00’ AND ‘2021-09-17 00:00:00’

Based on this template, we build a query benchmark that generates

random queries with multiple filters appended after the predicates

of tenant ID and time range. (The number of involved columns is

randomly chosen from 3 to 10.) Details of experiment setup are

explained in the following sections.
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Figure 13: Write throughput and CPU usage with hashing (a), double hashing (b) and dynamic secondary hashing (c). Bars
represent throughput, lines represent CPU usage. Figure (d) shows normalized shard sizes with three routing policies.
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Figure 14: Real-time write throughput with three routing
policies in 6 minutes.
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Figure 15:Write throughput (a) and average CPU usage of the
cluster (b) with logical replication and physical replications.

6.3.1 Query Throughput. In this experiment, we evaluate the query

throughput when we issue queries on an ESDB cluster consisting of

eight worker nodes, 512 shards and 40M simulated transaction logs.

These transaction logs belong to 100K tenants with a skewness

factor 𝜃 = 1. For each of the top 2000 tenants, we let three machines

concurrently generate SQL queries and send requests to the ESDB

cluster to evaluate the upper bound of query throughput. In order

to collect more stable results, we add LIMIT 100 statement after

every SQL query statement, which avoids fetching too many rows.

Figure 16 shows the query throughput for the top 2000 tenants

with the three routing policies. When using double hashing, each

tenant’s data is distributed to 8 shards, which means a query has

to be expanded to 8 subqueries, one for each shard. Therefore, the

query throughput for double hashing is much lower than the other

two routing policies. On the contrary, dynamic secondary hashing

achieves query throughput as high as hashing for both large tenants

and small tenants. This is because, in our experiments, dynamic

secondary hashing distribute a tenant’s data to a smaller set of

shards. Therefore, the number of subqueries is notably smaller than

double hashing, and it increases the query throughput by as much

as 63% (for the smaller tenants).
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Figure 16: Query throughput of the top 2000 tenants with
three routing policies.
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Figure 17: Average (a) and quantiles (b) query latencies of the
top 100 tenants with and without ESDB’s query optimizer.

Compared to hashing, dynamic secondary hashing also has its

own advantage for queries issued to large tenants: since the shard

sizes for large tenants are much smaller compared to those of hash-

ing (Figure 13 (d)), subqueries can be executed in parallel and there-

fore complete faster. For this reason, we do not observe signifi-

cant drop of query throughput for large tenants. When processing

queries issued to small tenants, both dynamic secondary hashing

and hashing only execute one subquery on the target shard and

have similar performance.

6.3.2 ESDB’s Query Optimizer. In order to prove the effectiveness

of ESDB’s query optimizer, we build a query sets of 1000 queries for

each of the top 100 tenants. We then collect the total time consumed

to finish the execution of the query set with a single-threaded

query client. The target database is the same to the one used in

the previous experiments for evaluating the query throughput. As

shown in Figure 17 (a), query latencies decrease after enabling query

optimizer for all the top 100 tenants. Figure 17 (b) further confirms

that ESDB’s query optimizer is able to reduce query latencies, and

that the query latency is under 200ms even for 99-percentile latency.

Overall, with ESDB’s query optimizer, the average query latency is

improved by 2.41 times, where the latency of the queries issued to

the largest tenant is most significantly improved by 5.08 times.
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Figure 18: Average (a) and quantile (b) query latencies of the
top 100 tenants with and without frequency-based indices.
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Figure 19: Max write delay and average query latency at the
beginning of Single’s Day Global Shopping Festival, 2021.

6.3.3 Frequency-based indexing. Imitating the real-world data from

our production environment, the simulated “attributes” column in

our benchmark consists of 1500 sub-attributes whose frequencies

are skewed (top 30 sub-attributes appear in about 50% of both

write and query workloads). When generating “attributes” for each

simulated row, we sample 20 sub-attributes from Zipf distribution

(𝜃 = 1). In this experiment, We build indices only for the top 30

sub-attributes, which incurs only 6.7% storage overhead. When

generating query workloads, we append a filter of a sub-attribute,

which is also sampled from Zipf distribution, to the query template

used in Section 6.3. Figure 18 (a) and (b) show the average and

quantile query latencies for the top 100 tenants. We observe that,

with frequency-based indices, query latencies improve significantly;

the average query latency of top 100 tenants is reduced by as much

as 94.1%.

6.4 Online Performance
In our last experiment, we evaluate ESDB’s performance in a pro-

duction environment. More concretely, ESDB is used to support Al-

ibaba’s e-commerce platform during the 2021’s Single’s Day Global

Shopping Festival. Figure 19 shows the max write delay and av-

erage query latency during a period of approximately 30 minutes

around the beginning of the festival. We observe that the max write

delay starts to rise notably at 00:00 am due to the dramatic increase

of workloads. After the detection of hotspots and the adoption of

secondary hashing rules, it takes less than 7 minutes for ESDB to

process the workloads generated during the first few seconds after

00:00 am and then fully eliminate write delays after the adapta-

tion. This is a significant improvement over previous year’s max

write delay, which can be as high as over 100 minutes. In addi-

tion, ESDB retains decent average query latency during the first 30

minutes of shopping festival. The average query latency does not

surpass 164ms even when both the write and query throughputs

are extremely high.

7 RELATEDWORK
Different load balancing techniques have been proposed for dif-

ferent applications. Google Slicer [14] proposes a weighted-move

sharding algorithm, which automatically executes merge of cold

slices and split of hot slices based on "weight" (a metric to evaluate

skewness) and "key churn" (cost of split/merge). Facebook’s Shard

Manager [47] moves hot shards out of overloaded servers. Cock-

roachDB [62], Spanner [28], HBase [18], Yak [44] use resharding

methods which automatically split andmove shards of "hot" tenants.

Live migration is another type of migration-based load balancing

technique which moves entire database applications of hotspots

across nodes. Notable applications, such as Zephyr [31], ProRea [58]

and Slacker [21], adopt different cost optimizations in order to mini-

mize the service interruption and downtime. Albatross [29] is a live

migration technique used in shared-storage database architectures.

Instead of migrating data, Albatross migrates database cache and

the state of transactions. Although effective, migration-based load

balancers introduce extra bandwidth and computation overheads,

consuming resources that are already very limited.

E-Store [61] identifies tuple-level hotspots and uses smart heuris-

tics to generate optimal data migration plans for load balancing.

SPORE [38] uses self-adaptive replication of popular key-value tu-

ples in distributed memory caching systems. Compared to data

migration, SPORE incurs fewer overhead and disperses workloads

of "hot" tuples to multiple nodes. SWAT [50] implements a load

balancing method which swaps replica roles as the primary and

secondary replicas to process imbalanced workloads. Although

lightweight, these three methods are not appropriate for our ap-

plication because our major skewness is caused by imbalance of

tenants other than tuples nor replicas. Centrifuge [13] uses tempo-

rary leases between continuous key ranges and servers to provide

consistency for in-memory server pools. It balances workloads by

changing the mapping from virtual nodes to physical worker nodes,

which cannot be used to address single hotspot. LogStore [25]

achieves real-time workload balancing by maintaining and updat-

ing a routing table during runtime. Using a max-flow algorithm,

LogStore generates routing plans which maximize overall write

throughput. However, LogStore’s router has no read-your-writes

consistency guarantee, and this makes it risky to process UPDATE
and DELETE workloads.

8 CONCLUSION
This paper presents ESDB, a cloud-native document-oriented data-

base which supports elastic write for extremely skewed work-

loads and efficient ad-hoc queries. ESDB adopts dynamic secondary

hashing, a lightweight load balancing technique which eliminates

hotspots of multi-tenant workloads in real-time. Compared to hash-

ing and double hashing, dynamic secondary hashing fulfills effi-

cient query and load balancing thus overcomes shortcomings of

both techniques. In addition, we introduce optimizations that sig-

nificantly reduce the computation overheads and query latencies.

We evaluate ESDB both in a laboratory environment with simu-

lated workloads and in a production environment with real-world

workloads. Our results show that ESDB is able to enhance write

throughput and reduce write delays when processing extremely

skewed workloads, as well as maintain high throughput and low

latency for ad-hoc queries on distributed multi-tenant data.
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